用户名: 密码: 验证码:
高速滑动轴承的界面滑移及空穴机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑动轴承在高速、超高速条件下,固液交界面上的剪应力会超过某个极限值而导致在固体表面发生滑移现象,同时润滑油膜极易破裂形成空穴。界面滑移和空穴现象的存在对滑动轴承的润滑性能具有重要影响,甚至可能导致润滑失效。因此,界面滑移和空穴特性的研究,对滑动轴承的高速发展具有重要意义。
     首先,建立了基于极限剪应力的周向和轴向二维滑移模型。为了在滑移模型中建立更为准确的周向和轴向剪应力关系,定义了剪应力夹角的概念。全面考虑了轴和轴瓦表面可能产生滑移的情况,分别研究了产生界面滑移的四种状态,给出了相应的滑移速度分布图,并分别推导了四种滑移状态的基本方程。
     对油膜完整区域与润滑油弹性模量的有关计算项进行了分析,建立了基于改进的Elrod算法的空穴计算模型,得到了求解油膜压力的优化算法。该算法将基于JFO边界条件的描述完整油膜区和空穴区的润滑方程进行了统一,使JFO边界条件更加精确的应用于轴承空穴理论的计算。
     基于二维滑移模型和改进的Elrod空穴算法,在四种滑移状态下分别推导出了考虑空穴效应的理论计算模型以及差分求解公式。考虑空穴效应的滑移计算模型既全面考虑了可能发生滑移的情况,又将Elrod算法中对完整油膜区的广义雷诺方程的求解方法进行了优化,不但更贴近滑动轴承实际工况,而且提高了计算效率。
     其次,采用“目标速度跟踪法”对界面滑移现象进行了实验研究。轴承采用有机玻璃材质,在进油口添加着色剂,利用高速摄像机拍摄流线并计算出平均速度,通过理论与实验结果的对比发现了周向和轴向界面滑移的存在。根据实验测得的周向最小滑移速度与转速和供油压力关系曲面,计算出高粘度和低粘度润滑介质时轴瓦和轴表面的极限剪应力,并发现滑移速度随着供油压力的提高而提高。
     运用实验测得的极限剪应力,从理论上研究了极限剪应力和界面滑移现象对螺旋油楔滑动轴承性能的影响。研究了轴承的结构、偏心率、螺旋角、转速和极限剪应力对滑移程度的影响。结果表明滑移首先发生在极限剪应力大、油膜间隙小和油膜的封油面区域,滑移现象的存在使油膜压力、承载力、摩擦阻力和温升有所降低,而端泄量则有所提高,并且轴瓦和轴表面的滑移区域和滑移程度互相影响。
     为了提高轴承承载力并降低温升,提出了利用滑移现象的组合滑移表面径向滑动轴承。基于修正的SLM模型,推导出了考虑界面滑移的雷诺方程。与普通轴承相比,组合滑移表面径向滑动轴承的油膜压力、承载力和端泄量较高,而偏位角、摩擦阻力和温升较低。
     然后,利用理论和实验相结合的方法研究了润滑油粘度对空穴特性和端泄量的影响。采集了高粘度和低粘度润滑介质条件下螺旋油楔滑动轴承在不同转速和供油压力的空穴图像,并测量了滑动轴承的端泄量,通过理论和实验对比研究了两种润滑介质条件下轴承的空穴形状、油膜破裂位置以及再形成位置、油膜破裂面积和端泄量等。求得高粘度和低粘度润滑介质条件下油膜再形成位置与转速和供油压力的关系。两种不同粘度润滑油的实验结果对比表明,低粘度油的空穴面积比高粘度油明显减小而端泄量明显提高。实验结果与利用改进的Elrod算法计算获得的结果变化趋势一致,并且油膜破裂情况基本吻合。
     基于JFO边界条件建立了考虑空穴效应和界面滑移的轴承动特性计算模型,揭示了不同偏心率、螺旋角、供油压力和转速时,界面滑移和空穴效应对油膜压力、承载力、摩擦阻力、端泄量、平均温升、刚度系数和阻尼系数的影响。结果表明,考虑界面滑移时采用JFO边界条件计算获得的油膜压力、承载力、摩擦阻力、端泄量、刚度系数和阻尼系数比采用Reynolds边界条件时都有所提高,而平均温升降低和油膜的破裂延缓。
     最后,采用热电偶和红外测温仪分别测量了润滑油的平均温升和轴瓦内表面温度。结果表明,低粘度润滑条件下的温升比高粘度油润滑条件下的温升明显降低,采用低粘度润滑介质可以有效解决高速机床长期存在的温升问题。
With the application of journal bearing in high speed and super-high speed conditions, wall slip can occur when shear stress exceeds the critical shear stress at the solid-liquid interface, the oil film is easy to crack and becomes cavitation. The presence of wall slip and cavitation has a great effect on the lubrication characteristics of journal bearing, and possibly leads to the lubrication failure. Therefore, the wall slip and cavitation characteristics of journal bearing have been investigated, which has an important significance for the development of high speed journal bearings.
     Firstly, the two-dimensional slip model is established based on critical shear stress model, in which the circumferential and axial wall slip of sleeve surface and axial surface is considered. The shear stress angle is used to compute the circumferential and axial shear stress component in slip model. Considering the slip states in the sleeve surface and axial surface comprehensively, the four slip states are studied, the slip velocity profiles of four slip states are given, and the theoretical model of four slip states are established.
     In full film region, the related items with lubricant bulk modulus are analyzed, the cavitation model is established based on modified Elrod cavitation model, which is benefit for the calculation process of oil film pressure. The generalized equation that integrates the full film region and cavitation region based on JFO boundary condition is derived, which makes the JFO boundary condition more precisely to be applied in the computation of cavitation theory.
     The theoretical model of four slip states and the formulas of finite differential method are established considering cavitation mechanism based on the two-dimensional slip model and modified Elrod cavitation model. The model not only considers the four slip states but also optimizes the solution of generalized Reynolds equation in full film region compared with Elrod method, which is consistent with the actual work condition and increases the computation efficiency.
     Secondly, the wall slip is studied experimentally by the method of target speed tracking method. The material of spiral oil wedge journal bearing is synthetic glass in experiment, the coloured dyestuff is added into the lubricant from the inlet holes, the fluid flow of lubricant is taken using the high speed camera, the average speed is computed, and the circumferential and axial wall slip is found by the difference of theoretical results and experimental results. According to the figures of minimum circumferential slip velocity with the rotating speed and supply pressure in experiment, the critical shear stresses of sleeve surface and axis surface are obtained for high viscosity lubricant and low viscosity lubricant. It is found by experiment that the slip velocity increases with the increase of input pressure.
     Using the critical shear stresses of sleeve surface and axis surface that are obtained in experiment, the influence of critical shear stress and wall slip on the characteristics of spiral oil wedge journal bearing is studied. The influence of the bearing structure, eccentricity, spiral angle, rotating speed and critical shear stress on slip degree is studied. The results show that wall slip occurs first in the large shear stress, the small clearance of oil film and the envelop zone. Wall slip can cause the decrease of oil film pressure, carrying capacity, friction drag and temperature rise, but produces the increase of end leakage rate. The slip position and area influence each other in the sleeve surface and axial surface.
     In order to improve the carrying capacity and reduce the temperature rise in journal bearing, a combined surface radial sleeve bearing using the interfacial slip technique is discussed. An extended Reynolds equation is derived based on the modified slip length model considering wall slip. Comparing with the general journal bearing, the pressure, load capacity and end leakage rate of the combined surface sleeve bearing can be increased greatly, but the attitude angle, friction drag, temperature rise of the combined bearing can be decreased.
     Thirdly, the influence of lubricant viscosity on the cavitation characteristics and end leakage rate is studied by theory and experiment. The pictures of spiral oil wedge journal bearings under different rotating speeds and supply pressures for high viscosity lubricant and low viscosity lubricant are taken, the end leakage rate of the journal bearing is measured, and the cavitation shape, oil film rupture location, oil film reformation location, rupture area of oil film and end leakage rate are studied by theory and experiment. The relations of oil film reformation location with the rotating speed and supply pressure are obtained for high viscosity lubricant and low viscosity lubricant in experiment. The cavitaiton area decreases and end leakage rate increases for low viscosity lubricant compared with high viscosity lubricant. The modified Elrod calculation results are in general consistent with the experimental results.
     The dynamic characteristic model is established based on JFO boundary condition considering cavitation effect and wall slip. The influence of wall slip and cavitation effect on pressure, carrying capacity, friction drag, end leakage rate, temperature rise, stiffness and damping coefficients for different eccentricities, spiral angles, input pressures and rotating speeds is studied. The oil film pressure, carrying capacity, friction drag, end leakage rate, stiffness and damping coefficients are larger, temperature rise is lower and the oil film rupture delays using JFO boundary condition compared with Reynolds boundary condition when the wall slip is considered.
     Finally, the temperature rise and the bush inner surface temperature are measured by thermocouple and infrared thermometer, separately. The results show that the temperature rise decreases for low viscosity lubricant compared with high viscosity lubricant, so the application of low viscosity lubrication can solve the temperature rise in high speed machine tools.
引文
1熊万里,阳雪兵,吕浪,等.液体动静压电主轴关键技术综述[J].机械工程学报.2009,45(9):1-18
    2郭宏升.水润滑高速动静压滑动轴承的理论与实验研究[D].北京科技大学博士学位论文.2007
    3池长青.摩擦学原理第二版[M].北京:国防工业出版社.1998
    4 Zhou Yang, L.San Andres, D.W.Childs. Thermal effects in liquid oxygen hydrostatic journal bearings [J]. Tribology Transaction.1996,39(3):654-662
    5 N. P. Hannum, C. E. Nielson. Performance and application of high speed long life LH2 hybrid bearings for reusable rocket engine turbomachinery [J]. NASA Technical Memorandum.1983:417-442
    6 H A Spikes. The half-wetted bearing. Part 1:extended Reynolds equation [J]. Proc. Instn Mech. Engrs Part J:J. Engineering Tribology.2003,217:1-14
    7 J. H. Choo, H. A. Spikes, M. Ratoi, et al. Friction reduction in low-load hydrodynamic lubrication with a hydrophobic surface [J]. Tribology International.2007,40:154-159
    8 Ma G. J., Wu C. W., Zhou P. Wall slip and hydrodynamics of two-dimensional journal bearing [J]. Tribology International.2007,40:1056-1066
    9 B. Tower. First report on friction experiments [J]. Proceedings of the Institution of Mechanical Engineers.1883,34:632-659
    10孙大成.润滑力学讲义[M].北京:北京中国友谊出版社.1991
    11 A. Harnoy, M. M. Khonsari. Hydro-Roll:A novel bearing design with superior thermal characteristics [J]. Tribology Transactions.1996,39(2):455-461
    12 A. EI-Gamal Hassan. Analysis of the steady state performance of a wedge Shaped hydrodynamic journal bearing [J]. Wear.1995,184:111-117
    13 G. Bhushan, S. S. Rattan, N. P. Mehta. Stability analysis of four-lobe pressure-dam bearings [J]. Tribology Letters.2002,13(1):1-7
    14 N. P. Mehta, S. S. Rattan, G Bhushan. Static and dynamic characteristics of four-lobe pressure-dam bearings [J]. Tribology Letters.2003,15(4):415-420
    15 G. Bhushan, S. S. Rattan, N.P. Mehta. Effect of turbulence on the performance of a four-lobe pressure dam bearing [J]. IE(I)Journal-MC.2007, (87):18-23
    16 GH Jang, JW Yoon. Nonlinear dynamic analysis of a hydrodynamic journal bearing due to the effect of a rotating or stationary herringbone groove [J]. Journal of Tribology.2002,124:297-304
    17 GH Jang, JW Yoon. Stability analysis of a hydrodynamic journal bearing with rotating herringbone grooves [J]. Journal of Tribology.2003,125:291-304
    18 M. Sahu, M. Sarangi, B.C. Majumdar. Thermo-hydrodynamic analysis of herringbone grooved journal bearings [J]. Tribology International.2006,39: 1395-1404
    19 R-H Yen, C-Y Chen. Enhancement of journal bearings characteristics using novel elliptical grooves [J]. Proc. IMechE Part J:J. Engineering Tribology. 2010,224(3):259-269
    20 U. Singh, L. Roy, M. Sahu. Steady-state thermo-hydrodynamic analysis of cylindrical fluid film journal bearing with an axial groove [J]. Tribology International.2008,41:1135-1144
    21 L. Roy, S. K. Laha.Steady state and dynamic characteristics of axial grooved journal bearings [J]. Tribology International.2009,42:754-761
    22 F. Dimofte. Wave journal bearing with compressible lubricant-part Ⅰ:the wave bearing concept and a comparison to the plain circular bearing [J]. STLE Tribology Transactions.1995,38(1):153-160
    23 F. Dimofte. Wave journal bearing with compressible lubricant-part II:a comparison of the wave bearing with a groove Bearing and a lobe bearing [J]. STLE Tribology Transactions.1995,38(2):364-372
    24 N. M. Ene, F. Dimofte, G. Keith Jr Theo. A stability analysis for a hydrodynamic three-wave journal bearing [J]. Tribology International.2008, 41:434-442
    25 Yoshio Kumada, Katsuyuki Hashzume, Yoshitsugu Kimura. Performance of plain bearings with circumferential microgrooves [J]. Japanese Journal of Tribology.1998,43(6):689-698
    26 Kenji Watanabe, Jyunichi Natsume, Katsuyuki Hashizume, et al. Theoretical analysis of bearing performance of microgrooved Bearing [J]. JASE Review. 2000,21(1):29-33
    27 Strzelecki Stanislaw. Maximum oil film pressure and temperature of two-lobe journal bearings with different bush profiles [J]. Lubrication Science.2000, 12(3):253-264
    28杨东哲,王东伟,朱均.上瓦开周向槽椭圆轴承分析计算及优化设计[J].机械科学与技术.1995,(4):64-68
    29彭斌生,朱均.上瓦开周向槽椭圆轴承性能的试验和理论计算研究[J].润滑与密封.1992,4:4-8
    30李小江,朱均.上瓦带档板椭圆轴承性能研究[J].西安交通大学学报.1996,30(7):32-35,42
    31王云飞,常谦.螺旋槽动静压油轴承[J].轴承.1995,2:2-8
    32吴建康,马向能,黄玉盈.不同设计参数下螺旋槽径向液体润滑轴承油膜稳定性的比较计算[J].摩擦学学报.1999,19(1):56-60
    33吴建康,李安峰.双向人字槽液体润滑径向轴承动力性能[J].机械科学与技术.2002,21(2):228-230
    34郭增林,卜炎.一种新型结构的动静压混合径向滑动轴承[J].机械设计.1996,8:11-27
    35范体贵,杨德全.三叶错位轴承流体动力学特性的边界元分析[J].润滑与密封.2006,4:100-102
    36 Lu Changhou, Ai Xing, Li Jianfeng. Analysis and research on spiral oil wedge hydrodynamic bearing for precise machine tool spindles [J]. Int. J. Mach. Tools Manufact.1998,38(4):197-203
    37 Chen Shujiang, Lu Changhou, Li Lei. Fluid flow separation character on novel hybrid journal bearing [J]. Chinese Journal of Mechanical Engineering (English Edition).2006,19(4):540-543
    38 S. Yoshimoto, Y. Anno, M. Tamura, et al. Axial load capacity of water-lubricated hydrostatic conical bearings with spiral grooves (on the case of rigid surface bearings) [J]. Journal of Tribology.1996,118(4):893-899
    39 S. Yoshimoto, T. Kume, T. Shitara. Axial load capacity of water-lubricated hydrostatic conical bearings with spiral grooves for high speed spindles [J]. Tribology International.1998,31(6):331-338
    40 B C Majumdarl, R Pai, D J Hargreaves. Analysis of water-lubricated journal bearings with multiple axial grooves [J]. Proc. IMechE Part J:J. Engineering Tribology.2004,218:135-146
    41 R S Pai, R Pai. Non-linear transient analysis of multiple axial groove water-lubricated journal bearings [J]. Proc. IMechE Part J:J. Engineering Tribology.2008,222:549-557
    42 R S Pai, R Pai. Stability of four-axial and six-axial grooved water-lubricated journal bearings under dynamic load [J]. Proc. IMechE Part J:J. Engineering Tribology.2008,222:683-691
    43 Luis San Andres. Approximate analysis of turbulent hybrid journal bearings. Static and dynamic performance for centered operation [J]. Journal of Tribology. 1990,112:692-698
    44 Luis A. San Andres. Analysis of turbulent hydrostatic bearings with a barotropic cryogenic fluid [J]. Journal of Tribology.1992,114:755-764
    45 Nancy M. Franchek, Dara W. Childs, Luis San Andres. Theoretical and experimental comparisons for rotordynamic coefficients of a high-speed, high-pressure, orifice -compensated hybrid bearing [J]. Journal of Tribology. 1995,117:285-290
    46 M. B. W. Nabhan, G. A. Ibrahim, M. Z. Anbtawi. Analysis of hydrodynamic journal bearings lubricated with a binary water-based lubricant [J]. Wear.1997, 209:13-20
    47 D L Cabrera, N H Woolley, D R Allanson, et al. Film pressure distribution in water-lubricated rubber journal bearings [J]. Proc. IMechE Part J:J. Engineering Tribology.2005,219(2):125-132
    48 Luis San Andres, Dara Childs, Zhou Yang. Turbulent-flow hydrostatic bearings: analysis and experimental results [J]. Int. J. Mech. Sci.1995,37(8):815-829
    49戴攀,张亚宾,徐华.新型高速铣床主轴水润滑动静压轴承结构及性能研究[J].润滑与密封.2009,34(2):11-14,24
    50余江波,王家序,田凡,等.水润滑塑料合金轴承的润滑机理[J].农业机械学报.2007,38(3):160-163
    51王家序,余江波,田凡,等.水润滑塑料合金轴承数值分析的多重网格法[J].润滑与密封.2005,(4):62-64
    52王优强,杨成仁.水润滑橡胶轴承研究进展[J].润滑与密封.2001,(2):65-67
    53王优强,李鸿琦,佟景伟.水润滑陶瓷轴承研究进展[J].润滑与密封.2003,(6):92-94,97
    54刘维超,刘宪伟.杂质颗粒对水润滑滑动轴承承载能力的影响[J].润滑与密封.2009,34(6):62-65
    55张杰,郭宏升,牛奔,等.水润滑高速动静压滑动轴承数值模拟[J].农业机械学报.2008,39(6):159-162
    56郭宏升,张杰,焦让,等.内反馈水润滑高速动静压轴承的应用[J].轴承.2007,(9):11-14
    57张国渊,袁小阳.水润滑动静压轴承三维压力及温度场分布理论研究[J].润滑与密封.2006,(8):4-7
    58张国渊,袁小阳,苗旭升,等.水润滑高速动静压轴承试验研究[J].摩擦学学报.2006,26(3):238-241
    59戴学余.火箭发动机涡轮泵动静压轴承研究[D].西安交通大学硕士学位论文.2004
    60周小林,赵高晖,王国钦,等.水润滑艉轴承负载能力的分析[J].上海理工大学学报.2004,26(4):378-380
    61刘宇,刘正林,吴铸新,等.基于MATLAB的轴向开槽水润滑径向轴承性能分析[J].润滑与密封.2009,34(4):71-73,107
    62周春良,袁士勤,刘顺隆,等.轴向槽船舶艉管轴承内部流场数值仿真[J].润滑与密封.2006,(11):39-43
    63周春良,刘占生,刘顺隆.船舶艉管轴承润滑流场数值分析[J].润滑与密封.2007,32(2):145-149
    64 C L M H Navier. Memoire sur les lois du movement des fluides [J].Mem I'Acad Roy Sci 1'Inst France.1823,6:389-440
    65 S. Goldstein. Modern developments in fluid dynamics volume Ⅱ[M]. Oxford: Clarendon press.1938
    66 T. V. V. L. N. Rao. Theoretical prediction of journal bearing stability characteristics based on the extent of the slip region on the bearing surface [J]. Tribology Transactions.2009,52(6):750-758
    67 T. V. V. L. N. Rao. Analysis of single-grooved slider and journal bearing with partial slip surface [J]. Journal of Tribology.2010,132(1):1-7
    68 G Bayada, M-H Meurisse. Impact of the cavitation model on the theoretical performance of heterogeneous slip/no-slip engineered contacts in hydrodynamic conditions [J]. Proc. Instn Mech. Engrs Part J:J. Engineering Tribology.2009, 223:371-381
    69 W-L Li. On the squeeze flow between two rigid spheres with partially wetted surfaces [J]. Proc. Instn Mech. Engrs Part J:J. Engineering Tribology.2010, 224:195-201
    70 B. O. Jacobson, B J. Hamrock. Non-Newtonian fluid model incorporated into elastohydrodynamic lubrication of rectangular contacts [J]. Journal of Tribology. 1984,106:275-282
    71黄平,雒建斌,温诗铸.粘塑性流体的界面滑移对润滑性能的影响研究[J].力学学报.1999,31(6):745-752
    72 Zhang Yongbin, Wen Shizhu. An analysis of elastohydrodynamic lubrication with limiting shear stress:part Ⅰ-theory and solutions [J]. Tribology Transactions.2002,45(2):135-144
    73葛培琪.流变热弹流润滑的数值分析及油膜厚度测试[D].哈尔滨工业大学博士论文.1997
    74 Hugh Spikes, Steve Granick. Equation for slip of simple liquids at smooth solid surfaces [J]. Langmuir.2003,19(12):5065-5071
    75 Fatu Aurelian, Maspeyrot Patrick, Hajjam Mohamed. Wall slip effects in (elasto) hydrodynamic journal bearings [J]. Tribology International.2011, 44(7-8):868-877
    76马国军.微纳米间隙流动的边界滑移及其流体动力学研究[D].大连理工大学博士学位论文.2007
    77王小静,张国贤,张直明.弹性金属塑料瓦推力轴承的滑移问题研究[J].润滑与密封.1997,(4):19-22
    78袁斌,张国贤,吴白羽,等.EMP径向滑动轴承边界滑移现象研究[J].润滑与密封.2000,(1):29-30
    79 Jin J, Zhang G.X., Wang X.J. Experiment and simulations on lubrication performance of EMP journal bearing [J]. Journal of Shanghai University (English Edition),2004,8(1):85-89
    80 H A Spikes. The half-wetted bearing. Part 2:potential application in low load contacts [J]. Proc. Instn Mech. Engrs Part J:J. Engineering Tribology.2003, 217:15-26
    81 M. Kaneta, H. Nishikawa, K. Kameishi. Observation of wall slip in elastohydrodynamic lubrication [J]. Journal of Tribology.1990,112:447-452
    82 R. F. Salant, A. E. Fortier. Numerical analysis of a slider bearing with a heterogeneous slip/no slip surface [J]. Tribology Transactions.2004, 47:328-334
    83 A. E Fortier, R. F Salant. Numerical analysis of a journal bearing with a heterogeneous slip/no-slip surface [J]. Journal of Tribology.2005,127:820-825
    84 F. Guo, P.L.Wong, Full and partial boundary slippage effect on squeeze film bearings [J]. Tribology International.2010,43:997-1004
    85刘宪伟.面向绿色开采的低黏度介质润滑理论及应用研究[D].中国矿业大学博士学位论文.2008
    86范迅,刘宪伟.惯性和滑移对弹性金属塑料轴承的影响研究[J].中国机械工程.2008,19(22):2722-2724
    87 Ma GuoJun, Wu ChengWei, Zhou Ping. Hydrodynamics of slip wedge and optimization of surface slip property [J]. Science in China Series G:Physics, Mechanics & Astronomy.2007,50(3):321-330
    88 M Sun, C Ebner. Molecular dynamics study of flow at a fluid-wall interface [J]. Physical Review Letters.1992,69(24):3491-3494
    89 P. Joseph, P. Tabeling. Direct measurement of the apparent slip length [J]. Physical Review E.2005,71(3):035303/1-035303/4
    90 J. H. Choo, R. P. Glovnea, A. K. Forrest, et al. A low friction bearing based on liquid slip at the wall [J]. Journal of Tribology.2007,129:611-620
    91 Vincent S. J. Craig, Chiara Neto, David R. M. Williams. Shear-dependent boundary slip in an aqueous Newtonian liquid [J]. Physical Review Letters. 2001,87(5):054504/1-054504/4
    92 Binyang Du, Ilchat Goubaidoulline, Diethelm Johannsmann. Effects of laterally heterogeneous slip on the resonance properties of quartz crystals immersed in liquids [J]. Langmuir.2004,20:10617-10624
    93 Jonathan S. Ellis, Gordon L. Hayward. Interfacial slip on a transverse-shear mode acoustic wave device [J]. Journal of Applied Physics.2003, 94(12):7856-7867
    94 Jae-Hie J. Cho, Bruce M. Law, Francois Rieutord. Dipole-dependent slip of Newtonian liquids at smooth solid hydrophobic surfaces [J]. Physical Review Letters.2004,92(16):166102/1-166102/4
    95 R. Pit, H. Hervet, L. Leger. Direct evidence of slip in hexadecane:solid interfaces [J]. Phys. Rev. Lett.2000,85:980-983
    96 Elmar Bonaccurso, Michael Kappl, Hans-Jurgen Butt. Hydrodynamic force measurements:boundary slip of water on hydrophilic surfaces and electrokinetic effects [J]. Physical Review Letters.2002,88(7): 076103/1-076103/4
    97 Elmar Bonaccurso, Hans-Jurgen Butt, Vincent S. J. Craig. Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting System [J]. Physical Review Letters.2003,90(14):144501/1-144501/4
    98 Yingxi Zhu, Steve Granick. Rate-dependent slip of Newtonian liquid at smooth surfaces [J]. Physical Review Letters.2001,87(9):096105/1-096105/4
    99 Yingxi Zhu, Steve Granick. Limits of the hydrodynamic no-Slip boundary condition [J]. Physical Review Letters,2002,88(10):106102/1-106102/4.
    100 Yingxi Zhu, Steve Granick. No-slip boundary condition switches to partial slip when fluid contains surfactant [J]. Langmuir.2002,18(26):10058-10063
    101 By Keizo Watanabe, Yanuar, Hiroshi Udagawa. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall [J]. J. Fluid Mech. 1999,381:225-238
    102 D. F Hays, J. B. Feiten. Cavitation between moving parallel plates/cavitation in real liquids [J]. Elsevier Publ. Co.1964:122-127
    103 A. Sommerfeld. Zur hydrodynamische theorie derschmiermittelreibung [J]. Zeit Math. Phys.1904,50:97-155
    104 D. Vijayaraghavan. New concepts in numerical prediction of cavitation in bearings [D]. The University of Toledo, Ph.D thesis.1989
    105 L. K. R. Gumbel. Verleich der ergebrusse der rectinerischen behandling des lagerschmierangsproblem mir neueren veisuchsergebrussen [J]. Monatsbl. Berliner Bez. Ver. Dtsch. Ing.1921,9:125-128
    106 H. W. Swift. The stability of lubricating films in journal bearings [J]. Journal of Institution of Civil Engineers.1931,233:267-288
    107 W. Stieber. Das schwimmlager hydrodynamische theorie des gleitlagers [M]. Berlin:Ver Dtsch. Ing.1933
    108张直明等.滑动轴承的流体动力润滑理论[M].高等教育出版社.1986
    109 B. Jakobsson, L.Floberg. Finite journal bearing, considering vaporization. Chalmers Tekniska Hogskolas-Handlingar [J].1957,190:1-116
    110 K. O. Olsson. Cavitation in dynamically loaded bearing [J]. Chalmers University Technology -Transactions.1965,308:60
    111 L. Floberg. Boundary conditions of cavitation regions in journal bearings [J]. American Society of Lubrication Engineers-Transactions.1961,4(2):282-286
    112 H. G. Elrod, M. L. Adams. A computer program for cavitation and starvation problems [J]. Leeds-lyon conference on cavitation, Leeds univ. England. 1974:37-42
    113 H. G. Elrod. A Cavitation algorithm [J]. Journal of Lubrication Technology. 1981,103:350-354
    114 D. E. Brewe. Theoretical modeling of the vapor cavitation in dynamically loaded journal bearings [J]. Journal of Tribology.1986,108(4):628-637
    115 A. Kumar, J. F. Booker. A finite element cavitation algorithm [J]. Journal of Tribology.1991,113(2):276-284
    116 D. Vijayaraghavan, Jr T.G. Keith. Development and evaluation of a cavitation algorithm [J]. Tribology Transaction.1989,32(2):225-233
    117 D. Vijayaraghavan, Jr T.G. Keith. Grid transformation and adaptation techniques applied in the analysis of cavitated journal bearings [J]. Journal of Tribology.1990,112:52-59
    118 D.Vijayaraghavan, Jr T.G. Keith. Analysis of a finite grooved misaligned journal bearing considering cavitation and starvation effects [J]. Journal of Tribology.1990,112(1):60-67
    119张朝.高速重载径向滑动轴承的热弹流润滑TEHD研究和粗糙度与非牛顿 流变学对动载滑动轴承影响的研究[D].上海大学.1997
    120苏荭,王小静,张直明.动载工况下滑动轴承油膜边界历史迁移问题[J].机械工程学报.2006,42(4):8-12
    121苏荭,王小静,张直明.滑动轴承两种油膜边界条件的比较[J].润滑与密封.2002,(5):2-4
    122李强,郑水英,刘淑莲.计入JFO边界条件的滑动轴承性能分析[J].机械强度.2010,32(2):270-274
    123崔升,邱鹏庆,张文.两种滑动轴承油膜压力计算方法的比较[J].应用力学学报.1999,16(4):119-123
    124 Wu Jiankang, Li Anfeng, T. S. Lee, et al. operator-splitting method for the analysis of cavitation in liquid-lubricated herringbone grooved journal bearings [J]. Int. J. Numer. Meth. Fluids.2004,44:765-775
    125韩清刚.螺旋槽微极性液体润滑径向轴承动力特性与稳定性分析[D].华中科技大学硕士学位论文.2004
    126 Shiuh-Hwa Shyu, Yeau-Ren Jeng, Fuli Li. A Legendre collocation method for thermohydrodynamic journal-bearing problems with Elrod's cavitation algorithm [J]. Tribology International.2008,41:493-501
    127 Fredrik Sahlin, Andreas Almqvist, Roland Larsson, et al. A cavitation algorithm for arbitrary lubricant compressibility [J]. Tribology International.2007, 40:1294-1300
    128 Yu Qiulin, Keith G. Prediction of cavitation in journal bearing using a boundary element method [J]. Journal of Tribology.1995,117:411-421
    129 K Hatakenaka, M Tanaka. Thermohydrodynamic performance of journal bearings with partial reverse flow and finger-type cavitation [J]. Proc Instn Mech Engrs, Part J:J Engineering Tribology.2002,216:315-325
    130 Rachid Oujja. A new method for cavitations approximation in some general lubrication devices [J]. Applied mathematics and computation.2006, 181:1645-1656
    131 G. H. Jang, D.I. Chang. Analysis of a hydrodynamic herringbone grooved journal bearing considering cavitation [J]. Journal of Tribology.2000,122(1): 103-109
    132 J T Sawicki, TVVLN Rao. Stability characteristics of herringbone grooved journal bearings incorporating cavitation effects [J]. Journal of Tribology.2004, 126:281-287
    133 Tomoko Hirayama, Takeo Sakurai, Hiroshi Yabe. Analysis of dynamic characteristics of spiral-grooved journal bearing with considering cavitation occurrence [J]. JSME International Journal.2005,48(2):261-268
    134 Tomoko Hirayama, Takeo Sakurai, Hiroshi Yabe. A theoretical analysis considering cavitation occurrence in oil lubricated spiral-grooved journal bearing with experimental verification [J]. Journal of Tribology.2004, 126(3):490-498
    135 Xiao-Li Wang, Ke-Qin Zhu. Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects [J]. Tribology International.2006,39:227-237
    136 Xiao-Li Wang, Jun-Yan Zhang, Hui Dong. Analysis of bearing lubrication under dynamic loading considering micropolar and cavitating effects [J]. Tribology International.2011,44:1071-075
    137黄平.摩擦学教程[M].北京:高等教育出版社.2008
    138王笃才,陈兆雄,诸文俊.活塞环组中润滑油膜边界条件的研究[J].上海机械学院学报.1986,8(1):45-56
    139张青雷,卢修连,朱均.边界条件对滑动轴承性能的影响[J].润滑与密封.2005,5:12-13,16
    140 F. P. Grando, M. Priest, A. T. Prata. A two-phase flow approach to cavitation modelling in journal bearings [J]. Tribology Letters.2006,21(3):233-244
    141 J. A. Cole, C. J. Huges. Visual study of film extent in dynamically loaded complete journal bearings [C]. IME Conference on Lubrication and Wear.1957
    142 J. D. Knight, P. Ghadimi. Analysis and observation of cavities in a journal bearing considering flow continuity [J]. Tribology Transactions.2001,44(1): 88-96
    143 D. F. Hays, J. B. Feiten. Cavitation between moving parallel plates [J]. In Proceedings of the Symposium on Cavitation in real liquids.1962:122-138
    144 P. M. Makenham. Investigation of cavitation in a reversed parallel stepped slider bearing [D]. University of Leeds, Master of Science Project (Tribology). 1968
    145 D. Dowson, C. M. Taylor. Cavitation in bearings [J]. Annu. Rev. Fluid Mech. 1979,11:35-66
    146 D. Dowson, C. M. Taylor. Fundamental aspects of cavitation in bearings. In Cavitation and related phenomena in lubrication [J]. Proceedings of the 1st Leeds-Lyon Symposium on Tribology, University of Leeds, Leeds, UK. 1974:15-25
    147 I. Etsion, L. P. Ludwig. Observation of pressure variation in the cavitation region of submerged journal bearings [J]. J. Lubric. Technol.1982, 104(2):157-163
    148 M. J Braun, R. C.Hendricks. An experimental investigation of the vaporous/gaseous cavity characteristics of an eccentric journal bearing [J]. ASLE Trans.1984,27(1):1-14
    149 M. J Braun, W M.Hannon. Cavitation formation and modelling for fluid film bearings:a review [J]. Proc. IMechE Part J:J. Engineering Tribology.2010, 224:839-863
    150 M. Groper, I. Etsion. The effect of shear flow and dissolved gas diffusion on the cavitation in a submerged journal bearing [J]. Journal of Tribology.2001,123: 494-500
    151 M. Groper, I. Etsion. Reverse flow as a possible mechanism for cavitation pressure build-up in a submerged journal bearing [J]. Journal of Tribology.2002, 124:320-326
    152 H. Heshmat. The mechanism of cavitation in hydrodynamic lubrication [J]. Tribology Transactions.1991,34:177-186
    153 H. Heshmat. Experimental studies in cavitation, in:current research in cavitation fluid films [M]. STLE Special Publications, SP 28.1988:4-8
    154刘枫.动载滑动轴承油膜分布机理研究[D].上海大学硕士学位论文.2004
    155孟凯.恒运动循环挤压油膜实验研究及计算机仿真[D].上海大学硕士学位论文.2005
    156房超峰.动载滑动轴承瞬态全油膜迁移的研究[D].上海大学硕士学位论文.2007
    157陈淑江.螺旋油楔滑动轴承润滑机理的理论与实验研究[D].山东大学博 士学位论文.2007
    158杨莹.螺旋油楔滑动轴承空穴特性的理论与实验研究[DJ.山东大学博士学位学位论文.2010
    159裘祖干,张长松.动载径向粗糙轴承分析[J].内燃机学报.1993,11(2):159-164
    160王晓力,温诗铸,桂长林.计入表面粗糙度效应的动载轴承的润滑分析.机械工程学报.2000,36(1):27-31
    161王震华,孙军,桂长林,等.计入润滑油粘压效应和表面形貌的倾斜轴颈轴承润滑分析[J].轴承.2006,(12):4-7,29
    162孙军,邓玫,桂长林,等.热效应对粗糙表面倾斜轴颈轴承润滑性能的影响[J].轴承.2008,(3):13-17
    163 N Patir, H S Cheng. Application of average flow model to lubrication between rough sliding surfaces [J]. ASME Journal of lubrication technology.1972, 4:117-123
    164 S. K. Guha. Analysis of steady-state characteristics of misaligned hydrodynamic journal bearings with isotropic roughness effect [J]. Tribology International.2000,33:1-12
    165 T. Nagaraju, Satish C. Sharma, S.C. Jain. Influence of surface roughness effects on the performance of nonrecessed hybrid journal bearings [J]. Tribology International.2002,35:467-487
    166 T. Nagaraju, Satish C. Sharma, S.C. Jain. Study of orifice compensated hole-entry hybrid journal bearing considering surface roughness and flexibility effects [J]. Tribology International.2006,39:715-725
    167 J. Sharana Basavaraja, Sathish Sharma, Sathish Jain. A study of misaligned roughened two-lobe hole-entry hybrid journal bearing [J]. Industrial Lubrication and Tribology.2009,61(4):220-227
    168 L. Roy. Thermo-hydrodynamic performance of grooved oil journal bearing [J]. Tribology International.2009,42:1187-1198
    169 S. C. Sharma, Vijay Kumar, S. C. Jain, et al. Thermohydrostatic analysis of slot-entry hybrid journal bearing [J]. Tribology International.2002,35:561-577
    170 S. C. Sharma, Vijay Kumar, S. C. Jain, et al. Study of hole-entry hybrid journal bearing system considering combined influence of thermal and elastic effects [J]. Tribology International.2003,36:903-920
    171王晓力,温诗铸,桂长林.动载轴承的非稳态热流体动力润滑分析[J].清华大学学报(自然科学版).1999,39(8):30-33
    172富彦丽,朱均.动静力混合润滑轴承三维温度场的研究[J].润滑与密封.2006,(2):115-117
    173 S. C. Sharma, S. C. Jain, P. L. Sah. Effect of non-newtonian behaviour of lubricant and bearing flexibility on the performance of slot-entry journal bearing [J]. Tribology International.2000,33:507-517
    174 S. C. Sharma, S. C. Jain, R. Sinhasan, et al. Static and dynamic performance characteristics of orifice compensated hydrostatic flexible journal bearings with non-Newtonian lubricants [J]. Tribology Transactions.2001,44(2):242-248
    175 H. C. Garg, Vijay Kumar, H. B. Sharda. Thermohydrostatic analysis of capillary compensated symmetric hole-entry hybrid journal bearing operating with non-Newtonian lubricant [J]. Industrial Lubrication and Tribology.2009, 61(1):11-21
    176 R. K. Duvedi, H. C. Garg, V. K. Jadon. Analysis of hybrid journal bearing for non-Newtonian lubricants [J]. Lubrication Science.2006,18:187-207
    177 Yang Peiran, Wen shizhu. A generalized Reynolds equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication [J]. Journal of Tribology.1990, 112(10):631-636
    178富彦丽,杨沛然,朱均.径向轴承非Newton流体润滑的研究方法及其数值仿真[J].系统仿真学报.2003,(6):47-53
    179 Chao Zhang, H.S.Cheng. Transient non-newtonian thermohydrodynamic mixed lubrication of dynamically loaded journal bearing [J]. Journal of Tribology. 2000,122(1):156-161
    180孙军,桂长林,李志远.轴变形产生的轴颈倾斜对滑动轴承润滑影响的试验研究[J].机械工程学报.2006,42(7):159-163
    181 Sun Jun, Gui Changlin. Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation [J]. Tribology International.2004,37:841-848
    182贾小俊,范世东.考虑轴颈倾斜的径向滑动轴承动态特性研究[J].船海工程.2008,37(5):54-57
    183陈宁,龚烈航,濮一波,等.基于三维间隙函数的滑动轴承油膜润滑的数值分析[J].润滑与密封.2006,(1):88-90
    184 P. Arumugam, S. Swarnamani, B. S. Prabhu. Effects of journal misalignment on the performance characteristics of three-lobe bearings [J]. Wear.1997, 206:122-129
    185 Omidreza Ebrat, Zissimos P. Mourelatos, Nickolas Vlahopoulos, et al. Calculation of journal bearing dynamic characteristics including journal misalignment and bearing structural deformation [J]. Tribology Transactions. 2004,47:94-102
    186 J. Bouyer, M. Fillon. An experimental analysis of misalignment effects on hydrodynamic plain journal bearing performances [J]. Journal of Tribology. 2002,124(2):313-319
    187孟凡明,岑少起,郭红.惯性项对动静压浮环轴承推力部分静特性的影响[J].郑州工业大学学报.2000,21(2):100-101
    188 C. Nataraj, Hashem Ashrafiuon, Nagaraj K Arakere. Effect of fluid inertia on journal bearing parameters [J]. STLE Tribology Transactions.1994,37(4): 784-792
    189 S. K. Kakoty, B. C. Majumdar. Effect of fluid inertia on stability of flexibly supported oil journal bearings:linear perturbation analysis [J]. Tribology International.1999,32:217-228
    190 S A Gandjalikhan Nassab. Inertia effect on the thermohydrodynamic characteristics of journal bearings [J]. Proc. IMechE Part J:J. Engineering Tribology.2005,219:459-467
    191 J. M Redecliffe, J. H.Vohr. Hydrostatic bearings for cryogenic rocket engine turbopumps [J]. ASME Journal of lubrication technology.1969,7:557-575
    192 H. G. Elrod Jr., C. W. Ng. A theory for turbulent fluid films and its application to bearings [J]. ASME Journal of Lubrication Technology.1967,89(3):346-362
    193 H Yoshikawa, T Ota, K Higashino. Numerical analysis of steady characteristics of hydrostatic journal bearing [J]. Proceedings of the third JSM E-KSME fluids engineering conference.1994:283-287
    194 H Yoshikawa, T Ota, K Higashino. Numerical analysis on dynamic characteristics of cryogenic hydrostatic journal bearing [J]. Journal of Tribology. 1999,121:879-885
    195 Satish B. Shenoy, R. Pai. Theoretical investigations on the performance of an externally adjustable fluid-film bearing including misalignment and turbulence effects [J]. Tribology International.2009,42:1088-1100
    196 L. S. Andres. Turbulent hybrid bearings with fluid inertia effects [J]. ASME Journal of Lubrication Technology.1990,112:699-707

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700