用户名: 密码: 验证码:
架空线路在线监测覆冰计算、评估和预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
架空线路覆冰是影响电网安全运行的重要问题之一。覆冰引起的导线舞动、倒塔、断线及绝缘子闪络等重大事故,严重威胁了电力系统的稳定和安全运行。
     称重法在线监测架空线路覆冰原理简单、技术相对成熟,广泛应用在我国高压交、直流架空线路。目前架空线路覆冰监测原理和装置已经初步形成了电力企业规范,但仍存在较多问题,如覆冰计算模型仍然缺乏深入研究、在线监测海量数据的科学利用以便对覆冰状态在线评估等研究尚未开展、覆冰短期发展趋势预测仍是空白。因此,开展架空线路在线监测覆冰计算模型、状态评估和预测预警的研究具有重要的科学意义,是架空线路在线监测应用中亟需解决的关键技术。
     本文以国家重点基础研究计划项目(973项目)为依托,采用理论分析与建模、人工智能技术、真型试验线段试验验证和现场实测验证等研究方法,开展了以下主要研究工作:
     对称重法静力学计算模型科学性进行了证明,将绝缘子串视为一刚体直杆,基于理论力学原理推导了其运动加速度方程,证明了导线受风摆动情况能够当成静态力学问题处理。研究了孤立档典型导线的导线长度随温度变化的规律,分析了不同档距大小下覆冰、大风及二者并存对导线长度变化率的影响,结果表明导线覆冰与否其长度没有明显变化。进一步提出了一种考虑风偏影响的在线监测覆冰厚度计算模型,首先在垂直平面内计算未覆冰时线路基本静力学参数,然后考虑绝缘子串和线路受风偏影响,在风偏平面内建立该平面竖直方向上的静力平衡方程,最后根据荷载变化计算出导线覆冰量。这种计算模型也适用无风偏的情况。针对杆塔基础参数错误及缺少,提出了基于历史监测数据反推的在线监测覆冰量范围计算方法,首先根据气象约束条件计算导线垂直荷载,与利用杆塔参数计算的垂直荷载比较,然后根据导线参数计算等效导线长度变化范围,最后进行导线覆冰厚度范围计算。利用南方电网灾害(覆冰)监测预警系统的监测数据和现场采集覆冰数据验证了上述方法的有效性和可行性。
     进行了特高压直流试验线段的导线模拟覆冰试验研究。试验线段位于特高压工程技术(昆明)国家工程实验室,导线模拟等效覆冰厚度为5mm,模拟方式采用外加集中砝码均匀分布在800m耐张段内的导线间隔棒。试验分析了拉力和角度传感器的线性度,获得了传感器测量误差;进行了导线模拟均匀和非均匀覆冰情况下覆冰厚度计算方法的准确性验证,研究了计算精度和适用范围。
     利用监测数据进行了架空线路覆冰与导线温度、微气象因素之间的相关性分析,指出了数理统计方法存在的不足,研究提出了一种邓氏灰色关联度和灰色斜率关联度方法相结合的灰色综合关联分析方法,确定了导线温度、相对湿度、环境温度和风速与覆冰的相关性大小顺序。
     以等效覆冰厚度为基础,综合考虑微气象参数、覆冰持续时间等多个因素,提出了采用多变量模糊控制技术的线路覆冰在线状态评估方法,对输入多变量进行了模糊化处理,建立了一套分步的模糊推理规则。进一步将在线监测量与架空线路机械和电气性能状态联系起来,建立了架空线路覆冰故障状态评估模糊专家系统。设计了覆冰架空线路机械荷载和外绝缘状态评估方案,将机械荷载分为垂直荷载、水平荷载、断线和纵向荷载状态评估,提出了状态评估特征量,同时确定了外绝缘状态评估特征量。利用南方电网灾害(覆冰)监测预警系统的监测覆冰数据验证了状态评估方法和专家系统的准确性。
     提出了一种基于时间序列分析的架空线路覆冰未来短期预测方法。以在线监测单位长度覆冰质量为时间序列,利用小波分析降噪和时间序列方法建模,研究了对未来12小时覆冰量预测的方法;利用南方电网灾害(覆冰)监测预警系统的在线监测数据分析了预测方法的效果,并对比研究了该预测方法与雾凇增长模型的差别。
Icing and snowing on overhead transmission lines in extremely cold climatic events is anenormous threat to the stability and safety of power system. Some problems caused by icing,such as line galloping, insulator flashover and tower collapse, etc., occurred in many countries.Because of reliability and practicability of the weight method, it is widely used for an on-linemonitoring and pre-warning system for ice coating on overhead transmission lines, which is agood solution to guarantee the safe operation of power grid.
     Although an electric power enterprise specification have been initially formed focusedon the principles and the monitoring devices of the on-line monitoring system, some keyproblems have not been solved yet, for example, the mechanical calculation model is needdeep studying, and current researches are lack of condition assessment, and warning ofoverhead transmission line under icing and snowing condition. So the research on themechanical calculation model, condition assessment and forecast of icing is of importantacademic significance, and is the key technology that needs to be resolved in transmissionline on-line monitoring application.
     Based by the National Basic Research Program of China (973program), theoreticalanalysis and modeling, artificial intelligence techniques, true line tests in laboratory and fieldtests are combined to carry out the project. The main works in this paper are as follows:
     The reasonableness of statics mechanical-calculation model using weighing method isproved. Take the insulator string as rigid body, and its acceleration equation is derived basedon theoretical mechanics principle, to prove that the conductor for the wind swing conditionscan be processed as static. The paper researches the deformation characteristics of typicalconductors in an isolated span, by adding the external loads which include wind loads and iceloads to the conductors. For accurate calculation on overhead transmission line icing, a newmechanical calculation model is established based on suspended point pull of insulator stringat tower and obliquities of insulator string, considering the deviation angel of insulator stringfor wind. In this model, mechanics parameters of conductor are turned into the newcoordinates after deviation angel of insulator string for wind, and a statics force balanceequation is built in vertical direction of the new coordinates after deviation. This model is also applicable to the no-wind case. Furthermore, aiming at tower basic parameter errors cases, theparameter accuracy test and parameter correction methods are proposed. And a novelcomputed method for the ranges of icing cover, in which the vertical load of conductors isfirst calculated and to acquire the ranges of the length of conductors by fitting with Gaussiandistribution based on weather constraints, is proposed for the cases of lack of tower basicparameter. The on-line monitoring data and field ice data obtained by people are used toverify the effectiveness and feasibility of the above two ice computed methods.
     The simulation experiment of ice cover on overhead transmission line is carried out atthe National Engineering Laboratory for UHV Engineering Technology (Kunming). Thenatural ice is simulated by lumped loads hanging on the line, the equivalent ice thickness ofwhich is5mm. Linearity of the tension and angle sensor and the measurement errors are bothobtained. Uniformed and non-uniformed ice cases of the line are tested and analyzed torealize the calculation accuracy and the range of application of the methods proposed in thispaper.
     The paper researches the correlation between local meteorology parameters and theoverhead transmission line icing. The correlation is not comprehensive and systemic currently,and the main influence factor on icing cannot be confirmed. In this paper, result unconformitybetween line correlation and the qualitative analysis about the correlation is pointed out, andthe synthetic grey relational analysis, which combines general relational degree proposed byDeng with slope relational degree, is constructed to realize the relationships amongtransmission line icing, conductor temperature and local meteorology parameters, such asambient temperature, relative humidity, wind speed, etc.. Finally the order of the relationdegree is given.
     The paper presents two ways of condition assessment of overhead transmission line icing.Firstly, a method is proposed to improve the accuracy of condition assessment based onmultivariable fuzzy logic control, considering equivalent thickness of overhead transmissionline mainly, local meteorology parameters and ice cover duration. A hierarchical multitudesstructure of multivariable fuzzy logic controller and a set of fuzzy reasoning rules are set up.Second, a fuzzy expert system which is characteristic of fuzziness and indefiniteness isproposed, for analyzing the potential for damage to transmission line and tower as a result of icing events. The characteristic quantities for condition assessment are decided to establishtwo kinds of models: static mechanical load and external insulation assessment model. Andthe condition assessment knowledge base corresponding to each assessment model is builtbased on test results, field data and expert knowledge. Furthermore, field data from ChinaSouthern Power Grid on-line monitoring system are used to test the effectiveness and theaccuracy of the proposed methods.
     The paper also presents a short-term prediction method for icing based on time seriesanalysis. The theory of wavelet analysis is applied to eliminate the noise the real-time icequality of the unit length, and the time series analysis method, autoregressive integratedmoving average (ARIMA) model, is used to predict ice quality in12h. The numericalexample on the field data is showed to testify the proposed model and a comparison of theproposed model and the rime growth model is investigated.
引文
[1]蒋兴良,易辉.架空线路覆冰及防护[M].北京:中国电力出版社,2001:1-9
    [2]苑吉河,蒋兴良,易辉,等.架空线路导线覆冰的国内外研究现状[J].高电压技术,2004,30(1):6-9
    [3]蒋兴良.贵州电网冰灾事故分析及预防措施[J].电力建设,2008,29(04):1-4
    [4]胡毅.架空线路大范围冰害事故分析及对策[J].高电压技术,2005,31(04):4-15
    [5]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术,2008,34(2):215-219
    [6]黄新波,刘家兵,蔡伟,等.电力架空线路覆冰雪的国内外研究现状[J].电网技术,2008,32(4):23-28
    [7]李庆峰,范峥,吴穹,等.全国架空线路覆冰情况调研及事故分析[J].电网技术,2008,32(9):33-36
    [8]李正,杨靖波,韩军科,等.2008年架空线路冰灾倒塔原因分析[J].电网技术,2009,33(02):31-35
    [9] Farzaneh M. Atmospheric icing of power networks [M]. Berlin: Springer,2008:1-29
    [10]中国南方电网公司.电网防冰融冰技术及应用[M].北京:中国电力出版社,2010:1-4
    [11]李成榕,吕玉珍,崔翔,等.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(4):14-22
    [12]侯慧,尹项根,陈庆前,等.南方部分500kV主网架2008年冰雪灾害中受损分析与思考[J].电力系统自动化,2008,32(11):12-15
    [13]张文亮,于永清,宿志一,等.湖南电网2008年冰雪灾害调研分析[J].电网技术,2008,32(8):1-5
    [14]陆佳政,蒋正龙,雷红才,等.湖南电网2008年冰灾事故分析[J].电力系统自动化,2008,32(11):16-19
    [15]张恒旭,刘玉田,张鹏飞.极端冰雪灾害下电网安全评估需求分析与框架设计[J].中国电机工程学报,2009,29(16):8-14
    [16]蒋兴良,张丽华.架空线路除冰防冰技术综述[J].高电压技术,1997,23(1):73-76
    [17]蒋兴良,马俊,王少华.架空线路冰害事故及原因分析[J].中国电力,2005,38(11):27-30
    [18]周卫华,蒋兴良.架空线路绝缘子冰闪防治措施的研究[J].湖南电力,2008,1:1-5
    [19]李再华,白晓民,周子冠,等.电网覆冰防治方法和研究进展[J].电网技术,2008,32(4):7-14
    [20] Farzaneh M, Kiernicki J. Flashover problems caused by ice build up on insulators[J]. IEEE ElectricalInsulation Magazine,1995,11(2):5-17
    [21] CIGRE Task Force33.04.09. Influence of ice and snow on the flashover performance of outdoorinsulators part I: effects of ice [J]. électra,1999,187:90-111
    [22] CIGRE Task Force33.04.09. Influence of ice and snow on the flashover performance of outdoorinsulators part II: effects of snow [J]. électra,2000,188:55-69
    [23] Farzaneh M, Baker T, Bernstorf A, et al. Insulator icing test methods and procedures a position paperprepared by the IEEE Task Force on insulator icing test methods [J]. IEEE Transactions on PowerDelivery,2003,18(4):1503-1515
    [24] Huneault M, Langheit C, Caron J. Combined models for glaze ice accretion and de-icing ofcurrent-carrying electrical conductors[J]. IEEE Trans on Power Delivery,2005,20(2):1611-1616
    [25]张予.架空线路导线覆冰在线监测系统[J].高电压技术,2008,34(9):1992-1995
    [26]饶宏,傅闯,朱功辉,等.南方电网直流融冰技术的研究与应用[J].南方电网技术,2008,2(6):7-12
    [27]刘振亚.智能电网技术[M].北京:中国电力出版社,2010:220-224
    [28] Savadjiev K, Farzaneh M. Modeling of icing and ice shedding on overhead power lines based onstatistical analysis of meteorological data[J]. IEEE Trans on Power Delivery,2004,19(2):715-721
    [29] Farzaneh M, Savadjiev K. Statistical analysis of field data for precipitation icing accretion onoverhead power lines[J]. IEEE Trans on Power Delivery,2005,20(2):1080-1087
    [30] Elíasson á and Thorsteins E. Ice load measurements in test spans for30years[C].//IWAIS XII,Yokohama, October,2007
    [31]黄新波,陈荣贵,王孝敬,等.架空线路在线监测与故障诊断[M].北京:中国电力出版社,2008:157-196
    [32]徐青松,侯炜,王孟龙.架空线路覆冰实时监测方案探讨[J].浙江电力,2007,45(3):9-12
    [33]徐青松,季洪献,王孟龙.架空线路弧垂的实时监测[J].高电压技术,2007,33(7):206-209
    [34]邵天晓.架空送电线路的电线力学计算[M].北京:水利水电出版社,2003:92-98
    [35]李博之.高压架空线路架线施工计算原理[M].北京:中国电力出版社,2002:13-21
    [36]邢毅,曾奕,盛戈皞,等.基于力学测量的架空线路覆冰监测系统[J].电力系统自动化,2008,32(23):81-85
    [37]李银华,韩郡业,王婷.架空电力线覆冰监测系统[J].电力自动化设备,2010,29(11):112-115
    [38]吴娅,张峰,冯钦华.广东电网覆冰在线监测系统的研究及应用[J].广东电力,2009,22(5):12-15
    [39] Maciej B. Digital image processing in measurement of ice thickness on power transmission lines: arough set approach[D]. Winnipeg: University of Manitoba,2002
    [40] Wang Xiaopeng, Hu Jianlin, Wu Bin, et al. Study on edge extraction methods for image-based icingon-line monitoring on overhead transmission lines[J]. High Voltage Engineering,2008,34(12):2687-2693
    [41]陆佳政,张红先,方针,等.自适应分割阈值在覆冰厚度识别中的应用[J].高电压技术,2009,35(3):563-567
    [42]张成,盛戈皞,江秀臣,等.基于图像处理技术的绝缘子覆冰自动识别[J].华东电力,2009,37(1):146-149
    [43]李昭廷,郝艳捧,李立浧,等.利用远程系统的架空线路覆冰厚度图像识别[J].高电压技术,2011,37(9):2288-2293
    [44] McComber P, Druez J, Laflamme J. A comparison of selected models for estimating cable icing[J].Atmospheric Research,1995,36(3-4):207-220
    [45] Tattelman P. An objective method for measuring surface ice accretion [J]. J. Appl. Meteorology,1982,21(4):599–612
    [46] Laforte J, Alaire M, and Laflamme J. Wind tunnel evaluation of a rime metering device using amagnetostrictive sensor [J]. Atmospheric Research,1995,36(3-4):287-301
    [47] Druez J, McComber P, and Farzaneh M. Correlation between measurement of an ice detector and themass of ice accreted on two different sized conductors [J]. Can. J. Civil Eng.,1999,26(6):869–875
    [48] McComber P, Lafontaine J, Druez J, et al. A comparison of neural network and multiple regressiontransmission line icing models [C]. Proceedings of7th International Workshop on Atmospheric Icingof Structures, Reykjavik, Iceland,1998:175-180
    [49]龚坚刚,徐青松,胡旭光.架空线路覆冰的模拟导线实时监测[J].电力建设,2010,31(12):20-22
    [50] Kersey A, Araujo F. Simultaneous measurement of strain and temperature using interferometricallyinterrogated fiber Bragg grating sensors [J]. Optical Engineering,2000,39(8):2-26
    [51]刘军,陈伟根,赵建保,等.基于光纤光栅传感器的变压器内部温度测量技术[J].高电压技术,2009,35(3):539-543
    [52]赵勇.光纤光栅及其传感技术[M].北京:国防工业出版社,2007:1-60
    [53] Ogawa Y, Iwasaki J, Nakamura K. A multiplexing load monitoring system of power transmission linesusing fiber Bragg grating[C]//Proc. of the Optical Fiber Sensors Conf.(OFS212), Williamsburg, USA:Optical Society of American,1997:468-471
    [54]马国明,李成榕,全江涛,等.架空线路覆冰监测光纤光栅拉力倾角传感器的研制[J].中国电机工程学报,2010,30(34):132-138
    [55]马国明,李成榕,蒋建,等.温度对线路覆冰监测光纤光栅倾角传感器性能的影响[J].高电压技术,2010,36(7):1704-1709
    [56]马国明,全江涛,李成榕,等.架空线路覆冰荷载监测用光纤光栅称重传感器的设计[J].高电压技术,2010,36(9):2225-2230
    [57]马国明,李成榕,蒋建,等.架空线路覆冰监测用光纤光栅风速传感器的研制[J].中国电机工程学报,2011,31(13):128-134
    [58] Ma G, Li C, Quan J, et al. A fiber Bragg grating tension and tilt sensor applied to icing monitoring onoverhead transmission lines [J]. IEEE Transactions on Power Delivery,2011,26(4):2163-2170
    [59] Ma G, Li C, Jiang J, et al. A novel optical load cell used in icing monitoring on overhead transmissionlines [J]. Cold Regions Science and Technology,2012,71, February:67-72
    [60] Ma G, Li C, Jiang J, et al. A passive optical fiber anemometer for wind speed measurement onhigh-voltage overhead transmission lines [J]. IEEE Transactions on Instrumentation and Measurement,2012,61(2):539-544
    [61]张民,陈启冠,张治国,等.基于FBG传感器的架空输电线覆冰监测方案的设计与实验[J].光电子.激光,2011,22(4):499-503
    [62]薛能,曹月霞,杨彬彬,等.利用光纤光栅监控输电线覆冰[J].光电技术应用,2010,25(2):1-4
    [63]陈继东,王家礼,盛根林,等.光纤式复合绝缘子实现状态监测的实用化研究[J].电瓷避雷器,2010,233(1):6-9
    [64] Bjerkan L.Application of fiber-optic Bragg grating sensors in monitoring environmental loads ofoverhead power transmission lines [J]. Applied Optics,2000,39(4):554-560
    [65] Huang Q, Zhang C, Liu Q, et al. New type of fiber optic sensor network for smart grid interface oftransmission system [J].2010IEEE Power and Energy Society General Meeting,2010:1-5
    [66]彭超,赵健康,苗付贵.分布式光纤测温技术在线监测电缆温度[J].高电压技术,2006,32(8):43-45
    [67]李成宾,杨志,黄春林.光纤布里渊传感在架空线路覆冰监测中的应用[J].电力系统通信,2009,30(200):37-41
    [68] Ervik M, Fikke S. Development of a mathematical model to estimate ice loading on transmission linesby use of general climatological data[J]. IEEE Transactions on Power Apparatus and Systems,1982,PAS-101(6):1497-1503
    [69] Xu Y, Bosisio R. On the measurement of thickness of ice layers on power transmission lines[J]. SensImaging,2007,8(2):73-81
    [70] Xu Y, Bosisio R. Goubau ice sensor transitions for electric power lines[J]. Sens Imaging,2009,10(1-2):31-40
    [71]秦建敏,程鹏,赵凯.利用空气、冰与水物理特性差异实现水情全天候自动化监测[J].水力发电学报,2005,27(01):24-27
    [72]秦建敏,张志栋,胡波,等.基于空气与冰的电阻特性差异实现电力输电网覆冰自动检测[J].太原理工大学学报,2009,40(1):1-3
    [73]秦建敏,程鹏,李霞.电容式冰层厚度传感器及其检测方法的研究[J].微纳电子技术,2007,(21):155-157
    [74] Moser M, George B, Zangl H, et al. Icing detector for overhead power transmission lines [C].2009IEEE Instrumentation and Measurement Technology Conference,2009:1105-1109
    [75]陈继东,张予.华中电网覆冰监测系统典型实例分析[J].电瓷避雷器,2008,51(5):8-10
    [76]邵瑰玮,胡毅,王力农,等.架空线路覆冰监测系统应用现状及效果[J].电力设备,2008,9(6):13-15
    [77]孟毅,陈继东,胡丹晖.架空线路覆冰在线监测系统的运行[J].中国电力,2011,44(5):38-40
    [78]黄新波,孙钦东,程荣贵,等.导线覆冰的力学分析与覆冰在线监测系统[J].电力系统自动化,2007,31(14):98-101
    [79]黄新波,孙钦东,丁建国,等.基于GSM/SMS的架空线路覆冰在线监测系统[J].电力自动化设备,2008,28(5):72-76
    [80]黄新波,罗兵,刘存孝,等.采用ZigBee芯片的无线加速度传感器网络节点的实现[J].高电压技术,2010,36(8):1962-1969
    [81]汪江,田万军.架空线路覆冰重量和厚度在线监测系统的研究[J].华东电力,2009,37(9):1503-1506
    [82]吕玉祥,占子飞,马维青,等.架空线路覆冰在线监测系统的设计和应用[J].电网技术,2010,34(10):196-200
    [83]曹敏,罗学礼,石少勇,等.基于覆冰增长速度的覆冰在线监测系统动态预警方案研究与探讨[J].南方电网技术,2009,3(增刊):187-189
    [84] Brostrom E, Ahlberg J, Sode L. Modeling of ice storms and their impact applied to a part of theswedish transmission network [J]. IEEE Lausanne Power-tech,2007(5):1593-1598
    [85] Tom B, Gutwin P. Application of BCTC standardized risk estimation model to assess risk due to icestorms[C]//8th International Conference on Probabilistic Methods Applied to Power Systems, Ames:Iowa State University,2004:970-974
    [86]徐文军,杨洪明,赵俊华,等.冰风暴灾害下电力断线倒塔的概率计算[J].电力系统自动化,2011,35(1):13-17
    [87]孙羽,王秀丽,王建学,等.架空线路冰风荷载风险建模及模糊预测[J].中国电机工程学报,2011,31(7):21-28
    [88]孙羽,王秀丽,王建学,等.架空线路覆冰闪络跳闸特性分析与风险建模[J].中国电机工程学报,2011,31(31):149-158
    [89]韩叶良,苏国锋,袁宏永,等.基于粗糙集的电网覆冰事故预警模型[J].清华大学学报(自然科学版),2010,50(12):1930-1933
    [90] Nara K, Yamashiro S, Yanaura Y. Application of an expert system to decisions on countermeasuresagainst snow accretion on transmission lines [J]. IEEE Transactions on Power Systems,1988,3(3):1052-1058
    [91]谢运华.三峡地区导线覆冰与气象要素的关系[J].中国电力,2005,38(3):35-39
    [92]黄新波,孙钦东,张冠军,等.线路覆冰与局部气象因素的关系[J].高压电器,2008,44(4):289-294
    [93]黄新波,欧阳丽莎,王娅娜,等.架空线路覆冰关键影响因素分析[J].高电压技术,2011,37(7):1677-1682
    [94] Imai I. Studies on ice accretion [J].Researches on Snow and Ice.1953,3(1):35-44
    [95] Lenhard R. An indirect method for estimating the weight of glaze on wires [J]. Bull. Amer. Meteor.Soc,1955,36(3):1-5
    [96] Goodwin E, Mozer J, DiGioia A, et al. Predicting ice and snow loads for transmission lines[C].Proceedings of First IWAIS,1983:267-273
    [97] Chaine P, Casfonguay G. New approach to radial ice thickness concept applied to bundle-likeconductors[R]. Industrial Meteorology study IV, Environment Canada, Toronto,1974,11
    [98] Makkonen L. Modeling power line icing in freezing precipitation [C]//The7th International Workshopon Atmospheric Icing of Structures, Quebec, Canada: International Advisory Committee,1996:195-200
    [99]蒋兴良,孙才新,顾乐观,等.三峡地区导线覆冰的特性及雾凇覆冰模型[J].重庆大学学报(自然科学版),1998,21(2):16-19
    [100]刘和云,周迪,付俊萍,等.导线雨淞预测简单模型的研究[J].中国电机工程学报,2001,21(4):44-47
    [101]黄新波,李佳杰,欧阳丽莎,等.采用模糊逻辑理论的覆冰厚度预测模型[J].高电压技术,2011,37(5):1245-1252
    [102]宋尖,陆佳政,李波,等.基于模糊识别和神经网络的电网覆冰长期预测方法[J].湖南电力,31(6):7-9
    [103]华东电力设计院. DL/T5092-1999110-500kV架空送电线路设计技术规程[S].北京:中国电力出版社,1999
    [104]庄楚强,何春雄.应用数理统计基础(第三版)[M].广州:华南理工大学出版社,2006:1-165
    [105]孙才新,李俭,郑海平,等.基于灰色面积关联度分析的电力变压器绝缘故障诊断方法[J].电网技术,2002,26(7):24-29
    [106]邓聚龙.灰理论基础[M].武汉:华中科技大学出社,2002
    [107]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学出版社,2004
    [108] Sakamoto Y. Snow accretion on overhead wires [J]. Philosophical Transactions: Mathematical,Physical and Engineering Sciences,2000,358(1776):771-778
    [109]张建兴,律方成,刘云鹏,等.高压绝缘子泄漏电流与温、湿度的灰关联分析[J].高电压技术,2006,32(1):40-41,73
    [110] LEE C. Fuzzy logic in control systems: fuzzy logic controller, part I [J]. IEEE Transactions onSystems, Man, and Cybernetics,1990,20(2):404-418
    [111]戴忠达,张曾科,汤俭.一种改进的模糊控制器及其应用[J].自动化学报,1990,16(3):258-261
    [112] Negnevitsky M.人工智能:智能系统指南[M].顾力栩,沈晋惠,译.北京:机械工业出版社,2007:60-90
    [113]王有元,任欢,杜林.架空线路导线舞动轨迹监测分析[J].高电压技术,2010,36(5):1113-1118
    [114]姚陈果,李璟延,孙才新,等.绝缘子安全区泄漏电流频谱特征提取及污秽状态预测研究[J].中国电机工程学报,2007,27(30):1-8
    [115]陈伟根,夏青,李璟延,等.绝缘子污秽预测新特征量的泄漏电流时频特性分析[J].高电压技术,2010,36(5):1107-1112
    [116]聂一雄,尹项根,刘春,等.用模糊逻辑方法对绝缘子串在线检测结果的评定[J].中国电机工程学报,2003,23(3):131-136
    [117]焦尚彬,刘丁,郑岗,等.基于模糊逻辑方法的高压绝缘子污秽程度评定[J].电力系统自动化,2005,29(7):84-87
    [118]张国华,张文娟,薛鹏翔.小波分析与应用基础[M].西安:西北工业大学出版社,2006
    [119]牛东晓,曹树华.电力系统负荷预测技术及其应用[M].北京:中国电力出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700