用户名: 密码: 验证码:
干旱区膜下滴灌水盐运移规律模拟及预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淡水资源的日益缺乏和盐分的不断增加严重影响着农业的发展,特别是干旱半干旱地区。新疆属于典型的干旱半干旱地区,水盐问题也严重影响该地区的农业发展。为了解决这些问题,许多措施被广泛应用。滴灌被认为是最有效的一种方法,它能够提高产量、节约用水、抑制盐分和减少深层渗漏。另外,在田间经常发生交汇现象,并形成交汇区。对于种植间距较小的作物,经常会被种植在交汇区,交汇区内水盐的分布对作物的产量有着重要的影响,因此了解交汇情况下的水盐运移是十分重要的。随着滴灌技术的逐年实施,盐分呈现增加的趋势,掌握盐分的累积情况显得十分重要。为了更好的了解滴灌条件下的水盐运移,通过试验和模型相结合的方式进行分析研究,得到了以下的结论:
     1.通过对不同滴头流量、灌水量、滴头间距交汇条件下湿润锋运移规律的研究,以Schwartzman提出的经验公式为基础,建立了一种新的经验公式,模拟交汇条件下的湿润锋的距离。公式如下:W和W1分别表示滴头下方和交汇区湿润锋宽度。
     2.证明了HYDRUS3-D模型能够很好的模拟田间点源交汇条件下的水盐分布。并利用模型对不同灌水量、滴头流量和不同土壤质地点源交汇条件下,交汇区水盐分布评价分析。结果发现1.灌水量和脱盐区范围也符合幂函数的关系。2.滴头流量和湿润范围存在幂函数关系,与脱盐范围则符合指数函数关系。3.不同质地条件下,质地较细的土壤水平和垂直湿润锋基本相同,质地较粗的土壤垂直湿润锋远远大于水平湿润锋,脱盐区的范围遵循这一规律。
     3.通过模型确定了“干播湿出”条件下,棉花出苗水的灌水量。通过棉花的出苗率很好的证明了模型的准确性。说明模型可以作为一种有效的工具设计合理的灌水量。
     4.生育期灌水频率越高土壤的含盐量越少,冬灌频率与土壤中的含盐量成正比。
     5.通过实测值和模拟值的对比,证明了SaltModel模型能够比较准确的模拟盐分的累积过程。
     6.根据SaltModel模型模拟的结果,确定了合理的灌溉制度应是:灌水的矿化度1g/L、生育期灌水量:4500m3/ha、冬灌水量应为3000m3/ha。地下水位应控制在1.8米。并且根据模拟结果发现,该灌溉制度条件下,达到水盐平衡的年限为9年。
Freshwater scarcity and soil salinity increases are frustrating the sustainable developmentof agriculture worldwide, particularly in arid and semi-arid regions. Xinjiang in northwestChina is typical of arid and semi-arid region which is serious affected by two factors. Toaddress the problems, some measures have been applied. Drip irrigation is considered asone of the best methods which can increase crop yields; reduced water application;decreased salinity; and deep percolation. Under drip irrigation, confluence occurs betweenpairs of emitters and the area of confluence is termed the ‘overlap zone’, as well as plants(e.g., cotton) are always grown in the overlap zone between neighboring emitters in a field,hence knowledge of salinity distributions in the zone is very important for achieving highcrop yields. Salinity increases with times under drip irrigation, it is very important tounderstand salt accumulation. In order to understanding water and salinity transport withdrip irrigation, we analysis the problem by combination experiments with simulations. Theconclusions as follows:
     1. Research on wetting front dimension with different emitter discharge、different irrigationvolume、different emitter spacing, using the model developed by Schwartzman and Zur(1986) as a starting point and developed a new empirical model for wetting frontdimension with double-point-source drip irrigation. The following relationship:where W and W1denote the widths of the wetting fronts below the dripper and in theoverlap zone, respectively.
     2. HYDRUS3-D can successfully simulate both temporal and spatial soil water contentdistributions, as well as the salinity distributions with double-point-source drip irrigation under field conditions. Additional simulations with HYDRUS-3D were used to evaluatethe effects of various design parameters on desalinization zone pattern around the overlapzone. The additional simulation results showed that the area of the desalination zone was:(1) positively correlated with irrigation volume, following a power function;(2) positivelycorrelated with discharge rate, following an exponential function;(3) the simulation resultsalso showed that, for the fine soil type, the horizontal and vertical distances were nearlyuniform, for the coarser soil type, the extent of diatance was far greater vertically than itwas horizontally, as well as desalination also follows.
     3. Employed the HYDRUS-3D to determining optimal drip irrigation volumes with theHYDRUS-3D model for cotton established by dry seeding and planting afterpre-germination under mulch and confirmed by cotton emergency.
     4. The lower salt content in high frequency irrigation during the growth period. Therelationship between the frequency winter irrigation and soil salt content has a positiverelation.
     5. Compared between observed and simulated, the result showed that the SaltModel canaccuracy predict salt accumulate for the regional.
     6. Based on the simulation results, we determined the suitable irrigation schedule including:irrigation water mineralization1g/L、irrigation volume4500m3/ha in growth periods、winter irrigation3000m3/ha、water table level is1.8m. Predict attained the water-saltbalance in9year under the irrigation schedule.
引文
[1]马英杰,何继武,洪明,等.新疆膜下滴灌技术发展过程及趋势分析[J].节水灌溉,2010,12:87-89.
    [2]汪林,甘泓.西北地区盐渍土及其开发利用中存在问题的对策[J].水利学报,2001,(6):90-95.
    [3]顾烈烽,荣航仪,钟杰敏.兵团大田棉花膜下滴灌技术的形成与发展[J].新疆农垦科技,2002,(2):29-31.
    [4]王庆,郭德发.大田膜下滴灌的优势及对棉花增产的作用[J].节水灌溉,2004,(1):31-32.
    [5]刘海成,马勇生.大田膜下滴灌技术在新疆的形成、发展现状及应用前景[J].科技信息,2008,(35):1004-1009.
    [6]张玉成.棉花膜下滴灌技术的效益分析[J].陕西水利,2010,(2):155-156.
    [7]王立洪,叶含春,陈江山,等.棉花膜下滴灌节水、增产的机理与效益分析[J].中国农村水利水电,2002,(10):9-12.
    [8]刘建新.棉花膜下滴灌节水增效显著[J].农业科技通讯,2002,(6):32.
    [9]李豫新,汤莉.棉花膜下滴灌生产的技术经济效益评价[J].农业技术经济,2001,(5):37-40.
    [10]柴付军,程鸿,周建伟,等.棉花膜下滴灌效果及经济效益分析[J].新疆农垦经济,2002,(4):72-74.
    [11]李援农,孙志武,何林望,等.膜下滴灌技术研究[J].西北农林科技大学学报(自然科学版),2001,29(4):90-92.
    [12]杨国成.膜下滴灌节水技术的应用和意义[J].农业科技与信息,2001,(21):33-34.
    [13]郝毅.浅谈棉花膜下滴灌技术[J].内蒙古水利,2011,(3):94-95.
    [14]吴双健.浅谈膜下滴灌的优势及对棉花增产的作用[J].北京农业,2011,(3):33-34.
    [15]程朝军.浅谈膜下滴灌节水增效的方法[J].新疆农垦科技,2010,(6):76.
    [16]邵光成,蔡焕杰,吴磊,等.新疆大田膜下滴灌的发展前景[J].干旱地区农业研究,2010,19(3):123-127.
    [17]马富裕,周治国,郑重,等.新疆棉花膜下滴灌技术的发展与完善[J].干旱地区农业研究,2004,22(3):202-208.
    [18]徐飞鹏,李云开,任树梅.新疆棉花膜下滴灌技术的应用与发展的思考[J].农业工程学报,2003,19(1):25-27.
    [19]段湘妮,田孟强,苏君红.旱作区膜下滴灌打瓜高产栽培技术[J].新疆农业科技,2010,(6):25.
    [20]张廷彦,李国飞,冯国强.河西地区辣椒膜下滴灌高产栽培技术[J].蔬菜,2011,(6):20-21.
    [21]王帅.马铃薯膜下滴灌节水种植技术[J].农业技术与装备,2011,(3):42-43.
    [22]刘战东,肖俊夫,刘祖贵,等.膜下滴灌不同灌水处理对玉米形态、耗水量及产量的影响[J].灌溉排水学报,2011,30(3):60-64.
    [23]阮明艳,和瑞,陈林,等.膜下滴灌技术在哈萨克斯坦马铃薯生产中的应用[J].农业科技通讯,2011,(2):109-110.
    [24]邓立军.膜下滴灌技术在马铃薯种植中的应用效果[J].现代农业,2011,(2):45-46.
    [25]田国华,张珊珊,韩凤.膜下滴灌技术在棉花生产中的应用[J].新疆农业科学,2010,(8):78-79.
    [26]岳新茹.膜下滴灌技术在温室蔬菜上的应用[J].现代农村科技,2011,(9):53.
    [27]王海鹏,汪玉萍,马育斌,等.秦王川辣椒膜下滴灌栽培新技术[J].黑龙江农业科学,2010(8):176-177.
    [28]雷宏斌.食葵膜下滴灌高产栽培技术[J].农村科技,2011,(5):13-14.
    [29]甜菜膜下滴灌高产栽培技术[J].新疆农垦科技,2011,(2):28-30.
    [30]崔正辉,翟洪占,王茹.玉米膜下滴灌效益分析[J].黑龙江水利科技,2011,39(1):35-36.
    [31]蔡丽娜.籽用南瓜膜下滴灌高产栽培技术[J].农村科技,2011,(2):47.
    [32]叶志勇,郭克贞,赵淑银,等.河套灌区加工型番茄膜下滴灌技术研究[J].灌溉排水学报,2011,30(1):110-112.
    [33] Tiwari KN,Mal PK,Singh RM,et al. Response of okra (Abelmoschusesculentus(L) Moench) to drip irrigation under mulch and non-mulchconditions[J]. Agricultural Water Management,1998,38:91-102.
    [34] Mathieu Ngouajio,Guangyao Wang,RonaldGoldy.Withholding of drip irrigationbetween transplanting and flowering increases the yield of field-grown tomatounder plastic mulch[J].Agricultural Water Management,2007,87:285–291.
    [35] Mukherjee A, Kundu M, Sarkar S. Role of irrigation and mulch on yield,evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentumL.)[J].Agricultural Water Management,2010,98:182-189.
    [36]李毅,王文焰,王全九.论膜下滴灌技术在干旱-半干旱地区节水抑盐灌溉中的应用[J]灌溉排水,2001,20(2):42-46.
    [37]李代鑫.最新农田水利工程规划设计手册[M].北京,中国水利水电出版社,2006.
    [38]樊自立,马英杰,刘国庆.中国西部地区的盐渍化土及其改良利用[J].干旱区研究,2001,18(3):1-6.
    [39]周和平,张立新,禹锋等.我国盐碱地改良技术综述与展望[J].现代农业科技,2007,11:159-162.
    [40]章毅.合理开发利用新疆水土资源[J].中国水利,2000,6:20-22.
    [41]冯广志.关于微灌技术研究与推广的几个问题[J].节水灌溉,2000,(2)6-9.
    [42]张志新,周建萍,伊力哈木.关于发展新疆节水灌溉的几点建议[J].节水灌溉,2004,(5):38-39.
    [43]雷志栋,杨诗秀,谢森传.土壤水动力学,清华大学出版社,1989.
    [44] Brandt A,Bresler E,Diner N,Ben-Asher I,Hiller J,Goldberg D.Infiltrationfrom a trickle source I.Mathematical model,Soil Sci.Soc.Am[J].1971,35:675–682.
    [45] Siyal AA,Skaggs TH.Measured and simulated soil wetting patterns under porousclay pipe sub-surface irrigation[J].Agric.Water Manage,2009,96(6):893-904.
    [46]王全九,叶海燕,史晓南,等.土壤初始含水量对微咸水入渗特征影响[J].2004,18(1):51-53.
    [47]李明思,康绍忠,孙海燕.点源滴灌滴头流量与湿润体关系研究[J].农业工程学报,2006,22(4):32-35.
    [48]汪志荣,王文焰,王全九,等.点源入渗土壤水分运动规律实验研究[J].水利学报,2000,(6):39-44.
    [49]刘晓英,杨振刚,王天俊.滴灌条件下土壤水分运动规律的研究[J].水利学报,1990(1):11-22.
    [50]吕殿青,王全九,王文焰,等.膜下滴灌水盐运移影响因素研究[J].土壤学报,2002,36(6):794-801.
    [51]吕殿青,王全九.膜下滴灌土壤盐分特性及影响因素的初步研究[J].灌溉排水,2001,20(1):28-31.
    [52]李光永,曾德超.滴灌土壤湿润体特征值的数值算法.水利学报,1997,(7):1-6.
    [53]张振华,蔡焕杰,杨润亚.地表滴灌土壤湿润体特征值的经验解[J].土壤学报,2004,41(6):870-875.
    [54]胡和平,高龙,田富强.地表滴灌条件下土壤湿润体运移经验方程[J].清华大学学报(自然科学版),2010,50(6):839-843.
    [55]赵成义,黄俊梅.植物根系吸水特性研究[J].干旱区地理,1999,2:88-95.
    [56]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [57]王全九,王文焰,王志荣等.盐碱地膜下滴灌技术参数的确定[J].农业工程学报,2001,17(2):47-50.
    [58]王全九,邵明安,郑纪勇.土壤水分运动与溶质迁移[M].北京:中国水利水电出版社,2007.
    [59] Paulo A.Herrera,Marco Massabó,Roger D.A meshless method to simulate solutetransport in heterogeneous porous media[J].Advances in Water Resources,2009,32:413–429.
    [60]黄勇,周志芳.Simulation of solute transport using a coupling model based on thefinite volume method in fractured rocks [J].Journal of hydrodynamics,2010,22(1):129-136.
    [61]王开丽,黄冠华.Effect of permeability variations on solute transport in highlyheterogeneous porous media [J].Advances in Water Resources,2011,34(6):671-683.
    [62] Ben-Asher J,Charach Ch.Infiltration and water extraction from trickle irrigationsource:The effective hemisphere model [J].Soil Sci.Soc.Am.J,1986,50:882-887.
    [63]任理,李保国,叶素萍,等.稳态流场中饱和均质土壤盐分迁移的传递函数解[J].水科学进展,1999,10(2):107-112.
    [64] Feike J,Leij,Nobuo Toride,van Genuchten MTh.Analytical solutions for non-equilibrium solute transport in three-dimensional porous media [J].Journal ofHydrology,1993,151(2):193-228.
    [65]王全九,王文焰,汪志荣,等.盐碱地膜下滴灌技术参数的确定[J].农业工程学报,2001,17(3):47-50.
    [66]吕殿青,王全九,王文焰,等.土壤盐分分布特征评价[J].土壤学报,2002,39(5):720-725.
    [67]吕殿青,王全九,王文焰,等.膜下滴灌土壤水盐运移影响因素研究[J].土壤学报,2002,39(6):794-801.
    [68]马东豪,王全九,来剑斌.膜下滴灌条件下灌水水质和流量对土壤盐分分布影响的田间试验研究[J].农业工程学报,2005,21(3):42-46.
    [69]李发文,费良军,吴军虎.膜孔多点源交汇入渗湿润体特性试验研究[J].西安理工大学学报,2002,1:67-70.
    [70]刘世君.膜孔多向交汇入渗湿润体特性试验研究[J].地下水,2004,26(1):65-68.
    [71]孙海燕,王全九.滴灌湿润体交汇情况下土壤水分运移特征的研究[J].水土保持学报,2007,21(2),115-118.
    [72]谷新宝,虎胆·吐马尔白,曹伟,等.双点源滴灌交汇区水盐运移规律试验研究[J].人民黄河,2009,5:88-90.
    [73] Skaggs TH,Trout TJ.Comparison of HYDRUS-2D simulations of drip irrigationwith experimental observations [J].Journal of irrigation and drainage engineering,2004,130(4):304-310.
    [74] Cote CM,Bristow KL,Charlesworth PB,Cook FJ,Thorburn,PJ.Analysisof soil wetting and solute transport in subsurface trickleirrigation[J].Irrig.Sci.2003,22:143-156.
    [75] Lazarovitch N, im nek J,Shani U.System dependent boundary condition forwater flow from subsurface source[J].Soil.Sci.Soc.Am.J.2005,69(1):46-50.
    [76] Lazarovitch N, Warrick AW, Furman A, im nek J. Subsurface waterdistribution from drip irrigation described by moment analyses[J].Vadose Zone J,2007,6(1):116-123.
    [77] Meshkat M, Warner RC, Workman SR. Modeling of evaporation reductionin drip irrigation system[J]. J.Irrig.Drain.Eng.ASCE,1999,125(6):315-323.
    [78] Mmolawa K,Or D.Experimental and numerical evaluation of analytical volumebalance model for soil water dynamics under drip irrigation[J].Soil.Sci.Soc.Am.J,2003,67:1657-1671.
    [79] Provenzano G.Using HYDRUS-2D simulation model to evaluate wetted soilvolume in subsurface drip irrigation systems[J].J.Irrig.Drain.Eng,2007,133(4):342-349.
    [80] Schmitz GH,Schutze N,Petersohn U. New strategy for optimizing waterapplication under trickle irrigation[J].J.Irrig.Drain.Eng.ASCE,2002,128(5):287-297.
    [81] Arbat G,Puig-Bargues J,Barragan J,Bonany J,Ramirez de Cartagena,F.Monitoring soil water status for micro-irrigation management versus modellingapproach [J].Biosystems Engineering,2008,100(2):286-296.
    [82] im nek J, ejna M,van Genuchten MT.The HYDRUS software package forsimulating two-and three-dimensional movement of water, heat, and multiplesolutes in variably-saturated media, Technical Manual, Version1,0, PCProgress,2006, Prague, Czech Republic, p.241.
    [83] Kandelous MM, im nek J. Comparison of numerical, analytical, andempirical models to estimate wetting patterns for surface and subsurface dripirrigation[J].Irrig Sci,2010,28:435-444.
    [84] Kandelous MM, im nek J,van Genuchten MT,Malek K.Soil water contentdistributions between two emitters of a subsurface drip irrigation system[J].Soil SciSoc Am J,2011,75:488-497.
    [85]王维娟,牛文全,孙艳琦,等.滴头间距对双点源交汇入渗影响的模拟研究[J].西北农林科技大学学报(自然科学版),2010,38(4):219-225.
    [86]张伟,吕新,王家平,等.膜下滴灌棉田水盐运移规律研究[J].中国棉花,2010,01:12-14.
    [87]弋鹏飞,虎胆·吐马尔白,吴争光,等.棉田膜下滴灌土壤盐分变化规律[J].新疆农业大学学报,2010,33(1):72-77.
    [88]王振华,吕德生,温新明,等.新疆棉田地下滴灌土壤水盐运移规律的初步研究[J].灌溉排水学报,2005,24(5):22-24.
    [89]杨鹏年,董新光,魏光辉,等.干旱区膜下滴灌下土壤积盐特征研究[J].土壤通报,2011,42(2):360-363.
    [90]张振华,蔡焕杰,郭永昌,等.滴灌土壤湿润体影响因素的实验研究[J].农业工程学报,2002,18(2):17-20.
    [91] Coelho FE,Or D. Applicability of analytical solutions for flow from point sourcesto drip irrigation management [J].Soil Sci soc Am J,1997,61:1331-1341.
    [92] Bresler E.Analysis of trickle irrigation with application to design problems [J].IrrigSci,1978,(1):13-17.
    [93]汪志荣,王文焰,王全九,等.点源入渗土壤水分运动规律实验研究[J].水利学报,2000,(6):39-44.
    [94]张振华,杨润亚,蔡焕杰,等.土壤质地、密度及供水方式对点源入渗特性的影响[J].农业系统科学与综合研究,2004,20(2):81-85.
    [95]王志成,杨培岭,任树海,等.保水剂对滴灌土壤湿润体影响的室内实验研究[J].农业工程学报,2006,22(12):1-6.
    [96]陈渠昌,吴忠渤,佘国英,等.滴灌条件下沙地土壤水分分布与运移规律[J].灌溉排水,1999,18(1):28-31.
    [97]张振华,蔡焕杰,郭永昌,等.滴灌湿润体影响因素的试验研究[J].农业工程学报,2002,18(2):17-20.
    [98]费良军,谭奇林,王文焰,等.充分供水条件下点源入渗特性及其影响因素[J].土壤侵蚀与水土保持学报,1999,5(2):70-74.
    [99]谭奇林.充分供水条件下的点源入渗实验研究[D].西安理工大学,1998.
    [100]吴军虎.膜孔灌溉入渗特性与技术要素实验研究[D].西安理工大学,2000.
    [101]郑园萍,吴普特,范兴科.双点源滴灌条件下土壤湿润锋运移规律研究[J].灌溉排水学报,2008,27(1):28-30.
    [102]李发文,费良军.膜孔灌多点源交汇入渗影响因素试验研究[J].农业工程学报,2001,17(6):26-30.
    [103]王文焰,谭奇林,缴锡云,等.膜孔灌溉点源入渗模型的建立与验证[J].西安理工大学学报,2001,12(3):300-306.
    [104]张振华,蔡焕杰,杨润亚,等.点源入渗等效半球模型的推导和实验验证[J].灌溉排水学报,2004,23(3):9-13.
    [105]孙海燕,李明思,王振华,等.滴灌点源入渗湿润锋影响因子的研究[J].灌溉排水学报,23(3):14-17.
    [106] Schwartzman M,Zur B.Emitter spacing and geometry of wetted soil volume[J].Irrig.Drain.Eng,1986,112(3):242-253.
    [107] Healy RW, Warrick AW.A generalized solution to infiltration from a surfacepoint source [J].Soil Sci Soc Am J,1988,52:1245-1251.
    [108] Amin MSM,Ekhmaj AIM. DIPAC-drip irrigation water distribution patterncalculator.In:7th International microirrigation congress,10–16Sept,PWTC,Kuala Lumpur,Malaysia.
    [109] Kandelous MM,Liaghat A,Abbasi F. Estimation of soil moisture pattern insubsurface drip irrigation using dimensional analysis method [J].J Agri Sci,2008,39(2):371–378(in Persian).
    [110] Wooding RA.Steady infiltration from a shallow circular pond [J].Water ResourRes,1968,4:1256-1273.
    [111] Phillip JR.Feneral theorem on steady infiltration from surface sources withapplication to point and line sources [J].Soil Sci Soc Am Proc,1971,35:867-871.
    [112] Ratts PAC.Steady infiltration from point sources at arbitrary depth [J].Soil SciSoc Am Proc,1971,35:689-694.
    [113] Warrick AW.Time depending linerized infiltration: Piont sources [J]. Soil SciSoc Am Proc.1974,38:383-386.
    [114] Ben-Asher J,Lomen DO,Warrick AW.Liner and nonlinear models ofinfiltration from a point source [J].Soil Sci Am J,1978,42:3-6.
    [115] Locking D,Partange JK,A Surn. Optimal prediction of satuation and wettingfront during trickle irrigation [J]. Soil Sci Soc Am J,1983,48:488-494.
    [116] Cook FJ,Thorburn PJ,Fitch P,Bristow KL.WetUp:a software tool to displayapproximate wetting pattern from drippers [J].Irrig.Sci,2003,22:129–134.
    [117] Brandt A,Bresler E,Diner N,BenAaher I.Infiltation from a trickle source:mathmatical model [J].Soil Sci Am Proc,1971,35:675-682.
    [118] Vander ploeg RR, Benecke P.Unsteady, unsaturated, dimentional moistureflow in soil:A computer simulation program[J].Soil Science Society of AmericaProceedings,1974,38:881-885.
    [119] Warrick A W, Lomen D O.Time-dependent linerized infiltration,III,Strip anddisc sources [J].Soil Sci Soc Am J,1976,40:639-643.
    [120] Batu V.Steady infiltrtion from single and periodic sources [J].Soil Sci Soc Am J,1978,42:544-549.
    [121] Levin I, P C Van Rooyen, F C Van Rooyen. The effect of discharge rate andintermittent water application by point source irrigation on the soil moisture distr-ibution pattern [J].Soil Science Society of America Journal,1979,43:8-16.
    [122] Batu V.Flow net for unststurated infiltrtion from periodic strip sources [J].WaterResour.Res,1980,16:284-288.
    [123] Warrick AW, Lomen DO.Two-dimentional linerized moisture flow with waerextraction [J].J Hydrol,1981,49:235-245.
    [124] Mostaghimi S, Mitcell JK.Pulse trickling effects on soil moisture distrbution[J].Wat er Resou Bull,1983,19:605-612.
    [125] Amstrong CF, Wilson TV.Computer model for moisture distribution in stratifiedsoils under a trickle source [J].Trans ASAE,1983,26:1704-1709.
    [126] Phliph JR.Nonuniform leaching from nonuniform steady infiltration [J].Soil SciSoc Am J,1984,48:740-749.
    [127] Warrick A.Point and infiltration-calculation of the wetted soil surface [J].SoilSci Soc Am J,1985,49:235-245.
    [128] Lafolie FR Guennelon,Van Genuchten MTh. Anlysis of water flow under trickleirrigation:theory and numerical solution[J].Siol Sci Soc Am J,1989,43:1310-1318.
    [129] Taghavi SA, Marino MA, Ralston DE. Infiltration from trickle irrigationsource[C].J Irrigation systems,St.Joseph,Mich,ASAE,1990.749-755.
    [130] Pal D,Sen HS,Dash NB.Moisture transport under cyclic trickle irrigation indifferent textured soils[J].J Agric SCI,1992,118:109-117.
    [131] Ormary M, Ligon JT. Three-dimentional movement of water and pesticedefrom trickle irrigation:finite element model[J].Trans ASAE,1992,35(3):811-821.
    [132] Zhang R.Modeling flood and drip irrigations [J].ICD Journal,1996,45(2):81-92.
    [133]李光永,曾德超,郑耀泉.地表点源滴灌土壤水分运动的动力学模型与数值模拟[J].水利学报,1998,(11):21-24.
    [134] Basha HA. Mutidimentional steady infiltration with prescribed boundaryconditions at the soil surface [J].Water Resour Res,1994,30(7):2105-2118.
    [135] Coelho E F,Or D.A parametric model for two-dimensional water uptake by cornroots under drip irrigation [J].Soil Sci Soc Am J,1996,60(4):1039-1049.
    [136] Roberts T, Lazarovitch N, Warrick AW, Thompson TL. Modeling saltaccumulation with subsurface drip irrigation using HYDRUS-2D[J]. SoilSci.Soc.Am.J,2009,73:233-240.
    [137] Siyal AA,Skaggs TH.Measured and simulated soil wetting patterns under porousclay pipe sub-surface irrigation [J].Agric Water Manage,2009,96:893-904.
    [138] Kandelous MM, im nek J.Numerical simulations of water movement in asubsurface drip irrigation system under field and laboratory conditions usingHYDRUS-2D [J].Agric Water Manage2010,97:1070-1076.
    [139] Schwartzman M.Zur B.Emitter spacing and geometry of wetted soil volume[J].JIrrig Drain Eng,1986,112(3):242–253.
    [140] Kandelous MM.Liaghat A.Abbasi F.Estimation of soil moisture pattern insubsurface drip irrigation using dimensional analysis method[J].J Agri Sci,2008,39(2):371–378(in Persian).
    [141] Singh DK.Rajput TBS.Singh DK.Sikarwar HS.Sahoo RN.Ahmad T.Simulationof soil wetting pattern with subsurface drip irrigation from line source.2006,AgriWater Manag,83:130–134.
    [142] Hoffman G J, Rawlins S L, Garger M J, et al.Water relation and growth of cottonas influenced by salinity and relative humidity[J].Agronomy Journal,1971,63(6):822-826.
    [143] Sharma SK, IC.Gupta.Saline Environment and Plant Growth[M].India:AgroBotanical Publishers,1986,172.
    [144]贾玉珍,朱禧月.棉花出苗及苗期耐盐性指标的研究[J].河南农业大学学报,1987,21(1):30-41.
    [145]罗宾主编(陈恺元等译).棉花生理学[M].上海:上海科技出版社,1980:114-120.
    [146]莫文萍,李春,郑元元,等.盐胁迫下解盐促生菌对棉花种子发芽过程的影响[J].农业工程学报,2006,22(8):260-263.
    [147]孙三民,蔡焕杰,安巧霞.新疆阿拉尔灌区棉花苗期耐盐度研究[J].人民黄河,2009,31(4):81-82.
    [148]董合忠,辛承松,李维江.山东滨海盐渍棉田盐分和养分特征及对棉花出苗的影响[J].棉花学报,2009,21(4):290-295.
    [149] Levitt J.Responses of Plants to Environmental Stress (2ed.),1980.
    [150]孙肇君,李鲁华,张伟,等.膜下滴灌棉花耐盐预警值的研[J].干旱地区农业研究,2009,27(4):140-145.
    [151]冯棣,孙景生,马俊勇,等.不同矿化度咸水造墒对棉花出苗及幼苗生长的影响[J].灌溉排水学报,2011,3:51-55.
    [152]王春霞,王全九,刘建军,等.灌水矿化度及土壤含盐量对南疆棉花出苗率的影响[J].农业工程学报,2010,26(9):28-33.
    [153]杨新建,吕绍智,高振江.棉田土壤水势与棉花产量关系的研究[J].新疆农垦科技,2007,2:40-41.
    [154] Georgia Destouni.Solute Transport through all Intgrated Heterogen eous Soilgroundwater System [J].Water Resources Research,1995,31(8):1935.
    [155] Dutt GR. Penningt on D A. Salinity Probl ems of River Reservoirs[J].R.H.French,1984,465-472.
    [156] Van Hoom J W.Quailty of Irrigation Water Limits of Use and Prediction ofLong-term Efects[J].Irigation and Drainage,197l,(7):117-l35.
    [157] Lin Haiming. The Research and Application of Saline Water Irigationln AridAgriculture Zones[J].World Agriculture,l996,(2):45-47.
    [158]张建新,王爱云.利用咸水灌溉碱茅草的初步研究[J].干旱区研究,l996,(4):30-33.
    [159]王洪彬.沧州地区利用微咸水灌溉分析[J].河北水利水电技术,1998,(4):4-5.
    [160] Magarit ZM,Nadler A.Agrotechnically Included Salinization in the UnsaturatedZone of L oessial Soils [J].Ground Water,1993,31(3):363-369.
    [161] Oron G,DeMalach Y,Gillerman L.Efect of water salinity and irrigationtecknology on yield and quality of pears [J].Biosystems Englnecring,2002,81:237-247.
    [162]马东豪,王全九,来剑斌.膜下滴灌条件下灌水水质和流量对土壤盐分分布影响的田间试验研究[J].农业工程学报,21(3):42-46.
    [163]王全九,徐益敏,王金栋,等.咸水与微咸水在农业灌溉中的应用[J].灌溉排水,2002,21(4):73-77.
    [164]王艳娜,侯振安.咸水灌溉对土壤盐分分布、棉花生长和产量的影响[J].石河子大学学报,2007,25(2):158-162.
    [165]苏莹,王全九.咸淡轮灌土壤水盐运移特征研究[J].灌溉排水学报,2005,24(1):50-53.
    [166]张展羽,郭相平.微咸水灌溉对苗期玉米生长生理形状的影响[J].灌溉排水,1999,18(1):18-22.
    [167]郑德明.南疆棉花高产栽培干物质积累和生长发育动态研究[J].中国棉花,1999,26(7):17-18.
    [168]魏红国,杨鹏年,张巨松,等.咸淡水滴灌对棉花产量和品质的影响[J].新疆农业科学,2010,47(12):2344-2249.
    [169]尤全刚,薛娴,黄翠华.地下水深埋区咸水灌溉对土壤盐渍化影响的初步研究[J].中国沙漠,2011,31(2):302-308.
    [170]彭望录.土壤盐渍化量化的遥感与GIS实验[J].遥感学报,1997,1(3):237-240.
    [171] Salama RB, Otto CJ, Fit zpat rick RW.Contributions of groundwater conditionsto soil and water salinization[J].Hydrogeology Journal,1999,7(1):46-64:
    [172] Ceuppens J, Wopereis MCS.Impact of non-drained irrigated rice croppin g onsoil salinization in the Senegal River Delta[J].Geoderma,1999,92:125-140.
    [173] Mahmood K, Morris J, Collopy J, et al. Ground water uptake andsustainability of farm plant at ions on saline sites in Punjab province,Pakistan[J].Agricultural Water Management,2001,48:1-20.
    [174]刘广明,杨劲松,李冬顺.地下水蒸发规律及其与土壤盐分的关系[J].土壤学报,2002,39(3):384-389.
    [175]陈冰,蒋平安.不同灌水量对碱化土的影响[J].干旱区地里,2005,28(1):103-106.
    [176]白洋,武雪萍,华珞,等.海冰水不同灌溉量对土壤水分和棉花生物学性状的影响[J].中国土壤与肥料,2011,(2):16-21.
    [177]孙三民,安巧霞.塔里木灌区冬灌对盐分运移的影响[J].新疆农垦科技,2009,(1):40-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700