用户名: 密码: 验证码:
抑制风电对电网影响的储能系统优化配置及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发利用大规模再生能源为解决世界性的能源危机与环境污染问题开辟了新途径,对改善能源结构并保证国民经济可持续发展具有重要的战略意义。凤能是目前最具大规模商业化开发潜能的非水能可再生资源,风力发电联网运行是实现风能大规模开发利用的有效途径。但是,风电功率具有的波动性和间歇性对其接入电网带来了显著不利影响,使得大规模风电接入电网的能力受到限制。因此,在保证既有电网安全稳定运行的前提下,如何多接纳风电成为亟需解决的问题。
     储能系统可以适时吸收释放功率,为平抑风电功率波动、提高风电接入电网的能力提供了有效的手段。目前储能系统成本昂贵,其充放电控制方式可显著影响其使用寿命,所以开展储能系统运行控制策略、容量配置和经济性评价方面的研究工作,具有重要的理论和应用价值。
     本文首先分析了直驱永磁风电机组的主电路和控制系统的数学模型,构建了包含电池单元、双向斩波电路和并网逆变器的储能系统,根据系统需求设计了主电路参数,采用反馈线性化理论设计了并网变流器的功率解耦控制器,提高了系统运行效率和功率控制效果。
     分析了单台风电机组-风电场输出功率的波动特性,从时域和频域两个角度对其历史数据进行了统计分析,揭示了风电功率波动特征,为确定风电场储能系统的安装位置、吞吐功率和容量需求以及爬坡率要求奠定了基础。
     为降低风电功率的随机波动性对电网造成的不利影响,采用了低通滤波算法平滑并网风电场输出有功功率的风储联合运行控制策略。通过对比分析单独采用电池或超级电容器为储能单元的方案的利弊,提出了采用电池-超级电容器混合储能的方案,研究了两者的配比关系及其对平抑效果的影响。最后对比分析了上述三种方案的经济特性。
     设计了电网低谷时段风电接纳容量算法,提出了在储能系统低谷时刻提高电网接纳风电容量的方法,分析了储能系统的经济效益。综合考虑储能系统的投资成本与经济效益,以储能系统的综合效益最大为目标,提出了一种用于松弛电网调峰能力,提高风电接纳规模的储能系统容量优化配置方法。
     最后,利用电磁暂态仿真软件PSCAD/EMTDC开发了风储联合运行仿真平台,基于该平台验证了本文提出的并网变流器控制策略的有效性。开发了风储联合运行模拟物理平台,验证了本文提出的风储联合运行控制策略的合理性。
The development and utilization of renewable energy has opened new ways to solve the problems of world energy crisis and environmental pollution. Thus, they are strategically important to help upgrade energy structure and ensure sustainable economic development of China. Among non-hydro renewable energy sources, wind energy currently has the greatest potential for large-scale commercial developing. The networking operation of wind power can be an effective way for large-scale development and utilization of wind energy. The characteristics of fluctuation and intermittence of wind power have exerted adverse impacts on the grid and restricted the capacity of wind power integrated into the grid. Therefore, how to accept more wind power while ensuring the safe and stable operation of the existing power grid is a critical problem yet to be solved.
     The energy storage system can absorb and release power timely. The energy storage system may effectively stabilize the fluctuations of wind power and improve the capacity of wind power integrated into the grid. At present, the cost of energy storage system is quite expensive, and the charge and discharge control mode significantly affects its life. Thus, research on the operation control strategy of energy storage system, capacity allocation and economic evaluation can be substantial both in theories and applications.
     In this dissertation, the mathematical models of the main circuit and the control system of a direct driving wind permanent magnet generator was analyzed at first. An energy storage system which includes battery units, two-way chopped circuits and grid inverter was constructed. Parameters of the main circuit were determined according to the system's requirements. To improve the efficiency of the system and the performance of the power control, a power decoupling controller of grid-connected inverter was designed by using the feedback linearization approach.
     The waveform characteristics of steady power output from a single typhoon electric unit to wind farm were analyzed. To reveal the fluctuating characteristic of wind power, the statistical analysis of its historical data in the time domain and frequency domain was carried out. These analyses have laid foundations for deciding the installation locations of energy storage system and the demands of maximum power, capacity, and climbing rate in a wind farm.
     To reduce the adverse effects caused by the random fluctuating of wind power, the operating control strategy based on low pass filtering which can smooth wind farm output active power is applied. Through analyzing the advantages and disadvantages of using batteries and super capacitor individually for energy storage, a scheme of hybrid energy storage composed of batteries and super capacitors was presented, and the ratio relations between these batteries and super capacitors and their effects on attenuation were studied. The economic characteristics of these three schemes were compared and analyzed.
     An algorithm of wind power integration during low load time was presented. An method of using energy storage system to increase the wind power integration during low load time was proposed as well. The economic benefits of energy storage system was investigated. Considering the investment cost and economic benefits of energy storage system, an optimal energy storage capacity allocation method to maximize economic benefits of energy storage systemwas proposed to relax peak load regulation ability and increase wind power integration.
     A numerical simulation platform for combined operating of wind power-energy storage system was developed based on the electromagnetic transient simulation software PSCAD/EMTDC. The effectiveness of the grid-connected converter control strategy was verified on this platform. A physical simulation platform for combined operating of wind power-energy storage system was also established. The rationality of the combined operating control strategy of wind power-energy storage system was verified on this platform.
引文
[1]盛大凯,仇卫东,齐立忠.实现风电发展“五个转变”的有效途径[J].电力建设,2011,32(11):1-4
    [2]李育燕.访中国可再生能源规模化发展项目(CRESP)风电电气工程咨询专家袁越教授[J].电力自动化设备,2009,29(10):12-15
    [3]中华人民共和国.中华人民共和国可再生能源法[R].2005年2月
    [4]国家电力监管委员会.电网企业全额收购可再生能源电量监管办法[R].2007年7月
    [5]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海口:海南出版社,2010
    [6]李俊峰,蔡丰波,唐文倩.中国风电发展报告2011[M].中国环境科学出版社,2011
    [7]中国可再生能源学会风能专业委员会.2011年中国风电装机容量统计[R].2012
    [8]Morozumi S.. Technology Development for Grid-Connection Issues[J]. Renewable Energy.2006
    [9]穆钢,王健,严干贵,等.双馈型风电机群近满载工况下连锁脱网事件分析[J].电力系统自动化,2011,35(22):35-40
    [10]李丹,贾琳,许晓菲,等.风电机组脱网原因及对策分析[J].电力系统自动化,2011,35(22):41-44
    [11]贾俊川,刘晋,张一工.集成嵌入式储能的双馈风力发电系统功率控制[J].电力系统自动化,2010,34(15):80-84
    [12]A. Engler, C. Hardt, P. Strauss. Parallel Operation of Generators for Stand-Alone Single-Phase Hybrid Systems-First Implementation of a new control Technology[C].17th European Photovoltaic Solar Energy Conference and Exhibition (EPVSEC), Munich, Germany.22-26 October 2001
    [13]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9
    [14]程时杰,文劲宇,孙海顺.储能技术及其在现代电力系统中的应用[J].电气应用,2005,24(4):1-2,4-6,8-19
    [15]曾杰.可再生能源发电与微网中储能系统的构建与控制研究[D].武汉:华中科技大学,2009
    [16]陈建斌,胡玉峰,吴小辰. 储能技术在南方电网的应用前景分析[J].南方电网技术,2010,4(6):32-36
    [17]马冬娜,张海棠.储能技术在现代电力系统各种状态下的应用[J].科技资讯,2011(34):113-115
    [18]李雷,杨春,谢晓峰.我国储能产业发展现状、机遇与挑战[J].化工进展,2011,30(S1):748-754
    [19]李冲,郑源,周发州,等.储能技术在独立风光互补发电系统中的应用及展望[J].南京工程学院学报(自然科学版),2011,9(4):21-27
    [20]关晓慧,吕跃刚.间歇性可再生能源发电中的储能技术研究[J].能源与节能,2011,(2):56-60
    [21]张学庆,刘波,叶军,等.储能装置在风光储联合发电系统中的应用[J].华东电力,2010,38(12):1894-1896
    [22]王金良.风能、光伏发电与储能[J].电源技术,2009,33(7):628-632
    [23]黄晓东,郝木凯,陆志刚,等.微网系统中电池储能系统应用技术研究[J].可再生能源,2012,30(1):38-41
    [24]Diaz-Gonzalez F., Sumper A., Gomis-Bellmunt O, et al. A review of energy storage technologies for wind power applications[J].Renewable and Sustainable Energy Reviews,2012,16(4):2154-2171
    [25]管俊,高赐威.储能技术在抑制风电场功率波动方面的研究综述[J].电网与清洁能源,2011,27(4):48-53
    [26]孔令怡,廖丽莹,张海武,等.电池储能系统在电力系统中的应用[J].电气开关,2008,(5):61-62,64
    [27]Hedegaard K., Meibom P.. Wind power impacts and electricity storage-A time scale perspective[J]. Renewable Energy,2012,37(1):318-324
    [28]李强,袁越,谈定中.储能技术在风电并网中的应用研究进展[J].河海大学学报(自然科学版),2010,38(1):115-122
    [29]王文亮,秦明,刘卫.大规模储能技术在风力发电中的应用研究[C].经济发展方式转变与自主创新—第十二届中国科学技术协会年会.中国福建福州,2010:1-6
    [30]王金良.动力锂离子电池发展及技术路线探讨[J].电池工业,2010,15(4):234-238
    [31]王金良.动力锂离子电池产业发展的几点思考[J].新材料产业,2010,(5):43-45
    [32]姜久春,文锋,温家鹏,等.纯电动汽车用锂离子电池的建模和模型参数识别[J].电力科学与技术学报,2010,25(1):67-74
    [33]戴海峰,魏学哲,孙泽昌.基于等效电路的内阻自适应锂离子电池模型[J].同济大学学报(自然科学版),2010,38(1):98-102
    [34]郑敏信,齐铂金,吴红杰.锂离子动力电池组充放电动态特性建模[J].电池,2008,38(3):149-151
    [35]古艳磊.锂离子电池阻抗模型的研究[D].哈尔滨:哈尔滨理工大学,2008
    [36]冯毅.锂离子电池数值模型研究[D].上海:中国科学院研究生院(上海微系统与信息技术研究所),2008
    [37]许参,李杰,王超.一种锂离子蓄电池寿命的预测模型[J].应用科学学报,2006,24(4):368-371
    [38]王金良,孟良荣,胡信国.我国铅蓄电池产业现状与发展趋势——铅蓄电池用于电动汽车的可行性分析(1)[J].电池工业,2011,16(2):111-116
    [39]王金良,胡信国,孟良荣.铅蓄电池的比较优势和不足——铅蓄电池用于电动汽车的可行性分析(2)[J].电池工业,2011,16(3):184-188
    [40]王金良,孟良荣,胡信国.铅蓄电池产业链铅污染和铅资源分析—铅蓄电池用于电动汽车的可行性分析(3)[J].电池工业,2011,16(4):242-245
    [41]马巍.电动汽车铅酸蓄电池特性建模与荷电状态估计[D].西安:长安大学,2009
    [42]徐国顺,庄劲武,杨锋,等.大容量蓄电池组的数学建模及参数辨识[J].海军工程大学学报,2007,19(3):35-38
    [43]徐国顺,庄劲武,杨锋.大容量蓄电池组的数学建模及短路特性研究[J].低压电器,2006,(11):18-21
    [44]王治国,高玉峰,杨万利.铅酸蓄电池等效电路模型研究[J].装甲兵工程学院学报,2003,17(1):81-84
    [45]纪伯公,高玉峰,李匡成.基于三阶模型的铅酸蓄电池建模与仿真[J].装甲兵工程学院学报,2003,17(3):78-81
    [46]蔡程辉,都东,葛竞天,等.动力型蓄电池充电过程高频瞬态模型[J].清华大学学报(自然科学版),2003,43(2):204-207
    [47]沈维祥.基于开路电压和环境温度的铅酸蓄电池充电状态的数学模型[J].太阳能学报,1997,18(3):92-97
    [48]C.F. Lu, C.C. Liu, C.J. Wu.Dynamic Modelling of Battery Energy Storage System and Application to Power System Stability[J].Generation, Transmission and Distribution, IEE Proceedings,1995,142(4):429-435
    [49]Han-I, Su.Abbas, Gamal. Modeling and Analysis of the Role of Fast-Response Energy Storage in the Smart Grid[C].The Forty-Ninth Annual Allerton Conference, Allerton House, UIUC, Illinois, USA.2011:719-726
    [50]Wenhua H. Zhu, Y. Zhu, B.J. Tatarchuk. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application[J]. Energy Conversion and Management,2011.52(8-9):2794-2799
    [51]Ha Thu L., Santoso S., Grady W. M.. Development and Analysis of an ESS-based Application for Regulating Wind Farm Power Output Variation [A]. Power & Energy Society General Meeting, PES'09. IEEE [C]. Calgary, AB, 26-30 July,2009:1-8
    [52]Ha Thu L., Thang Quang N.. Sizing Energy Storage Systems For Wind Power Firming:An Analytical Approach and a Cost-benefit Analysis[A]. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE[C]. Pittsburgh, PA,20-24 July 2008:1-8
    [53]Zhong C., D. Ming, S. Jianhui. Modeling and control for large capacity battery energy storage system[C]. The Fourth International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Weihai, Shandong, China,6-9 July,2011:1429-1436
    [54]丁明,徐宁舟,毕锐,等.基于综合建模的3类电池储能电站性能对比分析[J].电力系统自动化,201135,(15):34-39
    [55]李妍,荆盼盼,王丽,等.通用储能系统数学模型及其PSASP建模研究[J].电网技术,2012,36(1):51-57
    [56]Wei L., Joos G., Abbey C.. Wind Power Impact on System Frequency Deviation and an ESS based Power Filtering Algorithm Solution[C]. Power Systems Conference and Exposition. PSCE'06. IEEE PES. Atlanta, USA.2006, 2077-2084
    [57]Luu T., Abedini A., Nasiri A.. Power Smoothing of Doubly Fed Induction Generator Wind Turbines[A].34th Annual Conference of IEEE Industrial Electronics. IECON [C]. Orlando, FL,10-13 Nov.2008:2365-2370
    [58]Ran L., Bumby J.R., Tavner P.J.. Use of Turbine Inertia for Power Smoothing of Wind Turbines with a DFIG [A].11th International Conference on Harmonics and Quality of Power[C].12-15 Sept.2004:106-111
    [59]Aghatehrani R., Kavasseri R., Thapa R.C.. Power Smoothing of the DFIG Wind Turbine Using a Small Energy Storage Device [A]. Power and Energy Society General Meeting,2010 IEEE [C]. Minneapolis, MN,25-29 July 2010:1-6
    [60]Luu T., Nasiri A.. Power Smoothing of Doubly Fed Induction Generator for Wind Turbine Using Ultracapacitors[A].36th Annual Conference on IEEE Industrial Electronics Society [C]. Glendale, AZ,7-10 Nov.2010:3293-3298
    [61]彭思敏,曹云峰,蔡旭.大型蓄电池储能系统接入微电网方式及控制策略 [J].电力系统自动化,2011,35(16):38-43
    [62]唐志伟.钒液流储能电池建模及其平抑风电波动研究[D].吉林:东北电力大学,2011
    [63]李国杰,唐志伟,聂宏展等.钒液流储能电池建模及其平抑风电波动研究[J].电力系统保护与控制,2010,38(22):115-119,125
    [64]张野,郭力,贾宏杰,等.基于电池荷电状态和可变滤波时间常数的储能控制方法[J].电力系统自动化,2012,36(6):34-38,62
    [65]诸嘉慧,杨斌,黄宇淇,等.基于DSP2812高温超导储能系统斩波器控制设计[J].电力电子技术,2010,44(10):100-102
    [66]张占奎,王德意,迟永宁,等.超导储能装置提高风电场暂态稳定性的研究[J].电力系统保护与控制,2010,38(24):38-42,47
    [67]王振浩,刘金龙,李国庆,等.基于超级电容器储能的并网风电场功率与电压调节技术[J].电力自动化设备,2011,31(03):113-116
    [68]马奎安,陈敏.超级电容器储能系统充电模式控制设计[J].机电工程,2010,27(7):85-88
    [69]马奎安.超级电容器储能系统中双向DC/DC变流器设计[D].杭州:浙江大学,2010
    [70]蒙永民,李铁才,荀尚峰.飞轮储能分布式电能控制技术放电部分的仿真研究[J].电网技术,2008,32(24):60-64
    [71]黄宇淇,方宾义,孙锦枫.飞轮储能系统应用于微网的仿真研究[J].电力系统保护与控制,2011,39(9):83-87,113
    [72]Anindita Roy, Shireesh B. Kedare, Santanu Bandyopadhyay. Optimum Sizing of Wind-battery Systems Incorporating Resource Uncertainty [J]. Applied Energy,2010.87(8):2712-2727
    [73]Yuan Y., Li Q., Wang W., et al. Optimal Operation Strategy of Energy Storage Unit in Wind Power Integration Based on Stochastic Programming[J]. Renewable Power Generation, IET,2011,5(2):194-201
    [74]孙耀杰,康龙云,史维祥,等.分布式电源中最佳蓄电池容量的机会约束规划[J].系统仿真学报,2005,17(1):41-44
    [75]丁明,徐宁舟,毕锐.用于平抑可再生能源功率波动的储能电站建模及评价[J].电力系统自动化,2011,35(02):66-72
    [76]李碧辉,申洪,汤涌,等.风光储联合发电系统储能容量对有功功率的影响及评价指标[J].电网技术,2011,35(4):123-128
    [77]韩涛,卢继平,乔梁,等.大型并网风电场储能容量优化方案[J].电网技术,2010,34(1):169-173
    [78]韩涛.双馈型风电场等值模型及储能容量取值研究[D].重庆:重庆大学,2010
    [79]卢继平,朱三立,韩涛,等.风电场储能容量合理取值范围分析[J].重庆大学学报,2010,33(8):46-51
    [80]梁亮,李建林,惠东.大型风电场用储能装置容量的优化配置[J].高电压技术,2011,37(4):930-936
    [81]Paatero J.V., P.D. Lund. Effect of Energy Storage On Variations In Wind Power[J]. WIND ENERGY,2005,8:421-441
    [82]宇航.利用储能系统平抑风电功率波动的仿真研究[D].吉林:东北电力大学,2010
    [83]谭靖,李国杰,唐志伟.基于压缩空气储能的风电场功率调节及效益分析[J].电力系统自动化,2011,35(8):33-37
    [84]杨水丽,惠东,李建林,等.适用于风电场的最佳电池容量选取的方法[J].电力建设,2010,31(9):1-4
    [85]刘昌金,胡长生,李霄,等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化,2008,32(16):83-88
    [86]黄军,混合储能电动车双向变换系统的研究[D].哈尔滨:哈尔滨工业大学,2006
    [87]胡庆波.混合动力汽车驱动的电功率管理研究[D].杭州:浙江大学,2007:24-32
    [88]唐西胜.超级电容器储能应用于分布式发电系统的能量管理及稳定性研究[D].北京:中国科学院研究生院(电工研究所),2006:24-32
    [89]唐西胜,齐智平.独立光伏系统中超级电容器蓄电池有源混合储能方案的研究[J].电工电能新技术,2006,25(3):37-41,67
    [90]王斌,施正荣,朱拓,等.超级电容器-蓄电池应用于独立光伏系统的储能设计[J].能源工程,2007,5:37-41
    [91]王斌.一种新型的风光互补发电系统优化设计[D].无锡:江南大学,2008:24-32
    [92]吴冰冰.适于微网动稳特性的光伏发电系统的能量控制研究[D].北京:华北电力大学,2010:24-32
    [93]侯世英,房勇,孙韬,等.混合储能系统在独立光伏发电系统功率平衡中的应用[J].电网技术,2011,35(5):183-187
    [94]黄勇.超级电容器蓄电池混合储能在独立光伏发电系统中应用研究[D].重庆:重庆大学,2011:24-32
    [95]王思杰,惠晶.混合储能的独立光伏系统充电控制研究[J].电力电子技术, 2012,46(1):13-15
    [96]Xiaolei Hu, Tseng K.J., Srinivasan M.. Optimization of Battery Energy Storage System with Super-capacitor for Renewable Energy Applications[A]. IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE) [C]. Jeju, South Korea, May 30 June 3 2011:1552-1557
    [97]李少林,姚国兴.风光互补发电蓄电池超级电容器混合储能研究[J].电力电子技术,2010,44(2):12-14
    [98]房勇.风光互补混合能源系统的能量管理研究[D].重庆:重庆大学,2011
    [99]黄鑫.蚁群算法在风光互补系统优化配置中的应用[D].郑州:郑州大学,2011
    [100]吴红斌,陈斌,郭彩云.风光互补发电系统中混合储能单元的容量优化[J].农业工程学报,2011,27(4):241-245
    [101]周林,黄勇,郭珂,等.微电网储能技术研究综述[J].电力系统保护与控制,2011,39(7):147-152
    [102]Haihua Z., Bhattacharya T., Duong Tran, et al. Composite Energy Storage System Involving Battery and Ultracapacitor With Dynamic Energy Management in Microgrid Applications[J]. IEEE Transactions on Power Electronics,2011,26(3):923-930
    [103]张国驹,唐西胜,齐智平.超级电容器与蓄电池混合储能系统在微网中的应用[J].电力系统自动化,2010,34(12):85-89
    [104]田军.分布式发电系统储能优化配置[D].北京:华北电力大学,2011
    [105]王中秋.分布式储能对微网运行特性的作用研究[D].北京:华北电力大学,2011
    [106]于芃,赵瑜,周玮.基于混合储能系统的平抑风电波动功率方法的研究[J].电力系统保护与控制,2011,39(24):35-40
    [107]于芃,周玮,孙辉等.用于风电功率平抑的混合储能系统及其控制系统设计[J].中国电机工程学报,2011,31(17):127-133
    [108]张国驹,唐西胜,齐智平.平抑间歇式电源功率波动的混合储能系统设计[J].电力系统自动化,2011,35(20):24-28,93
    [109]Wei L., Joos G. A Power Electronic Interface for a Battery Supercapacitor Hybrid Energy Storage System for Wind Applications [A]. Power Electronics Specialists Conference [C]. Montreal, Quebec, Canada,2011:1762-1768
    [110]丁明,林根德,陈自年,等.一种适用于混合储能系统的控制策略[J].中国电机工程学报,2012,32(7):1-6,184
    [111]李付强,王彬,涂少良,等.京津唐电网风力发电并网调峰特性分析[J].电 网技术,2009,33(18):128-132
    [112]王芝茗,苏安龙,鲁顺.基于电力平衡的辽宁电网接纳风电能力分析[J].电力系统自动化,2010,34(3):86-90
    [113]张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158
    [114]孙荣富,张涛,梁吉.电网接纳风电能力的评估及应用[J].电力系统自动化,2011,35(4):70-76
    [115]严干贵,刘红哲,穆钢.风电增发挤出效益及其节能减排评估方法[J].电网技术,2012,36(4):51-56
    [116]衣立东,朱敏奕,魏磊,等.风电并网后西北电网调峰能力的计算方法[J].电网技术,2010,34(2):129-132
    [117]曹昉,张粒子.结合系统调峰容量比确定抽水蓄能机组装机容量的方法[J].电力自动化设备,2007,27(6):47-50
    [118]王凤翔.永磁电机在风力发电系统中的应用及其发展趋向[J].电工技术学报,2012,27(3):12-24
    [119]严干贵,魏治成,穆钢,等.直驱永磁同步风电机组的动态建模与运行控制[J].电力系统及其自动化学报,2009,21(6):34-39
    [120]王成元,夏加宽,杨俊友,等.电机现代控制技术[M].机械工业出版社,2008
    [121]严干贵,李军徽,蒋桂强,等.背靠背电压源型变流器的非线性解耦矢量控制[J].电工技术学报,2010,25(5):129-135
    [122]蒋桂强.背靠背电压源型变流器的控制器设计及性能分析[D].吉林:东北电力大学,2009
    [123]许寅,陈颖,梅生伟.风力发电机组暂态仿真模型[J].电力系统自动化,2011,35(9):100-107
    [124]魏志成.直驱永磁同步风电机组的建模与联网运行控制[D].吉林:东北电力大学2009
    [125]李军徽,朱昱,严干贵,等.储能系统控制策略及主电路参数设计的研究[J].电力系统保护与控制,2012,40(7):8-16
    [126]HirofumiAKagi等著,瞬时功率理论及其在电力调节中的应用[D].北京:机械工业出版社,2009
    [127]崔杨,穆钢,刘玉,等.风电功率波动的时空分布特性[J].电网技术,2011,35(2):110-114
    [128]王晓波,严干贵,郑太一,等.双馈感应风电机组联网运行仿真及实证分 析[J].电力系统自动化,2008,32(7):87-91
    [129]Trojan Battery Co., S.F.S., CA. Datasheet of Trojan Deep-Cycle Gel Battery. 2008, http://dcpower-systems.com/product_detail.aspx?gid=729&pid=23744
    [130]Leou R.C. An economic analysis model for the energy storage systems in a deregulated market[C]. ICSET,2008:744-749
    [131]Chen H., Cong Thang Ngoc, Yang Wei, et al., Progress in electrical energy storage system:A critical review[J]. Progress in Natural Science,2009,19(3): 291-312
    [132]李军徽,严干贵,朱昱,等.基于DSP2812的阀控式铅酸蓄电池状态监测系统设计[J].电测与仪表,2012,30(5):85-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700