用户名: 密码: 验证码:
异形截面多腔钢管混凝土巨型柱框架抗震试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异形截面多腔钢管混凝土柱作为高层建筑关键竖向构件,已在部分工程中应用,并有较快发展的趋势。结合目前建设的超高层建筑工程实际,本文研究了异形截面多腔钢管混凝土巨型柱和乒乓球拍形截面多腔体钢管混凝土柱的抗震性能,并进一步研究了异形截面多腔钢管混凝土巨型柱框架结构的抗震性能,进行了较系统的试验研究和理论分析并给出了抗震设计建议。主要贡献如下:
     1.提出并研发了一种新型抗震构造的异形截面多腔钢管混凝土巨型柱。结合某超高层建筑工程实际,进行了12个1/25缩尺的六边形六腔体截面钢管混凝土巨型柱模型在不同水平力作用方向下的低周反复荷载抗震性能试验研究。基于试验,分析了其承载力、刚度及退化过程、延性、滞回性能、耗能和破坏机制。
     2.研发了一种乒乓球拍形截面多腔体钢管混凝土柱。结合某超高层建筑实际,进行了10个1/7缩尺模型的低周反复荷载下抗震性能试验研究。基于试验,分析了其承载力、刚度及退化过程、延性、耗能和破坏机制。
     3.研究并揭示了异形截面多腔体钢管混凝土巨型柱框架的屈服机制。结合某超高层建筑实际,进行了1个1/25缩尺的异形截面多腔体钢管混凝土巨型柱框架结构低周反复荷载下抗震性能试验研究。基于试验,分析了巨型框架的承载力、刚度及退化过程、延性、滞回特性、耗能能力和屈服机制,揭示了其抗震机理。
     4.给出了底部加强型多腔钢管混凝土巨型柱的抗震构造措施,提出了巨型框架结构抗震设计建议。进行了异形截面多腔钢管混凝土柱的非线性有限元分析,揭示了其损伤和屈服破坏过程。计算与实测结果符合较好。
     主要结论:
     1.异形截面多腔体钢管混凝土巨型柱有较好的弹塑性变形能力,其综合抗震性能良好,可满足工程抗震设计需要。
     2.提出的新构造措施巨型柱与普通构造巨型柱相比,承载力、延性、耗能能力均显著提高,刚度退化速度减慢,抗震性能显著提高。
     3.提出的乒乓球拍形截面多腔体钢管混凝土柱具有良好的弹塑性变形能力,其抗震性能良好,能够满足设计要求。
     4.异形截面多腔钢管混凝土巨型柱框架工作性能稳定,设计合理,具有“强柱、弱梁”的延性屈服机制,其抗震性能良好,可用于地震区超高层建筑结构抗震设计。
As critical vertical member, the multi-cell CFST columns with special shaped sectionhave been applied in some projects, and it keeps a rapid development. Based on the realsuper high building projects, the seismic behavior of multi-cell CFST columns with specialshaped section and multi-cell CFST columns with table tennis racket section have beenstudied. Further more, the seismic behavior of mega-frame with multi-cell CFST columnshas been researched.The experiment research and theoryanalysis has been carried out,andthe seismic design suggestions has been given. The main contributions of the research areas follows:
     1. A multi-cell CFST mega-column with special shaped sectionwith new seismicstructural measure has been proposed. Based on a practical super high building project, theexperimental research on seismic behavior of121/25scaled specimens of multi-cell CFSTmega-columns with hexagon and six-cell section has been carried out under horizontal lowcyclic loading in different direction. The load-bearing capacity, stiffness and itsdegeneration, ductility, hystereticproperties, energy dissipation capacity, and failurecharacteristics ofspecimens have been analyzed based ontheabove experiments.
     2. A multi-cell CFST column with table tennis racket section has been researched.Based on a practical super high building project, the experimental research on seismicbehavior of101/7scaled multi-cell CFST mega-column specimens was carried out underhorizontal low cyclic loading. The load-bearing capacity, stiffness and its degeneration,ductility, energy dissipation capacity, and failure characteristic of specimens have beenanalyzed based onthe above experiments.
     3. The yield mechanism of mega-frame with multi-cell CFST column with specialshaped sectionwas researched and revealed. Based on the practical super high buildingproject, the experimental research on seismic behavior of a1/25scaled mega-frame withmega-columns was carried out under horizontal low cyclic loading. The load-bearingcapacity, stiffness and its degeneration, ductility, energy dissipation capacity, and failurecharacteristic ofspecimen have been analyzed based on the above experiment.
     4. The seismic constructional measures of multi-cell CFST mega-columnsstrengthened at the bottom were suggested. And the seismic design suggestions ofmega-frame structure were proposed. Nonlinear finite element analysis on multi-cell CFSTmega-column with special shaped section was carried out, the damage and yield failureprocesswasrevealed as well. Calculated results coincide wellwiththe measured values.
     Main conclusions are asfollows:
     1. The multi-cell CFST mega-column with special shaped section has wellplastoelastic deformation capacity and good seismic behavior, the design requirements canbe fulfilled.
     2. Compared with normal mega-columns, the load-bearing capacity, ductility, energydissipation capacity of the bottom strengthened mega-columns are greatly improved. Thespeed of their stiffness degeneration is slower, and the seismic behavior is significantlyimproved.
     3. The multi-cellCFST mega-column withtable tennis racket section has good seismicbehavior; and the design requirements can be fulfilled.
     4. The mega-frame with multi-cell CFST columns with special shaped section hasgood seismic behavior. It can be used in anti-seismatic design of super high buildings inseismic area.
引文
[1]陈麟,张耀春.巨型结构体系及发展趋势[J].哈尔滨工业大学学报,2003,35(11):1307-1310.
    [2]沈祖炎,陈荣毅.巨型结构的应用和发展[J].同济大学学报,2001,29(3):258-262.
    [3]惠卓,秦卫红,吕志涛.巨型建筑结构体系的研究和展望[J].东南大学学报,2000,30(4):1-8.
    [4]刘大海,杨翠如.高层建筑结构方案优选[M].中国建筑工业出版社,1996.
    [5] Pouangare C C, Connor J J. New structural systems for tall buildings, the space-truss concept[J].TheStructuralDesignofTall Buildings,1995,(4):155-168.
    [6] Cruvellier M R, Smith B S. Framing silver buildings [J]. The Structural Design of Tall buildings,1995,(4):185-198.
    [7] Zu Nz J, Glover M. The HongKong and Shanghai bank project[A]. Advances in Tall Buildings(S1):VanNostrandReinholdCompany,1986,541-566.
    [8] Kobori T, Ban S. Concept of super-high-rise buildings(DIB-200)[J]. The Structure Design of Tallbuildings,1992,(1):8-15.
    [9] Wright H D, Oduyemi T O S, Evans H R. The experimental behaviour of double skin compositeelements[J].Journal ofconstructionSteel Reserch,1991,19(2):97-110.
    [10] Webb H, Peyton J J. Composite concrete filled steel tube columns[A]. Proceedings of theStructural Engineering Conference[C]. Australia: The Institute of Engineers Australia,1990.181-185.
    [11]韩林海,陶忠,尧国皇等.钢管混凝土基本构件承载力的设计计算-各国规程比较(I)[J].建筑钢结构进展,2002,4(3):47-55.
    [12]韩林海,陶忠,尧国皇等.钢管混凝土基本构件承载力的设计计算-各国规程比较(Ⅱ)[J].建筑钢结构进展,2002,4(4):53-61.
    [13] Roe W. Behaviour and design of concrete filled stainless steel columns[D]. Bachelor’s thesis,School of Civil, Mining&Environmental Engineering, University of Wollongong, Australia,2005.
    [14] Tao Z, Han L H, Zhuang J P. Axial loading behaviour of CFRP strengthened concrete-filled steeltubular stubcolumns [J].Advances inStructural Engineering,2007,10(1):37-46.
    [15] Yang Y F, Han L H. Concrete-filled double skin tubular columns under fire [J]. Magazine ofConcreteResearch,2008,60(3):211-222.
    [16] Gourley B C, Tort C, Denavit M D, et al. A synopsis of studies of the monotonic and cyclicbehavior of concrete-filled steel tube members, connections, and frames [R]. Report No.NSEL-008, NSELReport Series, Department of Civil and Environmental Engineering, UniversityofIllinosi at Urbana-Champaign,2008.
    [17] Asgar T. Behaviour and design of concrete filled square hollow columns using stainless steelsections [D].Bachelor’s thesis, School of Civil, Mining&Environmental Engineering, UniversityofWollongong,Australia,2005.
    [18] Dajanovic A. Strength and deformation characteristics of short stainless steel concrete filled tubes[D]. Bachelor’s thesis, School of Civil&Environmental Engineering, University of New SouthWales,Australia,2004.
    [19] Fortner B. Landmarkreinvented[J].CivilEngineering(N.Y.),2006,76(4):42-49.
    [20] Gjerding-Smith A. Strength and deformation behaviour of short concrete filled stainless steelcolumns [D]. Bachelor’s thesis, School ofCivil&Environmental Engineering, UniversityofNewSouthWales,Australia,2004.
    [21]蒋家奋,汤关祚.三向应力混凝土[M].北京:中国铁道出版社,1988.
    [22]陶忠,韩林海.中空夹层钢管混凝土的研究进展[J].哈尔滨工业大学学报,2003,35(增刊):144-170.
    [23] Wei S, Mau S T, Vipulanandan C, Mantrala S K. Performance of new sandwich tube under axialloading: experiment[J].JournalofstructuralEngineering,ASCE,1995,121(12):1806-1814.
    [24] Zhao X L, G rzebieta R, Ukur A, Elchalakani M. Tests of concrete-filled double skin (SHS outerand CHSinner) composite stub columns [J]. Proceedings of the Third International Conference onAdvances insteel Structures,2002,567-574.
    [25] Wright H D, Oduyemi T O S, Evans H R. The experimental behaviour of double skin compositeelements[J].Journal ofconstructionSteel Reserch,1991,19(2):97-110.
    [26]陶忠,韩林海,郑永乾等.方中空夹层钢管混凝土纯弯力学性能研究[J].工业建筑,2004,34(1):6-10.
    [27] Elchalakani M, Zhao X L, Grzebieta R. Tests on concrete filled double-skin(CHS outer and SHSinner) composite short columns under axial compression [J]. Thin-walled Structures,2002,40(5):415-441.
    [28] Zhao X L, Han L H. Double skin composite construction [J]. Progress in Structural EngineeringandMaterials,2006,8(3):93-102.
    [29] Zhao X T, Grzebieta R H, Elchalakani M. Tests of concrete-filled double skin CHS compositesstub columns[J]. Steel&CompositeStructures-AnInternational journal,2002,2(2):129-146.
    [30] Lu H, Zhao X L, Han L H. Experimental investigation on fire performance of self-consolidatingconcrete (SCC) filled double skin tubular columns [A]. Proceedings of the5th InternationalConference on Advances in Steel Structures (ICASS’07)[C],(Liew J. Y. R. and Choo Y. S.(ends)), ResearchPublishingServices, Singapore,2007:973-978.
    [31] Zhao X L, Grzebieta R, Elchalakanim M. Tests of concrete-filled double skin circular hollowsections. First Inter ConferenceonSteel&CompositeStructuresKorea:2001:283-290.
    [32] ZhaoX L, Grzebieta R.StrengthandDuctility ofConcreteFilledDoubleSkin(SHSInner andSHSOuter)Tubes[J].Thin-WalledStructures,2002,40:199-233.
    [33] Wei S, Mau S T, Vipulanandan C, et al.Performance of new sandwich tube under axial loading:experiment. Journal ofStructuralEngineering,1995,121(12):1806-1814.
    [34] Yagishita, Kitoh H, Sugimoto M, Sonoda K.Double skin composite tubular columns subjected tocyclic horizontal force and constant axial force[J]. Proceedings of6th International Conference onsteel andConcreteCompositeStructures,2000,40(2):199-213.
    [35]蔡克铨,林育详,林敏郎.中空双钢管混凝土柱与基础结合之试验行为[J].第二届海峡两岸及香港钢结构技术交流会,2001:77-88.
    [36]陶忠,韩林海,黄宏.方中空夹层钢管混凝土偏心受压柱力学性能的研究[J].土木工程学报,2003,36(2):33-40,51.
    [37]陶忠,韩林海,黄宏.圆中空夹层钢管混凝土柱力学性能研究[J].土木工程学报,2004,37(10):41-51.
    [38]黄宏,张安哥,赵兵.方中空夹层钢管混凝土双向偏压力学性能研究[J].工业建筑,2010,40(5):114-118,108.
    [39]黄宏,陶忠,韩林海.圆中空夹层钢管混凝土柱轴压工作机理研究[J].工业建筑,2006,36(11):11-15.
    [40]黄宏,陶忠,韩林海.圆中空夹层钢管混凝土纯弯力学性能研究[J].工业建筑,2006,36(11):15-19.
    [41]黄宏,韩林海,陶忠.方中空夹层钢管混凝土柱滞回性能研究[J].建筑结构学报,2006,27(2):64-74.
    [42]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2004.
    [43]宋成冬.薄壁钢管混凝土受压柱承载力计算研究进展[J].化工设计,2011,21(5):44-47.
    [44]邱慈长,王清远,石宵爽等.薄壁钢管再生混凝土轴压实验研究[J].实验力学,2011,26(1):8-15.
    [45] Qing Quan Liang. Performance-based analysis of concrete-filled steel tubular beam-columns,PartⅠ:Theoryandalgorithms[J].Journal ofConstructional Steel Research,2009,65:363-372.
    [46] Qing Quan Liang. Performance-based analysis of concrete-filled steel tubular beam-columns, PartII:Theoryandalgorithms[J].Journal ofConstructional Steel Research,2009,65:351-362.
    [47] Qing Quan Liang, Brian Uy. Local buckling of steel plates in concrete-filled thin-walled steeltubularbeam-columns[J].Journal ofConstructional Steel Research,2007,63:396-405.
    [48]何保康,周天华.矩形钢管截面b/t、h/t的限值确定[J].钢结构,2001,16(2):29-32.
    [49]杨永辉,肖亚明.薄壁钢管混凝土研究现状[J].工程与建设,2010,24(1):1-3.
    [50] Shanmugam N E, Lakshmi B, Uy B. An analytical model for thin-walled steel box columns withconcretein-fill[J].EngineeringStructures,2002,24:825-838.
    [51]占美森.薄壁钢管混凝土柱轴心受压承载力性能研究[D].南昌:南昌大学建筑工程学院,2007.
    [52] Gardner J, Jacobson E R. Structural Behaviour of Concrete Filled Steel Tubes. ACI StructuralJournal,1967,64(7):404-413.
    [53] Gho W M, Liu D. Flexural Behaviour of High-Strength Rectangular Concrete-Filled Steel HollowSections. Journal ofConstructional SteelResearch,2004,60(11):1681-1696.
    [54] Kato B. Column Curves of Steel-Concrete Composite Members. Journal of Constructional SteelResearch,1996,39(2):121-135.
    [55] Knowles R B, ParkR. Strengthof Concrete FilledSteelTubular Columns. Journal of StructuralDivision,ASCE,1969,95(ST12):2565-2587.
    [56] Masuo K, Adachi M, Kawabata, K, et al. Buckling Behavior of Concrete Filled Circular SteelTubular Columns UsingLight-WeightConcrete Proceedings oftheThirdInternational ConferenceonSteel-ConcreteCompositeStructures. Fukuoka:1991:95-100.
    [57] Mursi M, Uy B. Strength of Slender Concrete Filled High Strength SteelBox Columns. Journal ofConstructional Steel Research,2004,60:1825-1848.
    [58] Nishiyama I, Morino S, Sakino K, et al. Summary of Research on Concrete-Filled Structural SteelTube Column System Carried out Under the US-Japan Cooperative Research Program onCompositeandHybridStructures.Japan: BuildingResearchInstitute,2002:147.
    [59] Schneider S P. Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering,ASCE,1998,124(10):1125-1138.
    [60] Task Group20, SSRC. A Specification for the Design of Steel-Concrete Composite Columns.EngineeringJournal,AISC,1979,16(4):101-145.
    [61] Uy B. Strength of Short Concrete Filled High Strength Steel Box Columns. Journal ofConstructional Steel Research,2001,57(2):113-134.
    [62] Vrcelj Z, Uy B. Behaviour and Design of Steel Square Hollow Sections Filled with High StrengthConcrete.AustralianJournal ofStructuralEngineering,2001,3(3):153-169.
    [63]尧国皇,韩林海.高强钢管混凝土构件承载力计算方法初探[J].工业建筑,2007,37(2):96-99
    [64] Russell Bridge. High strength materials in composite construction. In: Conference Report ofInternational Conference on Composite Construction-Conventional and Innovative, Innsbruck,Australia,1997.9.
    [65] Russell Bridge, et al. Thin walled circular concrete filled steel tubular columns. In: Proc of anEngineering Foundation Conference on Steel-Concrete Composite Structures, ASCE, New York,1992:634-649.
    [66] Kilpatrick A E, Rangan B V. Tests on high strength composite concrete columns. School of CivilEngineeringResearchReport No.1/97. CurtinUniversityof Technology, Perth, Western Australia,1997.3.
    [67]韩林海.钢管高强混凝土轴压组合力学指标及其稳定承载力的理论计算.哈尔滨建筑大学学报,1995,(5):107-116.
    [68] Cai Shaohuai, Gu Weiping. Behavior and ultimate strength of steel-tube-confined high strengthconcrete columns. In: Proc. of the4th Inter. Symposium on Utilization ofHigh-Strength/High-Performance Concrete, AFPC, AFREM and ENPC, Paris, France,1996:827-833.
    [69]于清,陶忠,吴颖星.钢管高性能混凝土偏心受压构件力学性能研究[J].工程力学,2009,26(10):87-94.
    [70]顾维平,蔡绍怀,冯文林.钢管高强混凝土的性能与极限强度.建筑科学,1991(1):23-27.
    [71]顾维平,蔡绍怀,冯文林.钢管高强混凝土长柱性能和承载力的研究.建筑科学,1991(3):3-8.
    [72]现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2007.
    [73]尧国皇,韩林海.钢管自密实高性能混凝土压弯构件力学性能研究[J].建筑结构学报,2004,25(4):34-42.
    [74]韩林海,杨有福,李永进等.钢管高性能混凝土的水化热和收缩性能研究[J].土木工程学报,2006,39(3):1-9.
    [75]杨有福,韩林海.矩形钢管自密实混凝土的钢管-混凝土界面粘结性能研究[J].工业建筑,2006,36(11):32-36.
    [76]王丹,吕西林.T形、L形钢管混凝土柱抗震性能试验研究[J].建筑结构学报,2005.8,26(4):39-44.
    [77]李学平,吕西林.钢管混凝土T, L形柱在反复荷载作用下的抗震性能分析研究[J].建筑结构,2008.9,38(9):116-119.
    [78]李学平,吕西林. T、L形钢管混凝土柱的本构模型及非线性分析研究[J].建筑钢结构进展,2008.10,10(4):56-62.
    [79]林震宇,沈祖炎,罗全辉.反复荷载作用下L形钢管混凝土柱滞回性能研究[J].建筑钢结构进展,2009,11(2):12-17.
    [80]乔景.T形方钢管混凝土组合异形柱轴心受压承载力研究[D].天津大学,2005.
    [81]荣彬.方钢管混凝土柱和L形截面方钢管混凝土组合异形柱研究[D].天津大学,2005.
    [82]李振宇.十字形截面方钢管混凝土组合异形柱承载力研究[D].天津大学,2005.
    [83]杜国锋,徐礼华,徐浩然,温芳.钢管混凝土T形短柱轴压力学性能试验研究[J].华中科技大学学报(城市科学版),2008,25(3):188-194.
    [84]傅冬. L形钢管混凝土组合柱试验研究及有限元分析[D].武汉理工大学,2010.
    [85]李兵.T形钢管混凝土组合柱抗震性能数值分析[D].武汉理工大学,2009.
    [86]饶炜.T形钢管混凝土组合柱试验研究及有限元分析[D].武汉理工大学,2010.
    [87]周靖,蔡健.T形钢管混凝土偏压短柱弹塑性承载力分析[J].工业建筑,2006,36(5):87-92.
    [88]左志亮,蔡健,朱昌宏.带约束拉杆L形钢管混凝土短柱的偏压试验研究[J].东南大学学报,2010,40(2):346-351.
    [89]左志亮,蔡健,朱昌宏.带约束拉杆L形钢管混凝土短柱的偏压承载力[J].工程力学,2010,27(7):161-167,185.
    [90]孙刚,蔡健.带约束拉杆L形截面钢管混凝土的本构关系[J].工程力学,2008,25(10):173-179.
    [91]龙跃凌,蔡健.带约束拉杆L形钢管混凝土短柱轴压性能的试验研究[J].华南理工大学学报,2006,34(11):87-92.
    [92]林云峥.带约束拉杆十字形钢管混凝土柱轴压基本性能研究[D].华南理工大学,2010.
    [93]李源波.带约束拉杆T形钢管混凝土短柱受压性能研究[D].华南理工大学,2010.
    [94]徐礼华,杜国锋,徐浩然,温芳.组合T形截面钢管混凝土构件抗剪性能试验研究[J].工程力学,2009,26(12):142-149.
    [95]徐礼华,杜国锋,温芳,徐浩然.组合T形截面钢管混凝土柱正截面受压承载力试验研究[J].土木工程学报,2009,42(6):14-21.
    [96]杜国锋,徐礼华,徐浩然.钢管混凝土组合T形短柱轴压力学性能研究[J].西安建筑科技大学学报,2008,40(4):549-555.
    [97]杜国锋,徐礼华,徐浩然.组合T形截面钢管混凝土柱偏心受压试验研究[J].建筑结构学报,2010,31(7):72-77.
    [98]曾宇光,屠永清.多室式钢管混凝土T形柱压弯性能分析[J].钢结构,2010,25(5):8-11.
    [99]邹昀,吕西林.上海环球金融中心大厦整体结构振动台试验设计[J].地震工程与工程振动,2005,25(4):54-59.
    [100]邹昀,吕西林.上海环球金融中心大厦结构抗震性能研究[J].建筑结构学报,2006,27(6):74-80,107.
    [101]程晓辉,钱稼茹,方鄂华.高层住宅巨型框架节点受力性能试验研究[J].建筑结构,1998,32(10):10-13.
    [102]何国松,方鄂华.住宅型钢筋混凝土巨型框架节点试验研究[J].土木工程学报,2000,33(2):13-18.
    [103]惠卓.巨型框架结构的计算理论及抗震性能的研究[D]:东南大学博士学位论文.东南大学土木工程学院,1998:71-83.
    [104]张宇峰.巨型框架结构的抗震性能和抗震设计方法的研究[D]:东南大学博士学位论文.东南大学土木工程学院,2002:26-42.
    [105]袁政强.巨型框架箱形节点抗震性能试验及分析[D].重庆大学,2004.
    [106] Lan Zongjian, Tian Yuji, Fang Liang, et al. An experimental study on seismic responses ofmultifunctional vibration-absorption reinforced concrete megaframe structures [J]. EarthquakeEngineeringandStructuralDynamics.2004,33(1):1-14.
    [107]蔡益燕编译.巨型钢框架弹塑性分析的等效模型[J].建筑结构,1993,23(1).
    [108] Takayukietal. Seismic design of highrise building with megaframe[J]. SeismEng Res Pract,1989:347-357.
    [109]蓝宗建,邹宏德,梁书亭等.钢筋混凝土巨型框架多功能减振结构地震反应分析[J].建筑结构学报,2001,22(4):77-89.
    [110]邹宏德,蓝宗建等.钢筋混凝土巨型框架多功能减振结构地震能量反应分析[J].工程力学,2001(增刊):231-235.
    [111]龚耀清,张家彬.超高层建筑巨型框架-核心筒结构体系的三维半解析分析模型及其应用[J].工程力学,2008,25(增刊II):117-122.
    [112]龚耀清,兰自贤.超高层建筑空间巨型框架-核心筒结构的共振响应[J].工程力学,2009,26(3):55-63.
    [113]沈霄鹤,欧进萍.超高层巨型钢框架结构失效模式分析[J].东南大学学报,2009,39(增刊II):144-150.
    [114]常磊,叶献国,潘文军.超高层巨型框架组合结构三维弹塑性地震反应分析[J].土木工程学报,2010,43(增刊):61-65.
    [115]罗永峰,宋怀金,王朝波.高宝大厦巨型框筒结构静力弹塑性(Pushover)分析[J].结构工程师,2007,23(5):5-9.
    [116]徐国林,张令心.巨型钢框架结构的三维非线性分析模型[J].世界地震工程.2009,25(1):102-106.
    [117]邓雪松,王廷彦,陈麟,郭永兴.巨型框架-耗能支撑结构的减震性能分析[J].地震工程与工程振动,2008,28(5):146-150.
    [118]朱芳振,王廷彦,邓雪松,陈麟,郭永兴.巨型框架-支撑结构的非线性地震反应分析[J].世界地震工程,2008,24(9):59-62.
    [119]淦克丽,盛宏玉,叶献国.巨型框架减振结构的动力时程分析[J].合肥工业大学学报,2010,33(1):81-84.
    [120]徐国林,金世玉,张令心,刘洁平.巨型梁设置对巨型钢框架结构地震反应的影响[J].地震工程与工程振动,2008,28(3):58-64.
    [121]苏健,童根树.双伸臂巨型结构整体稳定性分析[J].建筑结构学报,2010,31(12):32-39.
    [122]张文元,张耀春.若干典型巨型钢框架结构的罕遇地震反应分析[J].世界地震工程,2000,19(4):93-98.
    [123]张文元,张耀春.空间受力巨型钢柱滞回性能的影响因素分析[J].建筑结构,2007,37(1):4-7,74.
    [124] Sutat Leelataviwat et al. Energy-based Seismic Design of structures using Yield Mechanism andTarget Drift[J].JournalofStructuralEngineering,August2002:1046-1054.
    [125] Kevin K F, Pong Yang, Inelastic dynamic Response of Structures using Force Analogy Method[J].JournalofEngineeringMechanics,ASCE,1999,125(10):1190-1199.
    [126] Kevin K. F, Pong Yang, Earthquake Response e And Energy Evaluation of Inelastic Structures[J].Journal ofEngineeringMechanics,ASCE,2002,128(3):308-317.
    [127]刘哲峰,沈蒲生,基于拟力法的地震能量反应分析[J].防震减灾工程研究与发展,科学出版社,2005.
    [128] Amador Teran-Gilmore, James o. Jirsa. Energy demands for seismic design against low-cyclefatigue[J]. EarthquakeEngineering&StructuralDynamics,2007,36(3):383-404.
    [129] A. Benavent-Climent. An energy-based damage model for seismic response of steel structures [J].EarthquakeEngineering&Structural Dynamics,2007,36(8):1049-1064.
    [130]过镇海.混凝土的强度和变形-试验基础和本构关系.北京:清华大学出版社,1997.
    [131] J. Lee, G. L. Fenves.Plastic-Damage Model for Cyclic Loading of Concrete Structures [J].Journal of Engineering Mechanics,1998,124(8):892-900.
    [132] GB50011-2010,《建筑抗震设计规范》[S].北京:中国建筑工业出版社,2011.
    [133] GB50017-2003,《钢结构设计规范》[S].北京:中国计划出版社,2003.
    [134] GB50018-2002,《冷弯薄壁型钢结构技术规范》[S].北京:中国计划出版社,2002.
    [135] GB/T700-2006《碳素结构钢》[S].北京:中国标准出版社,2007.
    [136] GB/T1591-2008《低合金高强度结构钢》[S].北京:中国标准出版社,2009.
    [137] GB50010-2010《混凝土结构设计规范》[S].北京:中国建筑工业出版社,2011.
    [138] GB/T5117-1995《碳钢焊条》[S].北京:中国标准出版社,1995.
    [139] GB/T5118-1995《低合金钢焊条》[S].北京:中国标准出版社,1995.
    [140] GB50107-2010《混凝土强度检验评定标准》[S].北京:中国建筑工业出版社,2010.
    [141] GB50205-2001《钢结构工程施工质量验收规范》[S].北京:中国计划出版社,2002.
    [142] JGJ99-1998《高层民用建筑钢结构技术规程》[S].北京:中国建筑工业出版社,1998.
    [143] JGJ81-2002《建筑钢结构焊接技术规程》[S].北京:中国建筑工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700