用户名: 密码: 验证码:
支持RFID实时监控的可重构制造执行系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济全球化进程的全面推进,以机械化和自动化为特征,以规模经济为战略的传统制造企业正逐步转型为以信息技术和先进制造技术为依托,能快速响应市场波动和技术创新的现代制造企业。制造执行系统(MES)是连接制造企业上层管理和底层生产的“信息枢纽”,必须具备强大的实时监控能力,快速响应各类“意料中”的生产状态和生产异常;必须具备强大的快速重构能力,快速响应各类“意料外”的系统业务逻辑需求变化。因此,本文深入分析MES重构需求和监控需求,提出以模块粒度维和信息粒度维为主线的可重构制造执行系统体系结构(Reconfigurable Manufacturing Execution System Architecture,RMESA),系统研究了MES实现快速重构和实时监控的理论和方法。
     模块粒度维的核心是跨粒度模块体系结构,将MES解构为代表数据的实体模块、代表业务逻辑的服务模块、代表人员参与的人机交互模块、代表流程逻辑的业务流程模块、代表功能划分的领域模块、以及代表外部系统通讯通道的接口模块,通过规范各类模块的组织、耦合与设计模式,通过使用元语言以及代码生成、代码复用、代码模板等方法,通过持续提炼模块通用元素,通过使用重构需求分解方法,提升MES构建与重构的效率和质量,减少其工作量和复杂度。
     信息粒度维的核心是基于复杂事件处理(CEP)和模型驱动诊断(MBD)的事件处理框架,近年来由于RFID技术趋于成熟并在实时监控领域表现出极大潜力,因此本文专注于研究基于RFID技术及其事件处理的生产实时监控。事件处理框架按信息聚合量(粒度)从小到大定义4类事件:原始事件、简单事件、复杂事件和状态事件,基于ALE的简单事件处理模块将设备产生的RFID标签读取事件转化为代表对象时空状态的简单事件,基于CEP的复杂事件处理模块将简单事件转化为代表逻辑现象的复杂事件,基于MBD的系统状态诊断模块则综合系统组件模型、组件逻辑约束、复杂事件、简单事件等条件,实时推理系统组件状态,产生代表生产异常或关键状态的状态事件。同时,为了优化系统状态诊断模块,提出基于树分解的改进投射质蕴含项产生算法,极大提升了系统状态逻辑模型的知识编译性能。
     RMESA及其RMES原型系统已应用于多个实例,仍持续研发并产业化中。
With the trend of economic globalization, traditional manufacturers characterizedby mechanization, automation and economies of scale are transformed into modernmanufacturers characterized by information technology, advanced manufacturing andadaptability to changes. To bridge the critical information gap between EnterpriseResource Planning (ERP) systems and device control systems, a ManufacturingExecution System (MES) requires the capability of real-time monitoring to response tothe “expected” production situations and exceptions, as well as requires the capability ofquickly reconfiguring to response to the “unexpected” requirement change of businesslogic. Therefore, a Reconfigurable Manufacturing Execution System Architecture(RMESA), composed of the dimension of module granularity and the dimension ofinformation granularity, is proposed to meet the reconfiguration requirement and themonitoring requirement of MESs.
     In the dimension of module granularity, a cross-grained module framework isproposed to build and reconfigure MES with higher efficiency, higher quality and lowercomplexity. Accordingly, a MES can be composed of six types of module: entitymodules that abstract data, service modules that abstract business logic, human-machineinteraction modules that abstract the participation of humans, business process modulesthat abstract process logic, domain modules that abstract functional organization andinterface modules that abstract communication with external systems. In addition, theorganization, the coupling and the design patterns of these modules are normalized;meta-language technology such as code generating, code reusing and code templatingare deployed; common module elements are being collected; and a reconfigurationrequirement analyzing method is also proposed.
     In the dimension of information granularity, an event processing framework, whichis based on complex event processing (CEP) technology and model-based diagnosis(MBD) technology is proposed to support RFID-based real-time monitoring.Accordingly, there are four types of event defined: tag-read event, simple event,complex event and state event, from the minimal granularity to the maximal granularity.The simple event processing module, based on the Application Level Events (ALE) standard, is designed to transform machine-generating tag-read events into simpleevents that represent the temporal and spatial status of objects. The complex eventprocessing module, based on the CEP technology, is designed to transform simpleevents into complex events that represent meaningful occurrences. The system statediagnosis module, based on the MBD technology, is designed to reason aboutcomponent states in real time by considering the component model, the internel logicalconstraints, complex events and simple events. State events that represent productionexceptions or important situation are finally generated. As well, a tree-decompositionbased, projected prime implicate generation algorithm is proposed to greatly improvethe reasoning performance by speeding up the knowledge compilation on thecomponent state logical model.
     RMESA and the implemented system RMES have been applied successfully tosome cases. They are being researched, developed and industrialized.
引文
[1] Herrin G E. Next generation manufacturing project [M]. Modern Machine Shop. GardnerPublications, Inc.1997.
    [2] Koren Y, Heisel U, Jovane F, et al. Reconfigurable Manufacturing Systems [J]. Annals of theCIRP,1999,48(2):527-540.
    [3] Mehrabi M G, Ulsoy A G, Koren Y. Reconfigurable manufacturing systems: Key to futuremanufacturing [J]. Journal of Intelligent Manufacturing,2000,11(4):403-419.
    [4] Brehmer N, Chengen W. Reconfigurable manufacturing systems and environmentconsciousness [M]. Proceedings of the1st International Symposium on EnvironmentallyConscious Design and Inverse Manufacturing (EcoDesign '99). Tokyo, Japan.1999:463-468.
    [5] Mehrabi M G, Ulsoy A G, Koren Y, et al. Trends and perspectives in flexible andreconfigurable manufacturing systems [J]. Journal of Intelligent Manufacturing,2002,13(2):135-146.
    [6] Eimaraghy H A. Flexible and reconfigurable manufacturing systems paradigms [J].International Journal of Flexible Manufacturing Systems,2005,17(4):261-276.
    [7] Isa. ANSI/ISA-95.00.01-2000, enterprise control system integration, Part1: models andterminology [M]. ISA.2000.
    [8] Wu N C, Nystrom M A, Lin T R, et al. Challenges to global RFID adoption [J]. Technovation,2006,26(12):1317-1323.
    [9] Zhou W. RFID and item-level information visibility [J]. European Journal of OperationalResearch,2009,198(1):252-258.
    [10] Gunther O, Kletti W, Kubach U. RFID in manufacturing [M]. Springer,2008.
    [11] Mesa. MESA white paper#06: MES explained: A high level vision [M].1997.
    [12] Mcclellan M. Applying manufacturing execution systems [M]. CRC,1997.
    [13] Mcclellan M. Introduction to manufacturing execution systems [M]. Proceedings of the2001MES Conference&Exposition. Baltimore, MD, USA.2001:12-14.
    [14] Mesa. MESA model&strategic initiatives [M].2008.
    [15] Mesa. MESA white paper#02: MES functionalities and MRP to MES data flow possibilities
    [M].1997.
    [16] Mesa. MESA white paper#08: MESA's next generation collaborative MES model [M].2004.
    [17] Isa. ANSI/ISA-95.00.02-2001, enterprise control system integration, Part2: object modelattributes [M]. ISA.2001.
    [18] Isa. ANSI/ISA-95.00.03-2005, enterprise control system integration, Part3: activity modelsof manufacturing operations management [M]. ISA.2005.
    [19] Isa. ANSI/ISA-95.00.04-2007, enterprise control system integration, Part4: object modelsand attributes for manufacturing operations management [M]. ISA.2007.
    [20] Isa. ANSI/ISA-95.00.05-2007, enterprise control system integration, Part5: business tomanufacturing transactions [M]. ISA.2007.
    [21] Gilman C, Aparicio M, Barry J, et al. Integration of design and manufacturing in a virtualenterprise using enterprise rules, intelligent agents, STEP and workflow, architectures,networks, and intelligent systems for manufacturing integration [J]. Pittsburgh, Pennsylvania(15-16October1997), Bellingham, WA: SPIE–The International Society for OpticalEngineering,1997,161-171.
    [22] Parunak H. What can agents do in industry, and why? An overview of industrially-orientedR&D at CEC [J]. Lecture Notes in Computer Science,1998,1435(1):
    [23] Shen W, Norrie D. Agent-based systems for intelligent manufacturing: a state-of-the-artsurvey [J]. Knowl Inf Syst,1999,1(2):129-156.
    [24] Wada H, Okada S. An autonomous agent approach for manufacturing execution controlsystems [J]. Integrated Computer-Aided Engineering,2002,9(3):251-262.
    [25] Diep D, Massotte P, Meimouni A, et al. A distributed manufacturing execution systemimplemented with agents: the PABADIS model [M]. Proceedings of the1st IEEEInternational Conference on Industrial Informatics (INDIN2003). Banff, Alberta, Canada.2003:301-306.
    [26] Zhu W, Rong G. Multi-agent based technology for adaptive data integration of processoriented manufacturing execution systems [M]. Proceedings of the5th World Congress onIntelligent Control and Automation (WCICA2004). Hangzhou, China; IEEE.2004:3129-3133.
    [27]杨浩,朱剑英.基于多Agent的分布式制造执行系统的建模[J].中国机械工程,2004,15(11):973.
    [28] Van Brussel H, Wyns J, Valckenaers P, et al. Reference architecture for holonicmanufacturing systems: PROSA [J]. Computers in Industry,1998,37(3):255-274.
    [29] Valckenaers P, Van Brussel H. Holonic manufacturing execution systems [J]. CIRP Annals-Manufacturing Technology,2005,54(1):427-432.
    [30] Cheng F-T, Wu S-L, Chang C-F. Systematic approach for developing holonic manufacturingexecution systems [M]. Proceedings of the27th Annual Conference of the IEEE IndustrialElectronics (IECON2001). Denver, CO, USA; IEEE.2001:261-266.
    [31] Cheng F-T, Chang C-F, Wu S-L. Development of holonic manufacturing execution systems[J]. Journal of Intelligent Manufacturing,2004,15(2):253-267.
    [32] Brennan R W, Fletcher M, Norrie D H. A Holonic approach to reconfiguring real-timedistributed control systems [M]. Multi-Agent Systems and Applications II.2002:323-335.
    [33] Gaxiola L, De Ramirez M J, Jimenez G, et al. Proposal of holonic manufacturing executionsystems based on web service technologies for mexican SMEs [M]. Holonic and Multi-AgentSystems for Manufacturing. Springer.2003:156-166.
    [34] Simao J M, Stadzisz P C, Morel G. Manufacturing execution systems for customizedproduction [J]. Journal of Materials Processing Technology,2006,179(1-3):268-275.
    [35] Langer G, Alting L. Trends and perspectives-An architecture for agile shop floor controlsystems [J]. Journal of Manufacturing Systems,2000,19(4):267-281.
    [36] Tharumarajah A. Application of holonic part-oriented control architecture to a machining line[J]. Integrated Computer-Aided Engineering,2002,9(3):219-233.
    [37]赵普,郑力,刘大成, et al.基于代理的合弄控制系统的设计与开发[J].制造技术与机床,2006,2:54-57.
    [38] Cheng F T, Yang H C, Kuo T L, et al. Modeling and analysis of equipment managers inManufacturing Execution Systems for semiconductor packaging [J]. Ieee Transactions onSystems Man and Cybernetics Part B-Cybernetics,2000,30(5):772-782.
    [39] Lin C, Jeng L, Lin Y, et al. Management and control of information flow in CIM systemsusing UML and Petri nets [J]. International Journal of Computer Integrated Manufacturing,2005,18(2):107-121.
    [40] Lin C, Jeng M. An expanded SEMATECH CIM framework for heterogeneous applicationsintegration [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A,2006,36(1):76-90.
    [41] Barry J, Aparicio M, Durniak T, et al. NIIIP-SMART: an investigation of distributed objectapproaches tosupport MES development and deployment in a virtual enterprise [M].Proceedings of the2nd International Workshop on Enterprise Distributed Object Computing(EDOC '98). La Jolla, CA, USA1998:366-377.
    [42] Hori M, Kawamura T, Okano A. OpenMES: scalable manufacturing execution frameworkbased ondistributed object computing [M]. Proceedings of the1999IEEE InternationalConference on Systems, Man, and Cybernetics (SMC1999). Tokyo, Japan.1999:398-403.
    [43] Cheng F-T, Shen E, Deng J-Y, et al. Development of a distributed object-oriented systemframework for the computer-integrated Manufacturing Execution System [M]. Proceedingsof the1998IEEE International Conference on Robotics and Automation (ICRA1998).Leuven, Belgium; IEEE.1998:2116-2121.
    [44] Cheng F-T, Shen E, Deng J-Y, et al. Development of a system framework for thecomputer-integrated manufacturing execution system: A distributed object-oriented approach[J]. International Journal of Computer Integrated Manufacturing,1999,12(5):384-402.
    [45]曹江辉,王宁生,解放, et al.基于CORBA的制造执行系统的实现[J].南京航空航天大学学报,2002,34(4):336.
    [46] Füricht R, Pr hofer H, Hofinger T, et al. A component-based application framework formanufacturing execution systems in C#and. NET [M]. Proceedings of the40th InternationalConference on Tools Pacific: Objects for internet, mobile and embedded applications (CRPIT'02). Sydney, Australia Australian Computer Society, Inc.2002:169-178.
    [47] Jimenez G, Molina A, Canche L. Manufacturing execution systems interoperability and webservices technologies [M]. Proceedings of the2005ASME Computers and Information inEngineering Division (CED2005). Orlando, FL, USA; ASME.2005:191-197.
    [48] Niazi H K, Sun H, Gong L, et al. Manufacturing Execution Systems and web basedmanufacturing [J]. WSEAS Transactions on Information Science and Applications,2006,3(6):1086-1091.
    [49]付莉.机械零件企业的可重构制造执行系统研究与应用[D];浙江大学,2003.
    [50]柴天佑,郑秉霖,胡毅, et al.制造执行系统的研究现状和发展趋势[J].控制工程,2005,12(6):505-510.
    [51]李波,李辉,陈鹰.可重构制造执行系统的研究[J].机械工程与技术,2006,25(6):157-161.
    [52]喻道远,彭宁,黄刚.可重构MES体系结构研究[J].现代制造工程,2007,4.
    [53]苑明海,李东波,韦韫.基于Agent的可重构装配线制造执行系统[J].计算机工程,2008,34(6).
    [54]周华,刘民,吴澄.基于代理的可重构制造执行系统研究[J].计算机集成制造系统,2005,11(6):776-780.
    [55]朱建江,戴勇,王宁生.基于Holon的可重构MES的研究[J].中国机械工程,2002,13(8).
    [56]蔡宗琰,常志庆,王宁生, et al.基于构件的可重构制造执行系统研究[J].计算机应用研究,2004,21(12)
    [57]李朝辉,范瑜,陈如亮.构件化可重构制造执行系统研究与实现[J].计算机工程,2006,32(11):111-113.
    [58]张士杰,王成恩,张福顺, et al.基于组件的可重构制造执行系统[J].计算机集成制造系统,2004,10(4):422-427.
    [59]朱传军,饶运清,张超勇, et al.基于CORBA的可重构制造执行系统研究[J].中国机械工程,2004,15(23):2097-2101.
    [60]何博侠,张志胜,戴敏, et al.基于J2EE的制造执行系统的可重构性研究[J].中国制造业信息化,2005,34(10).
    [61]王磊,乔爱民.制造执行系统的可重构模型及其J2EE实现[J].工业控制计算机,2007,20(6).
    [62]邹顺享,饶运清.基于Web的可重构制造执行系统研究[J].计算机应用研究,2006,23(8).
    [63]李亚白,蔡宗琰,郝文育, et al.面向服务的可重构制造执行系统研究与实现[J].机械科学与技术,2005,24(11).
    [64]王琦峰,刘飞,黄海龙.面向服务的离散车间可重构制造执行系统研究[J].计算机集成制造系统,2008,14(4):737-743.
    [65]殷勤,高茂庭. XML在可重构制造执行系统组件管理中的应用[J].微计算机信息,2006,22(25).
    [66] Yang H, Cheng F, Huang D. Development of a generic equipment manager forsemiconductor manufacturing [M]. Proceedings of the7th IEEE International Conference onEmerging Technologies and Factory Automation (ETFA '99). Barcelona; Spain; IEEE.1999:727-732.
    [67] Anon. Seamless integration between manufacturing execution system and SAP system [J].Paper Asia,2003,19(1):31-33.
    [68] Choi B K, Kim B H. MES (manufacturing execution system) architecture for FMScompatible to ERP (enterprise planning system)[J]. International Journal of ComputerIntegrated Manufacturing,2002,15(3):274-284.
    [69] Best B K. Manufacturing execution system (MES) operating system migration to integrateleading-edge methodologies and leverage emerging technologies [M]. Proceedings of the2002IEEE International Symposium on Semiconductor Manufacturing Conference (ISSM2002). Boston, MA, USA; IEEE.2002:159-164.
    [70] White K P, Jr., Mastrangelo C, Anastasio F, et al. Reengineering the operator interface for asemiconductor manufacturing execution system [M]. Proceedings of the2000IEEEInternational Conference on Systems, Man and Cybernetics (SMC2000). Nashville, TN,USA; IEEE.2000:1799-1804.
    [71] Chung S-L, Jeng M. Manufacturing Execution System (MES) for semiconductormanufacturing [M]. Proceedings of the2002IEEE International Conference on Systems,Man and Cybernetics (SMC2002). Yasmine Hammamet, Tunisia; IEEE.2002:7-11.
    [72] Gonia M. Using manufacturing execution systems (MES) to track complex manufacturingprocesses [M]. Proceedings of the2004IEEE/CPMT International ElectronicsManufacturing Technology Symposium (IEMT2004). San Jose, CA, USA; IEEE.2004:171-173.
    [73] Hwang Y-D. The practices of integrating manufacturing execution system and six sigmamethodology [J]. International Journal of Advanced Manufacturing Technology,2006,30(7-8):761-768.
    [74] Huang C-Y. Distributed manufacturing execution systems: A workflow perspective [J].Journal of Intelligent Manufacturing,2002,13(6):485-497.
    [75] Zhou B-H, Wang S-J, Xi L-F. Data model design for manufacturing execution system [J].Journal of Manufacturing Technology Management,2005,16(8):909-935.
    [76]夏敬华,陆宝春,张世琪.批流程制造执行系统及其过程建模研究[J].计算机集成制造系统,1999,5(6):26-29.
    [77]肖建.语义流程模型驱动的企业信息系统开发方法研究[D].北京;清华大学,2009.
    [78] Chen K-Y, Wu T-C. Data warehouse design for manufacturing execution systems [M].Proceedings of the2005IEEE International Conference on Mechatronics (ICM '05). Taipei,Taiwan; IEEE.2005:751-756.
    [79] Qiu R. A data fusion framework for an integrated plant-wide information system [M].Proceedings of the5th International Conference on Information Fusion (ISIF2002). Wuhan,China.2002:101-107.
    [80] Ye S, Qiu R. An architecture of configurable equipment connectivity in a futuremanufacturing information system [M]. Proceedings of the2003IEEE InternationalSymposium on Computational Intelligence in Robotics and Automation (CIRA2003). Kobe,Japan; IEEE.2003:1144-1149.
    [81]洪鸿,张维,何卫平, et al.制造执行系统中可配置自动采集技术的研究[J].现代制造工程,2009,8.
    [82] Koc M, Ni J, Lee J, et al. Introduction of e-manufacturing [M]. Proceeding of the2002International Conference on Frontiers on Design and Manufacturing. Dalian, China.2002.
    [83] Kletti J. Manufacturing Execution System-MES [M]. Springer,2007.
    [84] Panetto H, Molina A. Enterprise integration and interoperability in manufacturing systems:Trends and issues [J]. Computers in Industry,2008,59(7):641-646.
    [85] Saenz De Ugarte B, Artiba A, Pellerin R. Manufacturing execution system–a literaturereview [J]. Production Planning&Control: The Management of Operations,2009,20(6):525-539.
    [86] O'donovan R, Uzsoy R, Mckay K N. Predictable scheduling of a single machine withbreakdowns and sensitive jobs [J]. International Journal of Production Research,1999,37(18):4217-4233.
    [87] Brennan R W, Norrie D H. Evaluating the performance of reactive control architectures formanufacturing production control [J]. Computers in Industry,2001,46(3):235-245.
    [88] Raheja A S, Subramaniam V. Reactive recovery of job shop schedules–a review [J]. TheInternational Journal of Advanced Manufacturing Technology,2002,19(10):756-763.
    [89] Shafaei R, Brunn P. Workshop scheduling using practical (inaccurate) data Part2: Aninvestigation of the robustness of scheduling rules in a dynamic and stochastic environment[J]. International Journal of Production Research,1999,37(18):4105-4117.
    [90] Efstathiou J. Anytime heuristic schedule repair in manufacturing industry [J]. Control Theoryand Applications, IEE Proceedings-,1996,143(2):114-124.
    [91] Efstathiou J. Formalising the repair of schedules through knowledge acquisition [M].Advances in Knowledge Acquisition.1996:306-320.
    [92] Paul C J, Holloway L E, Yan D, et al. An intelligent reactive monitoring and schedulingsystem [J]. Control Systems Magazine, IEEE,1992,12(3):78-86.
    [93] Holloway L, Chand S. Time templates for discrete event fault monitoring in manufacturingsystems [M]. Proceedings of the2004American Control Conference. Baltimore, MD, USA.1994:701-706.
    [94] Heck F, Laengle T, Woern H. A multi-agent based monitoring and diagnosis system forindustrial components [M]. Proceedings of the9th International Workshop on Principles ofDiagnosis (DX '98). Cape Cod, MA, USA.1998:63-69.
    [95] Kuo C, Huang H. Failure modeling and process monitoring for flexible manufacturingsystems using colored timed Petri nets [J]. Ieee Transactions on Robotics and Automation,2000,16(3):301-312.
    [96] Hou T, Liu W, Lin L. Intelligent remote monitoring and diagnosis of manufacturingprocesses using an integrated approach of neural networks and rough sets [J]. Journal ofIntelligent Manufacturing,2003,14(2):239-253.
    [97] Ngai E, Gunasekaran A. A review for mobile commerce research and applications [J].Decision Support Systems,2007,43(1):3-15.
    [98] Strassner M, Fleisch E. Cambridge, MA: AUTO-ID Center, MIT,2003.
    [99] Roberts C M. Radio frequency identification (RFID)[J]. Computers&Security,2006,25(1):18-26.
    [100] Want R. An introduction to RFID technology [J]. IEEE Pervasive Computing,2006,5(1):25-33.
    [101] Epcglobal. EPC tag data standard version1.5[M]. EPCGlobal Inc.2010.
    [102] Brewer A, Sloan N, Landers T. Intelligent tracking in manufacturing [J]. Journal ofIntelligent Manufacturing,1999,10(3):245-250.
    [103] Lu B H, Bateman R J, Cheng K. RFID enabled manufacturing: fundamentals, methodologyand applications [J]. International Journal of Agile Systems and Management,2006,1(1):73-92.
    [104] Sirico L. An RFID primer for manufacturers [M].2008.
    [105] Meyer G G, Fr mling K, Holmstr m J. Intelligent products: A survey [J]. Computers inIndustry,2009,60(3):137-148.
    [106] Huang G Q, Wright P K, Newman S T. Wireless manufacturing: a literature review, recentdevelopments, and case studies [J]. International Journal of Computer IntegratedManufacturing,2009,22(7):1-16.
    [107] Wang F, Liu S, Liu P, et al. Bridging physical and virtual worlds: complex event processingfor RFID data streams [M]. Proceedings of the10th International Conference on ExtendingDatabase Technology (EDBT2006). Munich, Germany.2006:588-607.
    [108] Paul G R. An introduction to radio frequency identification (RFID) methods and solutions [J].Assembly Automation,2006,26(1):28-33.
    [109] Epcglobal. The application level events (ALE) specification, version1.1.1[M].2009.
    [110] Traub K. ALE: A new standard for data access [J/OL]2005,http://www.rfidjournal.com/article/articleview/1493/1/82/.
    [111] Li Z, Gadh R, Prabhu B. Applications of RFID technology and smart parts in manufacturing
    [M]. Proceedings of the2004ASME Design Engineering Technical Conferences andComputers and Information in Engineering Conference (DETC '04). Salt Lake City, UT,USA.2004:46-54.
    [112] Huang G Q, Zhang Y F, Jiang P Y. RFID-based wireless manufacturing for walking-workerassembly islands with fixed-position layouts [J]. Robotics and Computer-IntegratedManufacturing,2007,23(4):469-477.
    [113] Huang G, Zhang Y, Chen X, et al. RFID-enabled real-time wireless manufacturing foradaptive assembly planning and control [J]. Journal of Intelligent Manufacturing,2008,19(6):701-713.
    [114] Huang G, Zhang Y F, Jiang P Y. RFID-based wireless manufacturing for real-timemanagement of job shop WIP inventories [J]. The International Journal of AdvancedManufacturing Technology,2008,36(7):752-764.
    [115] Zhou S, Ling W, Peng Z. An RFID-based remote monitoring system for enterprise internalproduction management [J]. The International Journal of Advanced ManufacturingTechnology,2007,33(7):837-844.
    [116] Paola A D, Gaglio S, Re G L, et al. An ambient intelligence architecture for extractingknowledge from distributed sensors [M]. Proceedings of the2nd International Conference onInteraction Sciences: Information Technology, Culture and Human. Seoul, Korea; ACM.2009:104-109.
    [117] Wang F, Liu S, Liu P. Complex RFID event processing [J]. The International Journal on VeryLarge Data Bases,2009,18(4):913-931.
    [118] Wu E, Diao Y, Rizvi S. High-performance complex event processing over streams [M].Proceedings of the2006ACM SIGMOD international conference on Management of data(SIGMOD '06). Chicago, IL, USA; ACM.2006:407-418.
    [119]臧传真,范玉顺.基于智能物件的实时企业复杂事件处理机制[J].机械工程学报,2007,43(2):22-32.
    [120] Jacobson I, Booch G, Rumbaugh J. The unified modeling language user guide [M].Addison-Wesley,1999.
    [121] Bass L, Clements P, Kazman R. Software architecture in practice [M].2nd ed.:Addison-Wesley,2003.
    [122] Clements P, Bachmann F, Bass L, et al. Documenting software architectures: views andbeyond [M]. Pearson Education,2003.
    [123] Chikofsky E, Cross Ii J. Reverse engineering and design recovery: A taxonomy [J]. IEEEsoftware,1990,13-17.
    [124] Fowler M. Refactoring: Improving the design of existing code [M]. Addison-Wesley,1999.
    [125] Spinellis D, Gousios G. Beautiful architecture: Leading thinkers reveal the hidden beauty insoftware design [M]. O'Reilly,2009.
    [126] Keuchten P. The4+1view model of architecture [J]. IEEE software,1995,12(6):42-50.
    [127] Soni D, Nord R, Hofmeister C. Software architecture in industrial applications [J].1995,
    [128] Baldwin C Y, Clark K B. Design rules, vol.1: The power of modularity [M]. MIT Press,2000.
    [129] Evans E. Domain-driven design: tackling complexity in the heart of software [M].Addison-Wesley,2003.
    [130] Hoffman D, Weiss D. Software fundamentals: collected papers by David L. Parnas [M].Addison-Wesley,2001.
    [131] Martin R. Agile software development: principles, patterns, and practices [M]. Prentice Hall,2003.
    [132] Meyer B. Object-oriented software construction [M]. Prentice Hall,1988.
    [133] Martin R C. The open-closed principle [M]. More C++Gems. Cambridge University Press.2000:97–112.
    [134] Liskov B. Data abstraction and hierarchy [J]. ACM Sigplan Notices,1988,23(5):17-34.
    [135] Martin R C. The dependency inversion principle [M]. C++Report.1996:61-66.
    [136]阎宏. Java与模式[M].北京:电子工业出版社,2002.
    [137] Lieberherr K, Holland I, Riel A. Object-oriented programming: an objective sense of style [J].ACM Sigplan Notices,1988,23(11):334.
    [138] Fowler M. Patterns of enterprise application architecture [M]. Addison-Wesley,2004.
    [139] Koo B H Y. A meta-language for systems architecting [D]; Massachusetts institute oftechnology,2005.
    [140] Czarnecki K, Eisenecker U W. Generative programming-methods, tools, and applications
    [M]. Addison-Wesley,2000.
    [141] Agrawal A, Levendovszky T, Sprinkle J, et al. Generative programming via graphtransformations in the model-driven architecture [M]. Proceedings of the ACM SIGPLANConference on Object-Oriented Programming Systems, Languages and Applications(OOPSLA2002). Seattle, WA, USA.2002.
    [142] Cechticky V, Pasetti A, Rohlik O, et al. XML-based feature modelling [J]. Software Reuse:Methods, Techniques and Tools,2004,101-114.
    [143] Cote D, St-Denis R, Kerjean S. Generative programming for programmable logic controllers
    [M]. Proceedings of the10th IEEE Conference on Emerging Technologies and FactoryAutomation (ETFA2005). Catania, Italy.2005:741-748.
    [144] Koo B, Simmons W, Crawley E. Algebra of systems: A metalanguage for model synthesisand evaluation [J]. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEETransactions on,2009,39(3):501-513.
    [145] De Kleer J, Williams B. Diagnosing multiple faults [J]. Artificial Intelligence,1987,32(1):97-130.
    [146] Reiter R. A theory of diagnosis from first principles [J]. Artificial Intelligence,1987,32(1):57-95.
    [147] Poole D. Normality and faults in logic-based diagnosis [M]. Proceedings of the11thInternational Joint Conference on Artificial Intelligence (IJCAI-89). Detroit, MI, USA.1989:1304-1310.
    [148] De Kleer J, Mackworth A K, Reiter R. Characterizing diagnoses and systems [J]. ArtificialIntelligence,1992,56(2-3):197-222.
    [149] Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference [M].Morgan Kaufmann,1988.
    [150] De Kleer J, Williams B. Diagnosis with behavioral modes [M]. Proceedings of the11thinternational joint conference on Artificial intelligence (IJCAI-89). Detroit, MI, USA.1989:1330.
    [151] Williams B N, Pp. A model-based approach to reactive self-configuring systems [M].Proceedings of the13th National Conference on Artificial Intelligence (AAAI-96). Portland,Oregon, USA.1996:971-978.
    [152] Williams B, Ingham M, Chung S, et al. Model-based programming of fault-aware systems [J].AI Magazine,2003,24(4):61-75.
    [153] Darwiche A. Model-based diagnosis using structured system descriptions [J]. Journal ofArtificial Intelligence Research,1998,8(1998):165-222.
    [154] Hofbaur M, Williams B. Mode estimation of probabilistic hybrid systems [J]. HybridSystems: Computation and Control,2002,81-91.
    [155] Narasimhan S, Biswas G. Model-based diagnosis of hybrid systems [J]. IEEE Transactionson Systems, Man and Cybernetics, Part A,2007,37(3):348-361.
    [156] Mozetic I. Hierarchical model-based diagnosis [J]. International Journal of Man-MachineStudies,1991,35(3):329-362.
    [157] Chittaro L, Ranon R. Hierarchical model-based diagnosis based on structural abstraction [J].Artificial Intelligence,2004,155(1-2):147-182.
    [158] Bernard D, Dorais G, Fry C, et al. Design of the remote agent experiment for spacecraftautonomy [M]. Proceedings of the1998IEEE Aerospace Conference Snowmass at Aspen,CO, USA.1998:21-28.
    [159] Friedrich G, Stumptner M, Wotawa F. Model-based diagnosis of hardware designs [J].Artificial Intelligence,1999,111(1-2):3-39.
    [160] Sachenbacher M, Struss P, Weber R. Advances in design and implementation of OBDfunctions for diesel injection based on a qualitative approach to diagnosis [M]. Proceedingsof the2000SAE World Congress. Detroit, MI, USA.2000:23-32.
    [161] Mauss J, May V, Tatar M. Towards model-based engineering: Failure analysis with MDS [M].Proceedings of the Workshop on Knowledge-Based Systems for Model-Based Engineering,the14th European Conference on AI (ECAI2000). Berlin, Germany.2000:25-30.
    [162] De Jong A, Woehrle M, Langendoen K. MoMi: model-based diagnosis middleware forsensor networks [M]. Proceedings of the4th International Workshop on Middleware Tools,Services and Run-Time Support for Sensor Networks (MidSense2009). Urbana Champaign,IL, USA; ACM.2009:19-24.
    [163] Darwiche A, Marquis P. A knowledge compilation map [J]. Journal of Artificial IntelligenceResearch,2002,17:229-264.
    [164] Kean A, Tsiknis G. An incremental method for generating prime implicants/implicates [J]. JSymb Comput,1990,9(2):185-206.
    [165] De Kleer J. An assumption-based TMS [J]. Artificial Intelligence,1986,28(2):127-162.
    [166] De Kleer J. An improved incremental algorithm for generating prime implicates [M].Proceedings of the10th National Conference on Artificial Intelligence (AAAI-92). San Jose,CA, USA.1992:780-785.
    [167] Del Val A. Approximate knowledge compilation: The first order case [M]. Proceedings of the13th National Conference on Artificial Intelligence (AAAI-96). Portland, OR, USA.1996:498-503.
    [168] Simon L, Del Val A. Efficient consequence finding [M]. Proceedings of the17th internationaljoint conference on Artificial intelligence Seattle, WA, USA; Morgan Kaufmann PublishersInc.2001:359-365.
    [169] Elliott P. An efficient projected minimal conflict generator for projected prime implicate andimplicant generation [D]. Cambridge; Massachusetts Institute of Technology,2004.
    [170] Mesa. MESA white paper#03: controls definition&MES to controls data flow possibilities
    [M].1997.
    [171] Naylor J B, Naim M M, Berry D. Leagility: integrating the lean and agile manufacturingparadigms in the total supply chain [J]. International Journal of Production Economics,1999,62(1-2):107-118.
    [172] Gerwin D. An agenda for research on the flexibility of manufacturing processes [J].International Journal of Operations and Production Management,1987,7(1):38-49.
    [173] Slack N. The flexibility of manufacturing systems [J]. International Journal of Operationsand Production Management,1987,7(4):35-45.
    [174] Sethi A, Sethi S. Flexibility in manufacturing: a survey [J]. International Journal of FlexibleManufacturing Systems,1990,2(4):289-328.
    [175] Gerwin D. Manufacturing flexibility: a strategic perspective [J]. Management Science,1993,39(4):395-410.
    [176] W. Schmenner R, V. Tatikonda M. Manufacturing process flexibility revisited [J].International Journal of Operations and Production Management,2005,25(12):1183.
    [177] Slack N. The changing nature of operations flexibility [J]. International Journal of Operationsand Production Management,2005,25(12):1201.
    [178] Ko R K L. A computer scientist's introductory guide to business process management (BPM)[J]. Crossroads,2009,15(4):11-18.
    [179] Hammer M, Champy J. Reengineering the corporation: A manifesto for business revolution
    [M]. Harper Paperbacks,2003.
    [180] Shaw D R, Holland C P, Kawalek P, et al. Elements of a business process managementsystem: theory and practice [J]. Bus Process Manag J,2007,13(1):91-107.
    [181] Faison T. Event-based programming [M]. New York, USA: Apress,2006.
    [182] Scc. Supply-chain operations reference model (SCOR)8.0[M].2006:548.
    [183] Gamma E, Helm R, Johnson R, et al. Design patterns: Elements of reusable object-orientedsoftware [M].1st ed.: Addison-Wesley,1995.
    [184] Alur D, Malks D, Crupi J. Core J2EE patterns: best practices and design strategies [M].Prentice Hall,2001.
    [185] Mclean C, Lee Y T, Shao G, et al. Shop data model and interface specification [M]. NationalInstitute of Standards and Technology.2005.
    [186] Allen J F. Maintaining knowledge about temporal intervals [J]. Communications of the ACM,1983,26(11):832-842.
    [187] Bennett B, Galton A. A unifying semantics for time and events [J]. Artificial Intelligence,2004,153(1-2):13-48.
    [188] Yoneki E. ECCO: data centric asynchronous communication [D]; University of Cambridge,2006.
    [189] Forgy C. Rete: A fast algorithm for the many pattern/many object pattern matching problem[J]. Artificial Intelligence,1982,19(1):17-37.
    [190] Williams B, Ingham M, Chung S, et al. Model-based programming of intelligent embeddedsystems and robotic space explorers [M]. Proceedings of the IEEE2004. IEEE.2003:212-237.
    [191] Chung S. Model-based planning through constraint and causal order decomposition [D].Cambridge; Massachusetts Institute of Technology,2008.
    [192] Martin O, Chung S, Williams B. A tractable approach to probabilistically accurate modeestimation [M]. Proceedings of the8th International Symposium on Artificial Intelligence,Robotics, and Automation in Space (iSAIRAS '05). Munich, Germany.2005.
    [193] Williams B, Ragno R. Conflict-directed A*and its role in model-based embedded systems [J].Discrete Applied Mathematics,2006,155(12):1562-1595.
    [194] Baum L, Petrie T. Statistical inference for probabilistic functions of finite state Markovchains [J]. The Annals of Mathematical Statistics,1966,37(6):1554-1563.
    [195] Causey R. Logic, sets, and recursion [M]. Jones&Bartlett Publishers,2006.
    [196] Forbus K D, De Kleer J. Building problem solvers [M]. MIT Press,1993.
    [197] Fredkin E. Trie memory [J]. Communications of the ACM,1960,3(9):490-499.
    [198] Dechter R. Bucket elimination: a unifying framework for probabilistic inference [M].Learning in Graphical Models. MIT Press.1999:75-104.
    [199] Kask K, Dechter R, Larrosa J, et al. Unifying tree decompositions for reasoning in graphicalmodels [J]. Artificial Intelligence,2005,166(1-2):165-193.
    [200] Ragno R. Solving optimal satisfiability problems through clause-directed A*[D]. Cambridge;Massachusetts Institute of Technology,2002.
    [201] Jégou P, Terrioux C. Hybrid backtracking bounded by tree-decomposition of constraintnetworks [J]. Artificial Intelligence,2003,146(1):43-75.
    [202] Williams B. Model-based autonomous systems in the new millennium [J]. Procs of AIPS-96,1996,
    [203] Dechter R. Constraint processing [M]. Morgan Kaufmann Publishers,2003.
    [204] Brglez F, Fujiwara H. A neutral netlist of10combinational circuits and a target translator infortran [M]. Proceedings of the1985IEEE International Symposium on Circuits and Systems(ISCAS '85).1985:663-698.
    [205] Chung S, Eepoel J M V, Williams B. Improving model-based mode estimation throughoffline compilation [M]. Proceedings of the6th International Symposium on ArtificialIntelligence, Robotics and Automation in Space (ISAIRAS-01). Montreal, Canada.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700