用户名: 密码: 验证码:
钢箱—混凝土组合拱截面受力行为与设计原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对砼拱桥施工风险大、风险期长等主要弱点,本文提出“竖转钢箱—砼组合拱桥”的构想,得到国家自然科学基金项目(51078373)“钢箱—砼组合拱结构性能与分析方法研究”和西部交通建设科技项目(200631881448)“钢—砼组合拱桥竖转设计与施工关键技术研究”的资助,对钢箱—砼组合拱的具体构造、结构性能及计算方法展开了较系统的试验研究和理论分析,主要研究内容和结论如下:
     1.分析了常规砼拱桥的优势及其局限性,提出根据无铰拱不同区段的受力需要选用与相应区段受力相适应的组合截面的钢箱—砼组合拱桥,完善了其主拱结构的具体构造,分析表明钢箱—砼组合拱桥在保持常规砼拱桥的主要优势的条件下,显著降低了拱桥的施工风险,增强了拱桥使用过程中抗震、抗冲击和延性能力。
     2.针对正弯矩和轴力作用下的压弯构件,提出在钢箱顶板上浇注砼的组合截面构造,能够较好抵抗截面上的偏心压力和不利荷载组合下截面下缘产生的拉应力;构造了穿过钢箱顶板开孔加劲肋的箍筋与纵筋构成的钢筋骨架使现浇砼部分与钢箱形成整体的PBH剪力联结构造,在无需专门剪力联结构材料和不明显增加施工麻烦的条件下,能够更好地确保钢箱与砼剪力联结可靠性。
     3.开展了多组PBH剪力联结构造和一组传统PBL剪力联结构造的抗剪性能试验研究,结果表明PBH的抗剪刚度和承载能力优于PBL:分析发现PBH主要有三种破坏模式,研究提出避免开孔加劲肋板屈曲破坏和焊接破坏的构造要求判别公式;结合精细有限元分析,建立了PBH剪力联结构造的荷载一滑移本构模型,并通过参数分析,建立了PBH抗剪强度半理论半经验计算公式。
     4.开展了钢箱—砼组合压弯构件受载性能试验研究,对纯弯、偏压、轴压等情况下的钢箱—砼组合构件受力过程、破坏模式及承载力等进行了全面研究。依据试验结果,受弯构件和大偏压构件的受力全过程可以分为三个阶段:弹性工作阶段、弹塑性工作阶段和破坏阶段。
     5.针对钢箱—砼组合压弯构件的构造及受载破坏特点,研究提出大偏心受压破坏(塑性破坏)与小偏心受压破坏(脆性破坏)的破坏特征及判别方法,并从理论上推导了钢箱—砼组合压弯构件发生两种破坏的判据公式。
     6.针对钢箱—砼组合构件中砼的约束特点,根据钢箱顶板及加劲肋、钢筋骨架内外砼的不同约束效应,将其分成强约束区、弱约束区和无约束区三个部分,分析了各区域砼受约束的特点,依据非均匀材料的直接均匀化理论,建立了钢箱—砼组合构件中的约束混凝土单一介质匀质化本构模型,并结合压弯试验实测数据确定了模型参数。
     7.依据钢箱与压区混凝土具有相同的曲率,并分别服从平截面的假定,推导了钢箱—砼组合拱构件中界面滑移与荷载及界面抗剪刚度间的关系式(6-48)~(6-49)式,并以PBH荷载—滑移曲线为基础,采用纤维模型法建立了考虑界面滑移的钢箱—砼组合压弯构件全过程分析方法,并应用Matlab编制了相应的分析程序(SCCA);与美国专用组合截面分析软件XTRACT计算结果的比较表明,二者的计算结果总体相符,SCCA能够较准确地反映钢箱—砼组合截面全过程受力特性;依据SCCA程序对试验构件分析得到的极限承载能力与实测结果吻合较好;依据SCCA程序对依托工程主拱结构关键截面进行了全过程分析。
     8.利用SCCA对剪力联结构造刚度与钢箱—砼组合构件承载力的关系进行了分析,发现当荷载剪力小于0.5倍PBH剪力联结构造抵抗剪力时,钢箱—砼组合构件承载力的计算可以不考虑钢箱顶板与其上砼间界面滑移的影响;反之,可根据本文编制的SCCA程序计算其承载能力。
     9.结合试验资料和理论分析,推导了钢箱—砼组合构件的纯弯、轴压、轴拉承载能力的计算公式,并将钢箱—砼组合压弯构件承载能力M-N关系曲线简化为通过纯弯、轴压、轴拉承载能力点的三折线关系,据此建立了简化的钢箱—砼组合压弯构件M-N承载能力计算方法,并对依托工程主拱结构进行了验算。
Considering the main weaknesses of the concrete arch bridge, such as the high and long-term risk during construction, this dissertation proposes the concept of "Vertical Rotation Steel-Concrete Composite Bridge", which is supported by both "Performance and Analysis Research on Steel Box-Concrete Arch Structure" of the National Natural Science Foundation of China (51078373) and "Design and Key Construction Technologies of Vertical transfer on Steel-Concrete Composite Bridge" of the Western Transportation Construction Science and Technology Projects (200631881448). Experimental study and theoretical analysis are applied on the detailed construction, structural performance and computational methods of the steel box-concrete composite arch concrete systematically. Main contents and conclusions are as follows:
     1. The advantages of conventional concrete arch bridge, as well as the limitations, are analyzed. According to the load-bearing of different segments in the non-hinged arch bridge, the composite sections of steel box-concrete composite arch bridge corresponding to these segments for varying load-bearing performance are proposed, which improve the detailed constructions of the main arch structure. The analysis shows that, maintaining the main advantages of conventional concrete arch bridge, the steel box-concrete composite arch bridge not only significantly reduces the risk of bridge construction, but also increases the capacity of seismic, shock resistance and ductility during the service period.
     2. For the compressive and bending member under the positive moment as well as the axial force, the composite sectional construction is proposed when the concrete is poured on the top slab of steel box girder, which can resist both the eccentric pressure in the section and the tensile pressure by the unfavorable load combination in the lower edge of the section. A steel frame is formed by the longitudinal reinforcements and the stirrups crossing through through the holes in the top slab of steel box girder, which promotes the concrete and the steel box to generate an integral PBH shear connector construction. This will make the connection between the steel box and concrete more reliable, without special shear connector structural materials or more constructional processes.
     3. Experimental researches on the shearing capacity of several sets of PBH shear connector constructions and a set of traditional PBL shear connector constructions are carried out. The results show that the shear stiffness and load-bearing capacity of the PBH are better than that of the PBL. It is found that there are three main failure modes of PBH. The discriminant formula for the constructional requirements is proposed to avoid the buckling failure or welding failure of the opening stiffening rib slab. Combining with the sophisticated finite element analysis, the load-slip constitutive model for the PBH shear connector construction is established. And through the parameter analysis, the semi-theoretical and semi-empirical formula of the PBH connector's shear strength is proposed.
     4. Experimental researches on the load-bearing capacity of the steel-box and concrete composite compressive and bending members are carried out. The over-all researches on the load-bearing process, failure patterns and load-bearing capacity of the steel-box and concrete composite members subjected to simple bending, eccentric compression and axial compression. Based on the experimental results, the entire process of load-bearing in bending members and large eccentric compressive members can be divided to three stages:the elastic stage, the elasto-plastic stage and the collapse stage.
     5. For the construction and failure characteristics of steel box-concrete composite compressive and bending members, the failure characteristics and discriminant method of large eccentric compressive failure(plastic failure) and small eccentric compressive failure(brittle failure) are proposed. And the discriminant formulas to distinguish the two failure patterns are deduced theoretically.
     6. For the constrained characteristics of concrete in the steel box-concrete composite members, according to the different constraint effects in the roof and ribbed stiffener of steel box and the concrete inside and outside of the reinforced frame, they are divided into three parts as follows:strong constrained area, weak constrained area and unconstrained area, and the constrained characteristics of concrete in each area are analyzed. Based on the direct homogeneous theory of non-homogeneous materials, a single-medium homogeneous constitutive model for the constrained concrete in the steel box-concrete composite members is established, and the parameters of the model are defined combining with the measured data derived from the compressive and bending experiments.
     7. As the steel box and compressive concrete have the same curvature and submit to the assumption of plane section, the relationships between the slip, load and shearing stiffness of the interface in the steel box-concrete composite arch members are deduced. Based on the curve of load-slip, the fiber model is applied to establish the whole process analysis of steel box-concrete composite compressive and bending members considering interface slip, and the corresponding analysis process (SCCA) is built up by applying Matlab. Comparing with the American special composite section analysis software X TRACT, the computing results of the two methods are in agreement on the whole, and the SCCA can reflect the load-bearing characteristics of the whole process in the steel box-concrete composite section more accurately. Also the ultimate load-bearing capacity obtained by SCCA program is more identical with the experimental results.
     8. The SCCA program is applied to analyze the relation between the stiffness of shear connector construction and the load-bearing capacity of steel box-concrete composite members. It is found that if the shear load is less than half of the PBH shear resistance of shear connector construction, when calculating the load-bearing capacity of steel box-concrete composite members, the effect of the interface slip between the top slab of the steel box and the concrete above can be neglected. Otherwise, the load-bearing capacity can be calculated by the SCCA program.
     9. Combining with the experimental data and theoretical analysis, the load-bearing capacity calculation formulas for simple bending, axial compressive and axial tensile steel box-concrete composite members are derived, and the M-N relation curves are reduced to triple-fold relation by the load-bearing capacity points of simple bending, axial compressive and axial tensile. Based on these, the simplified M-N load-bearing capacity calculating method for steel box-concrete composite compressive and bending members is established.
引文
[1]张阳,邵旭东,廖新辉.带波形钢腹板悬臂挑梁的钢—混凝土组合脊骨梁新结构[J].中南公路工程,2006,31(4):30~32、60
    [2]邵旭东,昌颖,张阳.预应力波形钢腹板组合挑梁结构的探索性研究[J].中外公路,2006,26(3):123~125
    [3]Yong-Lin Pi, Mark Andrew Bradford, M.ASCE, and Brian Uy, M.ASCE. Second Order Nonlinear Inelastic Analysis of Composite Steel-Concrete Members. I: Theory. JOURNAL OF STRUCTURAL ENGINEERING (?) ASCE/MAY 2006. p751-761
    [4]Yong-Lin Pi, Mark Andrew Bradford, M.ASCE, and Brian Uy, M.ASCE. Second Order Nonlinear Inelastic Analysis of Composite Steel-Concrete Members. II:Applications. JOURNAL OF STRUCTURAL ENGINEERING (?)SCE/MAY 2006. p762-772
    [5]陈玉骥,叶梅新.钢-混凝土结合梁在温度作用下的响应分析[J].中国铁道科学,2001,22(5):48~53
    [6]宗周红,郑则群,房贞政等.体外预应力钢_混凝土组合连续梁试验研究[J].中国公路学报,2002,15(1):44--49
    [7]Jeom Kee Paik*, Bong Ju Kim. Ultimate strength formulations for stiffened panels under combined axial load, in-plane bending and lateral pressure:a benchmark study. Thin-Walled Structures,40 (2002): 45-83
    [8]钟新谷,舒小娟,沈明燕等.钢箱-混凝土组合梁弯曲性能试验研究[J].建筑结构学报,2006,27(1):71~77
    [9]顾威,CFRP钢管混凝土柱的力学性能研究[D].大连:大连海事大学,2007
    [10]李俊华.低周反复荷载下型钢高强混凝土住受力性能研究[D].西安:西安建筑科技大学,2005
    [11]毛学明.钢—混组合梁界面特性分析与加劲钢板—混凝土组合板荷载分布宽度试验研究[D].成都:西南交通大学,2006
    [12]钢_混凝土组合梁界面特性分析与加劲钢板_混凝士组合板荷载分布宽度试验研究_第3章[D].成都:西安交通大学,2006
    [13]何振强,蔡健.带约束拉杆方形钢管混凝土偏压短柱的试验研究[J].华南理工大学学报,2006,34(2):107~111
    [14]蔡健,何振强.带约束拉杆方形钢管混凝土柱偏压性能[J].建筑结构学报,2007,28(4):25~35
    [15]韩林海.钢管混凝土结构,北京:科学出版社,2000
    [16]卢方伟.新型钢管混凝土构件的理论和试验研究[D].上海:上海交通大学,2007
    [17]占玉林.预应力矩形钢箱混凝土梁的结构行为研究[D].成都:西南交通大学,2007
    [18]尧国皇.钢管混凝土构件在复杂受力状态下的工作机理研究[D].福建:福州大学,2006
    [19]田华,张素梅,郭兰慧.矩形钢管高强混凝土双向压弯构件截面强度[J].哈尔滨工业大学学报,2007,39(10):1520~1528
    [20]许兰兰.钢-混凝土组合梁挠度研究发展概述[J].江苏建筑,2006(3):12~15
    [21]黄宏.中空夹层钢管混凝土压弯构件的力学性能研究[D].福建,福州大学.2006
    [22]余志武,丁发兴圆钢管混凝土偏压柱的力学性能[J].中国公路学报,2008,21(1):40~46
    [23]王志斌,陶忠,韩林海.矩形钢管混凝土双向压弯构件的理论与试验研究[J].中国公路学报,2008,21(1):40~46
    [24]尧国皇,韩林海.钢管混凝土轴压与纯弯荷载—变形关系曲线实用计算方法研究[J].中国公路学报,2004,17(4):50~54
    [25]丁发兴,余志武.钢管混凝土短柱力学性能研究—实用计算方法[J].工程力学,2005,22(3):134~138
    [26]丁发兴,余志武.钢管混凝土短柱力学性能研究—理论分析[J].工程力学,2005,22(3):175~181
    [27]路志浩 陈以—刘兆辉方钢管混凝土压弯构件截面强度的简化计算公式[J].结构工程师,2000(3):13~17
    [28]N. Guz, N. A. Shul'ga, and V. F. Meish. Toward a theory of orthotropic shells and plates reinforced by stiffening ribs. International Applied Mechanics, Vol.30, No.11,1994:887-891
    [29]Bilal M. Ayyub, Member, ASCE, Young G. Sohnand Hamid Saadatmanesh, Associate Member, ASCE. PRESTRESSED COMPOSITE GIRDERS. I:EXPERIMENTAL STUDY FOR NEGATIVE MOMENT. Journal of Structural'Engineering, Vol.118, No.10,October,1992:2743-2762
    [30]Shun-ichi Nakamura, Hiromitsu Morishita,Bending strength of concrete-filled narrow-width steel box girder, Journal of Constructional Steel Research 64 (2008):128-133
    [31]J. G Nie, C. S. Cai, T. R. Zhou, and Y. Li. Experimental and Analytical Study of Prestressed Steel-Concrete Composite Beams Considering Slip Effect. In:JOURNAL OF STRUCTURAL ENGINEERING (?)ASCE/APRIL 2007 p530-540
    [32]Jing-Sheng Liu,Len Hollaway. Design optimisation of composite panel structures with stiffening ribs under multiple loading cases.In: Computers and Structures 78 (2000) p:637-647
    [33]L Dezi, G Leoni and A M Tarantino. Creep and shrinkage analysis of composite beams[J]. Structural Engineering and Materials.1998 Vol 1(2):170-177
    [34]Simon Schnabl, Miran Saje, Goran Turk, and Igor Planinc. Analytical Solution of Two-Layer Beam Taking into account Interlayer Slip and Shear Deformation[J]. JOURNAL OF STRUCTURAL ENGINEERING.ASCE/JUNE 2007 p:886-895
    [35]宋晖.重庆菜园坝长江大桥中跨钢箱拱施工方法研究[D].湖南:中南大学,2007
    [36]唐宏宾,吴康雄,肖国强,周建良.钢管混凝土桁式组合拱桥施工过程主拱圈变形的影响因素分析 [J].2006,26(3):188~190
    [37]滕启杰.钢管混凝土拱桥的极限承载力研究[D].大连:大连理工大学,2007
    [38]董洪晶,陈偕民,贾石宇.钢管混凝土拱组合截面力学性能研究[J].中外公路,2004,24(1):1-4
    [39]崔军.大跨度钢管混凝土拱桥受力性能分析[D].浙江:浙江大学,2003
    [40]Foudil Mohri,Cherif Bouzerira,Michel Potier-Ferry. Lateral buckling of thin-walled beam-column elements under combined axial and bending loads. In:Thin-Walled Structures 46(2008):p290-302
    [41]白国良,秦福华.型钢钢筋混凝土原理与设计[M].上海科学技术出版社.上海:2000.1
    [42]池田尚治等.钢—混凝土组合结构设计手册[M].北京:地震出版社,1992
    [43]苏联国家建设委员会编制.苏联劲性钢筋混凝土结构设计指南(C143-78).柳春圃译.冶金工业部建筑研究总院技术情报室汇编(冶金建筑参考资料8302)1983;
    [44]Johnson R P, Buckby R J. Composite Structures of Steel and Concrete Volume 2-Bridge, with a Commentary on BS 5400 Part 5. Published by Granada Publishing Limited in Crosby Lockwood Staples,1979;
    [45]Johnson R. P., Smith D. G E.. A Simple Design Method for Composite Columns. Struct. Engrg.1980, 58A:3,85-93;
    [46]Lachance L. Ultimate Strength of Biaxially Loaded Composite Sections. J. Struct. Diu,1982, ASCE 108:10,2313-2329
    [47]Roik K., Bergmann R.. Design Method for Composite Columns with Unsymmetrical Cross-Sections. J. Construct. Steel Res.15, (1990):153-168
    [48]El-Tawil S., Sanz-Picon C.F. and G.G Evaluation of ACI 318 and AISC (LRFD) Strength Provision for Composite Beam-Columns, J. Construct. Steel Research 34,.(1995).103-123;
    [49]Mirza S.A Parametric study of Composite Column Strength Variability. J. Construct. Steel Res.,14, (1989):121-137;
    [50]Rotter J.M Rapid Exact Inelastic Biaxial Analysis. J.Struct. Engrg., ASCE,111:12,.(1985):2659-2674;
    [51]Y C. Wang, Tests on slender composite columns, Journal of Constructional Steel Research 49(1999)25-41;
    [52]Pedro R. Munoz, Cheng-Tzu Thomas Hsu. Behavior of Biaxially Loaded Concrete-Encased Composite Columns. J.Struct.Engrg., ASCE, Vol.123, No.9,1997.9;
    [53]中华人民共和国冶金部.钢骨混凝土结构设计规程(YB9082-97)。北京:冶金工业出版社,1997;
    [54]中华人民共和国建设部.型钢混凝土组合结构技术规程((JGJ 138-2001),北京:中国建筑工业出版社,2001:
    [55]叶列平,钢骨混凝土柱的设计方法,建筑结构5,8-12,1997年;
    [56]叶列平,方鄂华,钢骨混凝土构件正截面承载力计算,建筑结构,8,56-60,1999年;
    [57]薛刚,冯玉芹,吴涛,李建,钢骨混凝士双偏压柱正截面承载力的计算机模拟及简化计算,工 程力学增刊,218-222,2001年;
    [58]叶列平,劲性钢筋混凝上偏心受压中长柱的试验研究,建筑结构学报,1995.12,16(6);
    [59]S. F. Chen, J. G Teng, S. L Char Design of Biaxially Loaded Short Composite Columns of Arbitrary Section. J. Struct.Engry., ASCE 127:6, (2001).678-685;
    [60]元辉,劲性钢筋混凝土构件受力性能研究—抗剪强度、裂缝间距、裂缝宽度、刚度,[硕士论文],西安:西安建筑科技大学,1989
    [61]于澎,型钢钢筋混凝土柱正截面承载能力研究,[硕士论文],西安:西安建筑科技大学,1991.
    [62]刘细林,SRC梁受力性能的试验研究,[硕士论文],西安:西安建筑科技大学,1991
    [63]刘玉擎,劲性钢筋混凝土框架节点抗震性能的试验研究,[硕士论文],西安:西安建筑科技大学,1988
    [64]白国良,型钢钢筋混凝土((SRC)结构的基本受力行为及设计方法[博十论文],西安:西安建筑科技大学,1997.
    [65]潘泰华,岳清瑞.劲性钢筋混凝土偏心受压长柱的试验研究,冶金部建筑研究总院研究报告,1988
    [66]劲性钢筋混凝土结构性能及设计方法课题组,劲性钢筋混凝土结构性能及设计方法综合报告,1991
    [67]孙慧中,沈文都,施昌.劲性钢筋混凝土结构体系研究(综合报告),中国建筑科学研究院科研资料,1990
    [68]钢—混凝土结构科研组.钢—混凝土组合结构资料,郑州工学院土建系,1986
    [69]陈家夔,赵世春.劲性混凝土构件正截面强度计算,建筑结构学报,1991.12(2):33-40.
    [70]陈家夔等,反复荷载下劲性钢筋混凝土框架柱的强度和延性分析,西南交通大学科研报告,1988
    [71]赵世春,陈家夔.劲性混凝土构件正截面强度的计算,西南交通大学学报,1990.2
    [72]徐澄,劲性钢筋混凝土梁刚度的试验研究,[硕十论文],南京:东南大学,1989.
    [73]叶列平,钢骨混凝土柱的设计方法,建筑结构,1997,5:8-12.
    [74]叶列平,方鄂华,赵树红.钢骨混凝土构件正截面承载力计算.工程力学,16(2):29-36
    [75]欧阳坚,丁大钧,蓝宗建,劲性钢筋混凝土受弯构件短期刚度与裂缝宽度的试验研究,工程力学,1993(3):87-96
    [76]陈眼云,张学文,王祖华,劲性钢筋混凝土受弯构件正截面承载能力的计算,北京:混凝土结构基本理论及应用(第二届学术讨论会论文集):633-640,1990
    [77]聂建国,钢—混凝土组合梁结构—试验、理论与应用[M],科学出版社,北京:2005
    [78]周志祥,一种竖转钢—混凝土组合拱桥,发明专利号:ZL200710048919.8
    [79]J.da.C. Vianna et al. Structural behaviour of T-Perfobond shear connectors in composite girders An experimental approach. Engineering Structures.2008(30):2381-2391
    [80]J.GS. da Silva, L.R.O. de Lima, P.C.G da S. Vellasco, S.A.L. de Andrade, R.A. de Castro. Nonlinear dynamic analysis of steel portal frames with semi-rigid Connections. In:Engineering Structures 30 (2008):p2566-2579
    [81]P.C.G. da S. Vellasco, S.A.L. de Andrade, L.T.S. Ferreira, L.R.O. de Lima.-Part 1:Semi-rigid composite frames with perfobond and T-rib connectors. Journal of Constructional Steel Research 63 (2007). p263-279
    [82]S.A.L. de Andrade, P.C.G. da S. Vellasco, L.T.S. Ferreira, L.R.O. de Lima.-Part 2:Semi-rigid composite frames with perfobond and T-rib connectors. Journal of Constructional Steel Research 63 (2007). p280-292
    [83]周安等.栓钉在混凝土受拉状态中的抗剪试验研究[J].公路交通科技,2007,24(12):89~92
    [84]周安等.栓钉连接件极限承载力及剪切刚度的试验[J].工业建筑,2007,37(10):84~87
    [85]张清华,李乔,唐亮.桥塔钢_混凝土结合段剪力键破坏机理及极限承载力.[J].中国公路学报,2007,20(1):85~90
    [86]胡建华,叶梅新,黄琼.PBL剪力连接件承载力试验[J].中国公路学报,2006,19(6):65~72
    [87]胡建华,侯文崎,叶梅新.PBL剪力键承载力影响因素和计算公式研究[J].铁道科学与工程学报,2007,4(6):12~18
    [88]周浩.南京长江三桥桥塔钢_混结合段剪力键选型试验研究[D].成都:西南交通大学,2005
    [89]苏哈布.开孔钢板剪力键的性能研究[D].上海:同济大学,2007
    [90]单炜,李玉顺,于玲,聂玉东.异形截面斜拉桥索塔锚固区节段足尺模型试验研究[J].中国公路学报,2005,18(3):60~65
    [91]谢卓君.自锚式悬索桥主缆锚固部位分析研究[D].成都:西南交通大学,2008
    [92]宋佳.钢_混凝土组合空腹板架结构中新型剪力连接件研究[D].贵阳:贵州大学,2008
    [93]胡建华,蒲怀仁.PBL剪力键钢混结合段设计与试验研究[J].钢结构,2007,2(22):62~68
    [94]Youn-Ju Jeong_, Hyeong-Yeol Kim, Hyun-Bon Koo. Longitudinal shear resistance of steel-concrete composite slabs with perfobond shears connectors. Journal of Constructional Steel Research 65 (2009):p81-88
    [95]Hyeong-Yeol Kim, Youn-Ju Jeong. Experimental investigation on behavior of steel-concrete composite bridge decks with perfobond ribs. In:Journal of Constructional Steel Research 62(2006) p:463-471
    [96]Boksun Kim a, Howard D. Wright b, Roy Cairns. The behaviour of through-deck welded shear connectors:an experimental and numerical study[J]. Journal of Constructional Steel Research,57 (2001):1359-1380
    [97]白光亮.大跨度斜拉桥索塔锚固区结构行为与模型试验研究[D].西南交通大学,2009
    [98]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科技出版社.1994年
    [99]陆新征,江见鲸.用ANSYS Solid65单元分析混凝土组合构件复杂应力[J].建筑结构,2003
    [100]ANSYS User's Manual foe Revision 5.7[M].ANSYS Inc.2001
    [101]司炳君,孙治国,艾庆华Solid65单元在混凝土结构有限元分析中的应用[J].工业建筑.2007,37 (1):87-92
    [102]薛立红,蔡绍怀,钢管混凝土柱组合界面的粘结强度.建筑科学,1996.4
    [103]杨勇等,型钢混凝土粘结-滑移本构关系理论分析[J].工业建筑,2002,32(6):60~63
    [104]余志武、蒋丽忠、李佳.集中荷载作用下钢混组合梁界面滑移及变形[J].土木工程学报,2003,36(8):1~6
    [105]杨勇.型钢混凝土粘结滑移基本理论及应用研究[D].西安:西安建筑科技大学,2003
    [106]王宏彦.型钢混凝土偏压柱粘结滑移性能及应用研究[D].西安:西安建筑科技大学,2004
    [107]刘俊岭等.型钢混凝土构件的粘结-滑移本构关系研究[J].工业建筑,2008,38(5):93~96
    [108]郑山锁等.型钢与混凝土界面剪力传递能力[J].工程力学,2009,26(3):148~154
    [109]周安,戴航.简支组合梁界面行为和挠曲变形的理论分析[J].合肥工业大学学报,2006,29(8):1021~1024
    [110]赵程.型钢-混凝十组合板力学性能的试验研究[D].天津:天津大学,2005
    [111]罗如登,叶梅新.组合梁钢与混凝土板相对滑移及栓钉受力状态研究[J].铁道学报,2002,24(3):57~61
    [112]丁敏,薛伟辰,王骅.钢-高性能混凝土组合梁栓钉连接件抗剪性能的试验[J].工业建筑,2007,37(8):9~13
    [113]周安等.预应力钢_混凝土连续组合梁的挠度研究[J].公路交通科技,2006,23(4):63~66
    [114]Takayuki Nishido, Katashi Fujii, Takafumi Ariyoshi. SLIP BEHAVIOR OF PERFOBOND RIB SHEAR CONNECTORS AND ITS TREATMENT IN FEM[J]. COMPOSITE CONSTRUCTION IN STEEL AND CONCRETE IV
    [115]郑则群,房贞政.钢—混凝土组合连续梁桥动力响应试验研究[J].地震工程与工程振动,2006,26(4):175~181
    [116]管克检.钢结构住宅抗测力体系试验研究与非线性分析[D].武汉:武汉理工大学,2003
    [117]王彩霞.各项异性及双参数非协调有限元方法研究[D].河南:郑州大学,2007
    [118]郭书祥.非随机不确定结构的可靠性方法和优化设计研究[D].西安:西北工业大学,2002
    [119]苏静波.工程结构不确定性区间分析方法及其应用研究[D].南京:河海大学,2006
    [120]俞晓.深基坑开挖与支护的模型试验与ANSYS分析研究[D].武汉:武汉理工大学,2005
    [121]卢明奇.钢管混凝土结构三维非线性有限元分析和设计理论研究[D].天津:天津大学,2005
    [122]夏小舟.混凝土细观数值仿真及宏细观力学研究[D].南京:河海大学,2007
    [123]周凌宇.钢_混凝土组合箱梁受力性能及空间非线性分析[D].湖南:中南大学,2004
    [124]白玲.超静定组合结构桥梁受力特性的3D-FEM模拟分析[D].北京:铁道科学研究院,2003
    [125]胡兆同.压弯钢构件在循环荷载作用下的非线性弯扭相关屈曲[D].西安:西安建筑科技大学,2001
    [126]常玉珍.钢_混凝土组合肋壳非线性分析[D].西安:西安建筑科技大学,2007
    [127]黄勇等.组合空腹板架结构研究与应用[J].建筑结构学报(增刊),2006,26(4):195~201
    [128]郑则群,房贞政.钢—混凝土组合连续梁桥动力响应试验研究[J].地震工程与工程振动,2006,26(4):175~181
    [129]余小红,许伟,程袆辉.钢-混凝土组合梁非线性分析在ANSYS中的实现[J].四川建筑,2007,27(4):102~102,105
    [130]Qing Quan Liang, M.ASCEet al. Strength Analysis of Steel-Concrete Composite Beams in Combined Bending and Shear[J]. JOURNAL OF STRUCTURAL ENGINEERING,2005(10):1593~1601
    [131]Khaled Sennah, M.ASCE, John B. Kennedy, F.ASCE, and Said Nour. Design for Shear in Curved Composite Multiple Steel Box Girder Bridges. In: JOURNAL OF BRIDGE ENGINEERING (?) ASCE /MAY/JUNE 2003 p:144-152
    [132]A.J. Wang, K.F. Chung. Advanced finite element modelling of perforated composite beams with flexible shear connectors. In: Engineering Structures 30 (2008) p:2724-2738
    [133]张远高.钢筋混凝土结构的本构关系及有限元模式[D].北京:清华大学,1990
    [134]姜绍飞等.高温后方钢管混凝土钢材和混凝土的本构关系[J].辽宁工程技术大学学报,2005,24(5):3~5
    [135]辛海亮.钢管混凝土粘结滑移本构关系理论研究[J].建材技术与应用,2007,(10):3~5
    [136]王双剑,王元丰.轴心受压FRP约束混凝土柱应力_应变关系曲线计算[J].北方交通大学学报,2004,28,(4):68~71
    [137]陶中等.FRP约束混凝土的应力_应变关系[J].工程力学,2005,22,(4):188~195
    [138]王怀亮,宋玉普.受侧向约束混凝土的内时损伤本构模型[J].工程力学,2007,24,(12):120~127
    [139]罗章.中应变率下钢纤维混凝土的本构关系研究[D].湖南:中南大学,2004
    [140]蔡健,何振强.带约束拉杆方形钢管混凝土的本构关系[J].工程力学,2006,23,(10):145~150
    [141]敬登虎.FRP约束混凝土的应力_应变模型及其在加固中的应用研究[D].南京:东南大学,2006
    [142]丁发兴,余志武.圆钢管套箍混凝土轴压短柱受力机理分析[J].中国铁道科学,2006,27,(6):32~36
    [143]袁锦根.方箍约束钢筋混凝土压弯构件延性与其滞回模型[J].铁道学报,2001,22(5):24-32
    [144]周文峰等.约束混凝土几种有代表性应力_应变模型及其比较[J].重庆建筑大学学报,2003,25,(4):121~127
    [145]J.B.Mander, M.J.N.Priestley, R.Park. Theoretical tress-strain Model for Confined Concrete [J]. ASCE, 1988, (8):1804-1826
    [146]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力-应变全曲线方程[J].建筑结构学报,1982,(9):16-20
    [147]S.A.Sheikh and S.M.Uzumeri. Analytical Model for Concrete Confinement in Tied Columns [J]. ASCE,1982, (12):2703-2722
    [148]R.Park, M.J.N.Priestley, W.D.Gill. Ductility of Square-confined Concrete Columns[J].ASCE,1982, (4):929-951
    [149]S.M.Saatcioglu, S.R.Razvi. Strength and Ductility of Confined Concrete [J].ASCE,1992, (6):1590-1607
    [150]王景全等.钢混连续组合梁桥施工全过程监测及数值分析[D].南京:东南大学.655~670
    [151]庄凌云.装配式连续弯桥横向分布计算的广义梁格法[D].西安:长安大学,2004
    [152]林泉.预应力混凝土弯桥的空间受力特性分析研究[D].浙江:浙江大学,2006
    [153]田仲初.大跨径钢箱拱桥的施工控制关键技术与动力特性研究[D].湖南:中南大学,2007
    [154]叶伟.外包钢板混凝土悬索桥桥塔极限承载力研究[D].成都:西安交通大学,2007
    [155]R. W. Furlong. Strength of steel-encased concrete beam-columns[J]. Journal of structure engineering, ASCE.1967 93(STS):113-125
    [156]R.B. Knowles, Park R. Strength of concrete filled steel tubular columns[J]. Journal of structural engineering.1969 95(ST12):2565-2587
    [157]R.Q.Bridee. Concrete filled steel tubular columns[J]. Report No.8283, School of civil engineering, University of Sydney, Sydney Australia.1976
    [158]H. Shakir-khalil, J. Zeghiche. Experimental behavior of concrete-filled rolled rectangular hollow section columns[J]. The Structural engineer.1989 67(19):346-353
    [159]H. Shakir-khalil, M. Mouli. Further tests on concrete-filled rectangular hollow section columns [J]. The Structural Engineer.1990 68(20):405-413
    [160]H.Shakir-khalil. Experimental study of concrete-filled rectangular hollow section columns[J]. The Structural Engineer review.1994,6(2): 85-96
    [161]H. B. Ge, T. Usami. Strength of concrete-filled thin-walled steel box column experiment[J]. Journal of structural engineering, ASCE.1992,18(11):3006-3054
    [162]H. B. Ge, T. Usami. Strength analysis of concrete-filled thin-walled steel box column[J]. Journal of constructional steel research.1994,30:607-612
    [163]B. F. Hajjar, B. C. Gourley. Representation of concrete-filled steel tube cross-section strength[J]. Journal of structural engineering, ASCE.1996 122(11):1327-1336
    [164]M. A. Bradford. Design strength of slender concrete-filled rectangular steel tubes[J]. ACI structural journal.1996,93(2):229-235
    [165]B. Uy. Strength of concrete filled steel box columns incorporating local buckling[J]. Journal of structural engineering, ASCE.2000,126(3):341-352
    [166]N. E. Shanmugam, B. Lakshmi, B. Uy. An analytical model for thin-walled steel box columns with concrete in-fill[J]. Engineering structures.2002,24:825-838
    [167]B. Lakshmi, N.E. Shanmugam. Nonlinear analysis of in-filled steel-concrete composite columns[J]. Journal of structural engineering, ASCE.2002,128(7):922-933
    [168]A. H. Varma, J. M. Rides, R. Sause and L. W. Lu. Experimental behavior of high strength square concrete-filled steel tube beam-columns [J]. Journal of structure engineering, ASCE.2002 128(3): 309-318
    [169]H.T.Hu, C.S.Huang, M.H. Wu,Y M. Wu. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect [J]. Journal of structural engineering, ASCE.2003,129(10): 1322-1329
    [170]K. M. A. Hossain. Axial load behavior of thin walled composite columns[J]. Composites part B: engineering.2003,34:715-725
    [171]K.Sakino, H.Nakahara, S.Morino. Behavior of centrally loaded concrete-filled steel-tube short columns[J]. Journal of structural engineering, ASCE.2004,130(2):180-188
    [172]T. Fujimoto, A. Mukai, I. Nishiyama and K. Kakino. Behavior of eccentrically loaded concrete-filled steel tubular columns[J]. Journal of structural engineering,ASCE.2004,130(2): 203-212
    [173]李四平,王著,蒋晓东,黄玉盈.方钢管硅偏压柱极限承载力计算的简化数值法[J].华中理工大学学报.1997,25(4):93-94
    [174]李四平,邹时智,关呈,王著.方钢管硅偏压柱压溃过程的数值模拟[J].华中理工大学学报.1996,24(5):91-94
    [175]李四平,聂建国,霍达,黄玉盈.方钢管硅偏压柱压溃荷载的近似计算[J].工程力学.1996,13(4):20-27
    [176]余勇,吕西林.三向受压混凝土的三维本构关系[J].同济大学学报.1998,26(6):622-626
    [177]韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报.2001,34(2):17-25
    [178]张素梅,郭兰惠,王玉银,田华.方钢管高强混凝土偏压构件的试验研究与理论分析[J].建筑结构学报.200425(1):17-24
    [179]聂建国,柏宇,李盛勇,约束混凝土的有效约束半径[J].清华大学学报(自然科学版).200545(3):289-292
    [180]钟新谷,舒小娟,沈明燕等,钢箱—混凝土组合梁弯曲性能试验研究[J],建筑结构学报,2006,27(1),71-76
    [181]舒小娟,钟新谷,沈明燕,钢箱—混凝土组合梁抗弯承载力理论与试验研究对比分析[J],铁道科学与工程学报,2005,2(6):19-26
    [182]莫时旭,钟新谷,沈明燕.钢箱-混凝土梁局部屈曲分析与试验研究[J],铁道科学与工程学报,2007,4(2):48-53
    [183]占玉林,预应力矩形钢箱混凝土梁的结构行为研究[D].西南交通大学博士学位论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700