用户名: 密码: 验证码:
蒸发式冷凝制冷系统的模拟、实验及节能应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,以及人们对高品质工作和生活的追求,能源相对短缺的问题日益严重。建筑能耗是整个国民经济能耗中的重要组成部分,而空调和制冷系统的能耗是建筑能耗中最主要的能耗之一。蒸发式冷凝制冷系统作为制冷系统中的一种方式,具有高效节能和节水的特点。但人们对它的研究尚不多见,相关的研究资料和数据也十分缺乏。基于以上原因,本文对蒸发式冷凝制冷系统进行了深入研究分析,主要研究内容如下:
     根据计算流体动力学(Computational Fluid Dynamics)中关于气-液两相流的处理方法,采用VOF(volume of fluid)多相流模型,建立了水平换热管外气-液两相流动和传热传质的计算模型,并通过数值模拟研究流体流动特性和传热传质现象。模拟结果表明:在气-液两相逆流传热过程中,潜热传热量所占气-液界面总传热量的比值在90%以上;气-液两相逆流时,潜热传热量所占气-液界面总传热量的比值比气-液两相顺流时高;在气-液相界面处的换热形式是以水蒸发传质引起的潜热换热为主、以温差引起的显热传热为辅,逆流比顺流更有利于传热。
     详细介绍了蒸发式冷凝制冷系统的实验装置,该实验装置主要为蒸发式冷凝制冷系统模型的验证提供实验数据,并为其性能优化研究提供实验平台。在实验中,主要测试了冷却水喷淋密度、室外空气干(湿)球温度、空气流速、入口空气相对湿度等参数对蒸发式冷凝制冷系统的强化传热性能和制冷性能的影响;在接近名义工况的条件下,测试得到本实验系统的能效比(Energy Efficiency Ratio)为3.78,远高于国家相关规范中的蒸发式冷却制冷(系统)机组的制冷性能系数(国标要求不低于2.4)的数值。
     采用效率法建立了涡旋式压缩机的稳态模型;采用分布参数法建立了蒸发器和蒸发式冷凝器的稳态分布参数模型;采用顺序模块法,建立了蒸发式冷凝制冷系统整体模型。通过对整体模型的模拟值与实验值比较表明:系统制冷量的模拟值误差10%以内,散热量的模拟值误差10%以内,能效比(EER)的模拟值误差10%左右;由此可见,本蒸发式冷凝制冷系统模型的精度较高,能准确地模拟系统的热力性能。
     在以上研究的基础上,结合模拟和实验的手段,对蒸发式冷凝制冷系统的压缩机、制冷剂、蒸发器的选择及蒸发式冷凝器的强化传热进行研究分析。得到的结论为:(1)R134a适用于蒸发式冷凝制冷系统;作为R22的替代制冷剂, R-407C适合于使用干式蒸发器的蒸发式冷凝制冷系统;R-410A适合于使用满液式蒸发器的全新设计的蒸发式冷凝制冷系统。(2)采用满液式蒸发器的系统能效比(EER)(制冷剂为R22)比采用干式蒸发器约高8.6%-14%左右。(3)在一定的实验范围内,空气湿球温度对蒸发式冷凝制冷系统性能的影响最大,其次为空气流速,再次为空气相对湿度,最次为冷却水喷淋密度;在相同的实验条件下,蒸发式冷凝器的换热盘管为圆管、椭圆管以及扭曲管型的蒸发式冷凝制冷系统能效比依次增大,且增幅显著。
     采用Visual Basic语言开发了一款蒸发式冷凝制冷机组的快速选型软件,该软件可以实现以下功能:(1)根据建筑类型、建筑面积、预测的EER值,快速选出蒸发式冷凝制冷机组的主要设计参数,为生产厂家提供具体产品设计要求依据。(2)已知建筑物的详细制冷量需求,快速选出蒸发式冷凝制冷机组的主要设计参数,校核生产厂家生产的具体产品是否满足实际要求。介绍了蒸发式冷凝制冷系统节能改造示范工程的具体实施情况,其现场测试结果表明:较之原有的水冷式制冷机组冷源系统,蒸发式冷凝制冷机组冷源系统的节能率为16.3%,节水率为39.7%。
     本文的研究结果为蒸发式冷凝制冷系统在建筑舒适性空调领域的应用提供了可靠的理论和实验数据,具有重要的参考价值。
With China's rapid economic development, as well as the persuit of the high-qualitywork and life, the relative shortage of energy is becoming increasingly serious. Buildingenergy consumption is an important component part in the national economy energyconsumption, and air conditioning and refrigeration system’s energy consumption is one ofthe main energy consumption of building energy consumption. As one of the refrigerationsystems, the evaporative condensed refrigeration system has the features of high efficiencyenergy-conservation and water-conservation. But the research is still rare, related researchinformation and data are very lack. Based on the above reasons, the evaporative condensedrefrigeration system had been in-depth research and analysis in the issue, and the mainresearch contents are as follows:
     Based on CFD (computational fluid dynamics) on gas-liquid two-phase approach, usingthe VOF(volume of fluid) multiphase flow model, and the gas-liquid two-phase flow andheat and mass transfer computational model outside horizontal heat exchanged tube wasestablished, the fluid flow characteristics and heat and mass transfer phenomena wassimulated by numerical simulation. Simulation results show that: in the gas-liquid two-phaseprocess of counter current flow, the heat transfer of latent heat percentage ratio is more than90%in the total heat transfer rate on gas-liquid interface, and the latent heat transfer rate ofgas-liquid two-phase counter current flow is higher than that of the gas-liquid two-phaseconcurrent flow. The form of heat and mass transfer in the gas-liquid interface is caused bywater evaporation’s latent heat exchange based, supplemented by sensible heat exchange, heatexchange is more conducive to counter current flow than that of concurrent flow.
     The evaporative condensed refrigeration system’s experimental device was introduceddetailedly. The experimental device mainly was used to provide experimental data for thevalidation of evaporative condensed refrigeration system models, and also used to provide theexperimental research platform for evaporative condensed refrigeration system performanceoptimization. the cooling water spray density, outdoor air dry (wet) bulb temperature, air flow,intake air relative humidity etc key parameters were Tested for the enhanced heat transferperformance and refrigeration performance of the evaporative condensed refrigeration system,and tested to get the energy efficiency of the experimental system energy efficieny ratio(EER) of3.78nearly in the nominal operation conditions, it is much higher than the relevantnational standards for evaporative condensed (system) chiller’s energy efficieny ratio (EER) (GB requirement of not less than2.4) values.
     The steady-state model of scroll compressors was established by the usage of efficientmethod, the steady-state distribution parameters’ models of the evaporator and evaporativecondenser were established by the usage of the distribution parameters method, theevaporative condensed refrigeration system model was established by the Usage of sequentialmodular approach. the comparison of the system model through simulation and experimentalvalues shows that: the system cooled capacity simulation error is less than10%, the systemcondensed heat simulation error is within10%error, and energy efficiency ratio (EER)simulation error is about10%; thus, the result shows the high accuracy of the model of theevaporative condenser refrigeration system, and it can accurately simulate the thermalperformance of the system.
     Based on the above study, combined simulation and experimental means, the choice ofevaporative condensed refrigeration system’s compressor, refrigerant, evaporator andenhanced heat transfer research of evaporative condenser was analyzed. The followingconclusions are obtained:(1) R134a is adapted to evaporative condensed refrigeration system;as an alternative to R22refrigerant, R-407C is suitable for dry-type evaporator’s evaporativecondensed refrigeration system; R-410A is suitable for flooded evaporator design ofevaporative condensed refrigeration system.(2) The energy efficiency ratio (EER) of floodedevaporator’s chiller system (R22refrigerant is used) is higher than that of the dry-typeevaporator for about8.6%-14%.(3) in a certain experimental range, for the effect to theevaporative condensed refrigeration system performance, the gradation from much more toless is air wet bulb temperature, air velocity, relative humidity of the air, the cooling waterspray density orderly; in the same experimental conditions, the energy efficiency ofevaporative condensed refrigeration system with which evaporative condenser’s heatexchange coil is tube, oval tube and twisted respectively in turn increases, and the increase issignificantly.
     The rapid selection software for evaporative condensed plant was developed by usingVisual Basic language, it can achieve the following functions:(1) according to building type,building size, predicted EER values, the main design parameters of an evaporativecondensed refrigeration plant can be selected rapidly for the manufacturer to provide specificdesign requirements basis.(2) When the detailed cooled capacity for building requirements isconfirmed, the main design parameters of an evaporative condensed refrigeration plant can beselected rapidly to check the manufacturer's specific product, which is produced to meet theactual requirement or not. Moreover, the actual condition of an energy-conservation demonstration project used evaporative condensed refrigeration plant was introduced. Thefield-tested results showed that: compared to the original water-cooled refrigeration plantresource system, the evaporative condensd refrigeration plant resource system’senergy-conservation rate was16.3%, and its energy-conservation rate was39.7%.
     The results of this issue can provide reliable theoretical and experimental data for theevaporative condensed refrigeration system’s applications in the field of comforted airconditioning in buildings, and have important reference values.
引文
[1]江亿等.中国建筑节能年度发展研究报告2009[R].北京:中国建筑工业出版社,2009:1-6
    [2]张丽.中国终端能耗与建筑节能[M].北京:中国建筑工业出版社,2007,110-114.
    [3]阎冬.制冷空调行业在节能减排形势下的发展之路[J].制冷与空调,2008,8(6):125-129
    [4]朱冬生,涂爱民,蒋翔等.蒸发式冷凝冷却设备的研究状况及其应用前景分析[J].化工进展,2007,26(10):1404-1410
    [5]李铁映.《关于检查节约能源法实施情况的报告》[R](十届全国人大常委会第二十三次会议),2006.8.24
    [6] Lang A R G, et al. Inequality of eddy transfer coefficient for vertical transport ofsensible and latent heats during advective inversion [J]. Boundary Lager Meteor,1983,25:25-41
    [7]刘德辉,梁珍海,李荣锦.蒸发研究的概况与进展[J].江苏林业科技,1998,25(4):54-57
    [8] Mudawwar I A,EI-Masr I M A. Int J Multiphase Flow[M].1986,12:771
    [9] Monteith J L.Environmental control of plant growth (Evants, Ed.)[M]. Academic Press,New York:1963:95-120
    [10] Chun K R,Seban R A. Experiment research on film evaporation [J]. Heat Transfer,1971,93:391
    [11] Reginato R J. et al. Evapotranspiration calculated from remote multi-spectraland groundstation meteorological data [J]. Rem. Sens. Environ,1985,18:75-89
    [12]柴立和,彭晓峰,张志军,王补宣.薄液膜层稳定性分析[J].水动力学研究与进展,(A辑),1999,14(1):112-118
    [13]王补宣,张金涛,彭晓峰.薄液膜表面蒸发对降液膜传热和传质的影响[J].中国科学(E辑),2000,30(3):216-221
    [14]吴赞,李蔚.建立微尺度蒸发冷凝的通用准则[J].工程热物理学报,2011,32(11):1893-196
    [15] Chuklin S G. A Generalized Method for Design of Evaporative Condensers [J].Transactions of the Odessa Technological Institute of the Food and RefrigerationIndustry,1952,5:17-28
    [16] Parker R O, Treyball R E. Chemical Engineering and Processing Symposium Series.57.1962,32:138-147
    [17] Mizusbina T, Miyashita H. Experimental Study of an Evaporative Cooler [J]. Int. Chem.Eng,1967,7:727-739
    [18]尾花英郎.热交换器设计[M].第三版.北京:化学工业出版社,1973:300-355
    [19] Chuklin S G, Yanovskiy Y L. Heat Transfer in a Plate-Type Evaporative Condenser [J].Heat Transfer Soviet-Research,1975,7(5):79-84
    [20] Uriyel Fisher, Wolfgang Leidenfrost, Li Jiashang. Hybrid Evaporative CondenserCooling Tower [J]. Heat Transfer Engineering.1983,4(2):28-41
    [21] Perez-Blanco H, Bird W A. Study of Heat and Mass Transfer in a Vertical-TubeEvaporative Cooler [J]. Transactions of the ASME,1984,106:210-215
    [22] Erens P J. Comparison of Some Design Choices for Evaporative Cooler Cores [J]. HeatTransfer Engineering.1988,9(2):29-35
    [23] Al-Juwayhel Faisal I, Al-Haddad Amir A, Habib I.Shaban, El-Dessouky T A.Experimental Investigation of the Performance of Two-Stage Evaporative Coolers [J].Heat Transfer Engineering,1997,18(2):21-32
    [24] Wojeiech Zalewski, Piotr Antoni Gryglaszewski. Mathematical Model of Heat and MassTransfer Processes in Evaporative Fluid Coolers [J]. Chemical Engineering andProcessing,1997,36(4):271-280
    [25] Armbruster R, Mitrovic J. Evaporative cooling of a falling water film on horizontaltubes [J]. Experimental Thermal and Fluid Science.1998,18:183-194
    [26] Wittek U,Meiswinkel R. Non-linear behaviour of RC cooling towers and its effects onthe structural design [J]. Engineering Structure.1998,20:890-898
    [27] Hwang, Yunho. Radermacher, Reinhard. Kopko, William. An experimental evaluationof a residential-sized evaporatively cooled condenser [J].International Journal ofRefrigeration,2001,24(5):238-249
    [28] Manske K A, Reindl D T, Klein S A. Evaporative condenser control in industrialrefrigeration systems [J]. International Journal of Refrigeration,2001,21(7):676-691
    [29] Hisham M.Ettouney, et al. Performance of Evaporative Condensers [J]. Heat TransferEngineering,2001,22(4):41-55
    [30] Ala Hasan, Kai Siren. Performance Investigation of plain and finned tube evaporativelycooled heat exchangers [J]. Heat Transfer Engineering,2003,23(3):325-340
    [31]朱冬生,蒋翔.交变曲面波纹管蒸发式冷凝器[P].中国专利,专利号:ZL02227886.9
    [32]王少为,刘震炎.一种蒸发式冷凝器的新型设计方法[J].制冷与空调,2002,2(4):31-35
    [33] Ala Hasan, Kai Siren. Performance Investigation of plain circular and oval tubeevaporatively cooled heat exchangers [J]. Heat Transfer Engineering,2003,24(5-6):777-790
    [34]尹铭,陈嘉宾,马学虎等.水平管内低压蒸汽的冷凝[J].化工学报,2003,54(7):913-917
    [35]晏刚,马贞俊,周晋等.蒸发式冷凝器的设计与应用[J].制冷与空调,2003,3(3):43-45
    [36]李志明,杨红波.蒸发式冷凝器在制冷工艺上的应用[J].制冷空调与电力机械,2003,24(94):30-33
    [37]刘黄炳,郑正涛. SFL系列蒸发式冷凝器[J].制冷技术,2003,2:60-61
    [38]王会串.谈蒸发式冷凝器的使用[J].山西化工,2003,23(1):24-26
    [39]陆正凯,毕思刚. ZL型高效蒸发式冷凝器在冻结工程中的应用[J].煤炭科技,2003,2:38-39
    [40]王铁军,吴昊,刘向农.蒸发式冷凝器经济技术分析[J].低温与超导,2003,31(2):65-69
    [41]邱嘉昌,刘龙昌.蒸发式冷凝器的应用与管系设计研究[J].制冷技术,2003,2:28-33
    [42]关朋.蒸发式冷凝器结构特点及工程应用[J].制冷与空调,2004,4(2):63-66
    [43] Jiang Xiang, Zhu Dongsheng, Shen Jialong. Heat Transfer Enhancement in EvaporativeCondenser [A]. Proceedings of The3rd International Symposium on Heat Transfer andEnergy Conversation, Guangzhou,2004:1025-1031
    [44] Qureshi Bilal A, Zubair Syed M. The impact of fouling on performance evaluation ofevaporative coolers and condensers [J]. International Journal of Energy Research,2005,29:1313-1330
    [45]周景锋,原郭丰,张鹤飞.蒸发式冷凝器应用于海水淡化系统的试验[J].工业用水与废水,2005,36(2):29-32
    [46]刘彦军.浸没管束鼓泡蒸发冷却换热及阻力特性[D].重庆:重庆大学,2005
    [47] Qureshi Bilal A, Zubair Syed M. A comprehensive design and rating study ofevaporative coolers and condensers. part Ⅰ: Performance evaluation [J]. InternationalJournal of Refrigeration,2006,29:645-658
    [48] Qureshi Bilal A, Zubair Syed M. A comprehensive design and rating study ofevaporative coolers and condensers. part Ⅱ: Sensitivity analysis [J]. InternationalJournal of Refrigeration,2006,29:659-668
    [49]蒋翔.蒸发式冷凝器管外流体流动与传热传质性能及机理的研究[D].广州:华南理工大学,2006
    [50]朱冬生,沈家龙,蒋翔等.蒸发式冷凝器性能研究及强化[J].制冷学报,2006,27(3):45-49
    [51]王铁军.喷淋蒸发翅管式冷凝器传热传质研究[J].制冷技术,2006,34(4):299-302
    [52] Qureshi Bilal A, Zubair Syed M. Prediction of evaporation losses in evaporative fluidcoolers [J]. Applied Thermal Engineering,2007,27:520-527
    [53] Qureshi Bilal A, Zubair Syed M. Second-law-based performance evaluation of coolingtowers and evaporative heat exchangers [J]. International Journal of Thermal Science,2007,46:188-198
    [54]吴治将,朱冬生,蒋翔等.蒸发式冷凝器的应用与研究[J].暖通空调,2007,37(8):98-102
    [55]路慧霞,马晓建.水平管降膜蒸发传热的实验研究进展[J].化工机械,2008,35(2):114-118
    [56]訾冬毅,缪小平,刘文杰.蒸发式冷凝器在地下工程中的应用[J].制冷与空调,2009,9(3):36-40
    [57]魏高升,刘育松等.1000MW直接空冷机组汽泵冷凝采用蒸发式冷凝器的探讨[J].汽轮机技术,2009,51(3):214-216
    [58]郭常青,朱冬生,闫常峰.蒸发式冷凝器在发电冷却系统中的研究与应用[J].电站系统工程,2010,26(6):27-30
    [59]童蕾,谢顺鑫,陈超敏.蒸发式冷凝器在食品制冷设备改造工程中的应用研究[J].流体机械,2010,38(6):78-81
    [60]吴治将,汪南,朱冬生等.立式蒸发式冷凝器强化传热实验研究[J].低温工程,2010,3:26-29
    [61]朱冬生,钟振兴,蒋翔等.蒸发冷却节能技术在电站冷却系统中的应用研究[J].太原理工大学学报,2010,41(5):581-584
    [62]林琳.蒸发式冷凝器能量调节分析和节能运行应用[J].制冷与空调,2010,10(5):63-67
    [63]钟振兴,朱冬生等.板式蒸发式冷凝器传热性能试验研究[J].流体机械,2011,39(2):58-61
    [64]李雪玲,朱冬生.非饱和蒸发式冷却器传热性能实验研究[J].制冷学报,2011,32(4):58-62
    [65]涂爱民,朱冬生,蒋翔.水平管蒸发式冷凝器性能研究[J].暖通空调,2011,41(5):98-103
    [66] Webb Ralph L, Alejandro Viliacres. Performance Simulation of Evaporative HeatExchangers (Cooling, Fluid Coolers and Condensers)[J]. Heat Transfer Engineering,1985,6(2):31-38
    [67] Wojciech Zalewski. Mathematical Model of Heat and Mass Transfer Processes inEvaporative Condensers [J]. Int.J.Refrig,1993,16(1):23-30
    [68] Zalewski W,Gryglaszewski P A, Liquid Gas Interface Area for Falling Film Flow onHorizontal Tubes [J], Inz Chem i Proces,1995,1:29-43
    [69] Boris Halasz. A General Mathematical Model of Evaporative Cooling Devices [J].Revue Generale de Thermique,1998,37(4):245-255
    [70] M’barek Feddaoui, El Mustapha Belahmidi, Ahmed Mir, Abdelaziz Bendou.Numerical study of the evaporative cooling of liquid film in laminar mixed convectiontube flows.[J] Int. J. Therm. Sci,2001,40:1011-1020
    [71] Brin A A, Petruchik A I,Fisenko and S P. Mathematical modeling of evaporativecooling of water in a mechanical-draft tower [J]. Journal of Engineering Physics andThermophysics,2002,75:1333-1338
    [72] Kaiser A S, Lucas M,Viedma A, Zamora B. Numerical model of evaporative coolingprocesses in a new type of cooling tower [J]. Int. J. Heat Mass Transfer,2005,8:986-999
    [73]唐清华.节水型蒸发式空冷器有关参数的优化研究[D].武汉:武汉理工大学,2005
    [74]唐伟杰,张旭.大型工业用蒸发式冷却器的换热模型与仿真[J].制冷空调与电力设备,2005,26(1):8-20
    [75]郝亮,阚杰,袁秀玲.蒸发式冷凝器稳态模型数值模拟[J].制冷空调,2005,5(4):31-34
    [76]宋垚臻.空气与水逆流直接接触热质交换模型计算及与实验比较[J].化工学报,2005,56(6):999-51003
    [77] Ren Chengqin, Yang Hongxing. An analytical model for the heat and mass transferprocesses in indirect evaporative cooling with parallel/counter flow configurations [J].International Journal of Heat and Mass Transfer,2006,49:617-627
    [78]宋臻.空气与水顺流直接接触热质交换过程模型计算及分析[J].农业工程学报,2006,22(1):6-10
    [79]马哲树,姚寿广,明晓.细微尺度传热学及其进展[J].自然杂志,2003,25(2):76-79
    [80]郭慕孙,李静海.三传一反多尺度[J].自然科学进展,2000,10(12):1078-1082
    [81]王补宣,周乐平,彭晓峰.尺寸效应和表面效应对纳米颗粒比热容的影响[J].热科学与技术,2004,3(1):1-6
    [82]过增元.国际传热研究前沿-微细尺度传热学[J].力学进展,2000,30(1):1078-1082
    [83]胡英,刘洪来,叶汝强.化学化工中结构的多层次和多尺度研究方法[J].大学化学,2001,17(1):12-20
    [84]李淑芬,王补宣,叶大均.对我国“微细尺度传热学”发展战略的建议[J].中国科学基金,1996,2:108-111
    [85]孙宏伟.化工过程的发展趋势-认识时空多尺度结构及其效应[J].化工进展,2003,22(3):224-227
    [86]刘涛,纪军,过增元等.重大项目“航天技术和信息器件中的微细尺度传热”取得重要进展[J].中国科学基金,2004,6:349-351
    [87] Abbassi A, Bahar L. Application of neural network for the modeling and control ofevaporative condenser cooling load [J]. Applied Thermal Engineering,2005,25:3176-3186
    [88] Metin Ertun H, Murat Hoso. Comparative analysis of an evaporative condenser usingartificial neural network and adaptive neuro-fuzzy inference system [J]. Refrigeration,2008,31:1426-1436
    [89]蒋翔,朱冬生等.立式蒸发式冷凝器传热传质的CFD模拟[J].高校化学工程学报,2009,23(4):566-571
    [90]蒋斌.地铁站全膜流板式蒸发冷却器传热传质机理研究[D].重庆:重庆大学,2010
    [91]杜小泽,李延雷,魏高升等.用于汽轮机排汽冷却的蒸发式冷凝器模型及性能分析[J].热科学与技术,2010,9(3):200-205
    [92]万方方.蒸发式冷凝器数值模拟与优化[D].郑州大学,2010
    [93]邱庆刚,陈金波.水平管降膜蒸发器管外液膜的数值模拟[J].动力工程学报,2011,31(5):357-361
    [94] Xu Peng,Xu Tengfang,Shen Pengyuan. Advancing evaporative rooftop packaged airconditioning: A new design and performance model development [J]. Applied ThermalEngineering,2012,40:8-17
    [95]刘宪英,葛虹,孙纯武等.蒸发式冷凝器应用于房间空调器的试验研究[J].暖通空调,1997,27(5):31-34
    [96]袁建新.蒸发式冷凝器的应用分析[J].制冷,2000,19(2):85-86
    [97]黄翔,武俊梅,宣永梅.两种填料直接蒸发冷却式空调机性能的实验研究[J].制冷学报,2001,3:33-40
    [98]谈向东,向海容.蒸发式冷凝器[J].制冷空调与电力机械,2002,88(23):50-51
    [99]何刚明,吴少强等.蒸发式制冷冷水机组[P].发明专利.2003,申请号:CN03247000.2
    [100]王少为,于立强.蒸发式冷凝器应用于户式空调的实验研究[J].节能,2003,3:9-12
    [101]刘洪胜,孟建军,陈江平等.家用中央空调机组用蒸发式冷凝器的开发[J].流体机械,2004,32(10):53-56
    [102]梁军,杜珂,李小朋等.华亭嘉园蒸发式家用中央空调系统设计[J].暖通空调,2005,35(2):50-55
    [103]刘纪华,任守宇,焉丽霞.蒸发冷凝式家用中央空调的应用[J].制冷与空调,2006,6:93-94
    [104]周景锋,原郭丰,张立希等.几种热泵式海水淡化装置的性能比较研究[J].工业用水与废水,2006,37(2):61-64
    [105]朱冬生,涂爱民,蒋翔等.蒸发式冷凝冷却设备的研究状况及其应用前景分析[J].化工进展,2007,26(10):1404-1410
    [106]黄翔.国内外蒸发冷却空调技术研究进展(3)[J].暖通空调,2007,37(4):24-29
    [107]涂爱民,朱冬生,吴治将等.蒸发式冷凝器空调系统的性能及应用[J].华南理工大学学报,2007,35(11):66-71
    [108]蒋翔,朱冬生,钟朝安.气候条件对高效蒸发式冷凝机组性能的影响[J].制冷学报,2008,29(1):33-38
    [109]黄翔,徐方成,武俊梅.蒸发冷却空调技术在节能减排中的重要作用[J].制冷与空调,2008,8(4):17-20
    [110]蒋翔,朱冬生,李志明等.蒸发式冷凝空调的性能强化及应用研究[J].暖通空调,2008,38(5):56-59
    [111] Nasr M M, Salah Hassan M. Experimental and theoretical investigation of an innovativeevaporative condenser for residential refrigerator [J]. Renewable Energy,2009,34:2447–2454
    [112]宋应乾,龙惟定等.低碳经济下的蒸发冷却节能空调技术[J].暖通空调,2010,40(7):55-57
    [113]郑文国.深圳大运会运动员村综合楼空调系统设计[J].暖通空调,2010,40(10):36-39
    [114]周海东,黄翔,屈元.蒸发冷却空调在通信机房(基站)中的应用探讨[J].洁净与空调技术,2011,3:40-43
    [115]许巍,王怀良,罗硕成.蒸发式冷凝空调系统在地铁中的应用[J].暖通空调,2011,41(6):43-46
    [116]洪文鹏,任静秋,魏高升.1000MW直接空冷机组汽泵冷凝用蒸发式凝汽器的研究[J].动力工程学报,2011,31(4):290-293
    [117]谢繁华,蒋翔.高效管蒸发式冷凝空调在公共建筑改造工程的应用与测试评价[J].机电工程技术,2011,40(6):91-94
    [118]王军,王海霞,陈雁.大中型高、低温螺杆制冷蒸发式冷凝器冷凝系统的设计及研究[J].食品工业,2012,2:130-133
    [119]郭长青.板壳式蒸发式凝汽器热质传递性能及机理研究[D].广州:华南理工大学,2009
    [120] Yan W M, Tsay Y L, Lin T F. Combined heat and mass transfer in turbulent naturalconvection between vertical parallel plate [J]. Int. J. Heat Mass Transfer,1989,32(8):1581-1584
    [121] Tsay Y L, Lin T F. Evaporation of a heated falling liquid film into a laminar gas stream[J]. Experimental thermal and fluid science,1995,11:61-71
    [122] Wojciech Zalewski, Piotr Antoni Gryglaszewski. Mathematical model of heat and masstransfer processes in evaporative fluid coolers [J]. Chemical Engineering and Processing,1997,36:271-280
    [123]蒋常建,徐斌,杨强生.横流式蒸发冷却器的热力分析[J].上海交通大学学报,1997,31(7):1-4
    [124] He S, An P, Li J, Jackson J D. Combined heat and mass transfer in a uniformly heatedvertical tube with water film cooling [J]. Int.J. Heat fluid flow.1998,19:401-417
    [125] Feddaoui M, Belahmidi E, Mir A, Bendou A. Numerical study of the evaporativecooling of liquid film in laminar mixed convection tube flows [J]. Int. J. Therm. Sci,2001,40:1011-1020
    [126] Feddaoui M, Mir A, Belahmidi E. Numerical simulation of mixed convection heat andmass transfer with liquid film cooling along an insulated vertical channel [J]. Heat andMass transfer,2003,39:445-453
    [127] Feddaoui M, Mir A, Belahmidi E. Cocurrent turbulent mixed convection heat and masstransfer in falling film of water inside a vertical heated tube [J]. Int. J. Heat MassTransfer,2003,46:3497-3509
    [128] Feddaoui M, Meftaha H, Mir A. The numerical computation of the evaporative coolingof falling water film in turbulent mixed convection inside a vertical tube [J].International Communications in Heat and Mass transfer,2006,33(7):917-927
    [129]张静.水力旋流器气液固流场的数值模拟[D].天津:天津大学,2010
    [130]陶文铨.数值传热学第二版[M].西安:西安交通大学出版社,2001
    [131] Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of FreeBoundaries [J]. Journal of Computational Physics,1981,39:201-206
    [132]刘孺勋,王志峰.《数值模拟方法和运动界面追踪》第一版[M].合肥:中国科学技术大学出版社,2001
    [133] Choudhury D. Introduction to the Renormalization Group Method and TurbulenceModeling. Fluent Inc. Technical Memorandum TM-107,1993
    [134] Fluent Modeling Guide. Fluent Inc.1996
    [135] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. J. Comput. Phys.,1992,100:335-354.
    [136]师晋生,陈玉宙.自由表面磨擦和蒸发对过冷下降液膜传热的影响[J].热能动力工程,2001,16(7):383-392
    [137] Woerlee G F, Berends J, Olujic Z, Graauw D. Acomprehensive model for the pressuredrop in vertical pipes and packed columns [J]. Chem. Eng. J.,2001,84:367-379
    [138] Hewitt G F, Whalley P B. The Correlation of Liquid Entrained Fraction and EntrainmentRate in Annular Tow-Phase Flow, CTKAEA Report AERE-9187,1978
    [139]王绍亭,陈涛.《动量、热量与质量传递》第一版[M].天津:天津科学技术出版社,1986
    [140] Kader B. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers[J]. Int. J. Heat Mass Transfer,1993,24(9):1541-1544
    [141] Nusselt. W. Die Oberfl chenkoudensation des Wasserdampfes [J]. Zeitschr. Ver. Deuth.Ing.,1916,60:541-569
    [142]余黎明.气液传质过程的Marangoni效应研究[D].天津:天津大学研究院,2005:47-49
    [143]叶学民.壁面薄膜流的热质传递和稳定性研究[D].河北:华北电力大学,2002
    [144]张景卫.板管蒸发式冷凝器流体流动及传热特性研究[D].广州:华南理工大学,2008
    [145]吴治将.竖管内非饱和蒸发多相流传热传质强化机理研究[D].广州:华南理工大学,2008
    [146]吴业正.制冷原理及设备[M].西安:西安交通大学出版社,2000:67-70
    [147]缪道平,吴业正.制冷压缩机[M].北京:机械工业出版社,2001:87-102
    [148]董天禄.离心式/螺杆式制冷机组及应用.北京:机械工业出版社,2002:115,207
    [149]张正国.非共沸混合工质R11/R13在水平管束上的冷凝传热及强化研究[D].华南理工大学,1996
    [150]顾健德,田安民,鄢国森.O2-水溶液的分子动力学模拟[J].科学通报,1995,40(13):1200-1203
    [151]曹德胜,史琳.制冷剂使用手册[M].北京:冶金工业出版社,2003:12-15,57-60
    [152]蒋能熙.空调用热泵技术及应用[M].北京:机械工业出版社,1997:25-30
    [153]张子慧.热工测量与自动控制[M].北京:中国建筑工业出版社,1996:11
    [154]郎四维,林海燕等.公共建筑节能设计标准[GB50289-2005][S].北京:中国建筑工业出版社,2005:15
    [155] Dhar M, Soedel W. Transient analysis of a vapor compression refrigeration system, In:Pro XV IIR Cong, Venice, Italy,1979
    [156] Chi J, Didion D. A simulation of the transient performance of a heat pump [J]. Int JRefrigeration,1982,5(3):176-184.
    [157]张世钢.燃气机热泵仿真与优化匹配研究[D].天津大学,2002
    [158]丁国良,张春路.基于模型的制冷装置智能仿真[J].制冷技术,2001,4:18-21.
    [159]伏龙,丁国良.蒸气压缩式制冷装置仿真的基本理论和热点问题[J].低温与超导,2002,30(4):59-63.
    [160]唐伟杰,张旭.蒸发式冷凝器的换热模型与解析解[J].同济大学学报(自然科学版),2005,33(7):942-946.
    [161]丁国良,张春路.制冷空调装置智能仿真[M].北京:科学出版社,2002:11-13
    [162]熊则男.回转式压缩机与泵[M].北京:机械工业出版社,1995:100-200
    [163] Dabiri A. Compressor simulation methods with correlation for the level of suction gassuperheat [J]. ASHRAE, Trans,1981,87(2):1201-1215
    [164] Wang H, Touber S. Distributed and non-steady-state modeling of an air cooler [J].International Journal of Refrigeration,1991,14(2):98-111
    [165] Diaz G, Sen M, Yang K T, et al. Simulation of heat exchanger performance by articleneural networks [J]. International Journal of HVAC&R Research,1999,5(3):195-208
    [166]刘浩,张春路,丁国良.结合人工神经网络的冷凝器稳态分布参数模型[J].上海交通大学学报,2002,34(9):1187-1190
    [167] Liang S Y, Wong T N, Nathan K. Numerical and experimental studies of refrigerantcircuitry of evaporator coils [J]. International Journal of Refrigeration,2001,24(8):823-833
    [168]曾艳等.气液两相流在制冷机械中的应用[J].制冷与空调,2001,1(6):45-49
    [169]葛云亭.蒸发器动态参数数学模型的建立与理论计算[J].制冷学报,1995,1:9-17
    [170]王子介.换热器的微元模拟法及求解[J].制冷学报,2000,1:33-37
    [171]邹同华.板式换热器设计选型及使用中应注意的问题[J].制冷与空调,2001,1:40-44
    [172]齐铭.制冷附件[M].北京:航空工业出版社.1992:248-250
    [173]杨世铭,陶文铨著.传热学(第三版)[M].北京:高等教育出版社,1998:12
    [174] Parker Robert O, Treybal Robert E. The Heat, Mass Transfer Characteristics ofEvaporative coolers [J]. Heat Transer-Buffalo,1961,32(57):138-149.
    [175] Mizushina T, Ito R, Miyashita H. Characteristics and methods of thermal design ofevaporative coolers [J]. Int. Chem. Eng,1991,8(3):532-538.
    [176]张祉祐.制冷原理与设备[M].北京:机械工业出版社,1987:96
    [177]彦启森.制冷技术及其应用[M].北京:中国建筑工业出版社,2006:123
    [178] Chun K R, Seban R A. Experiment research on film evaporation [J]. J Heat Transfer,1971,93:391
    [179]朱冬生,蒋翔.蒸发式冷凝器的研究与应用[J].化学工程,2002,30:129-134
    [180]朱冬生,沈家龙,蒋翔等.湿空气对蒸发式冷凝器性能的影响[J].制冷技术,2006,2:19-22.
    [181]蒋翔,朱冬生,唐广栋等.来流速度分布对蒸发式冷凝器性能的影响[J].华南理工大学学报,2006,34(8):55-60
    [182]朱冬生,沈家龙,蒋翔等.水分布对蒸发式冷凝器传热传质的影响[J].工程热物理学报,2007,28(1):83-85
    [183]朱冬生,沈家龙,蒋翔等.蒸发式冷凝器管外水膜传热性能实验研究[J].高校化学工程学报,2007,21(1):31-36
    [184]朱冬生,黎小华,涂爱民等.蒸发式冷凝空调系统运行中能效的实验研究[J].中国住宅设施,2007,11:60-63
    [185]徐谡,徐立,吴明旺等.Visual Basic应用开发案例教程[M].北京:清华大学出版社,2005.4
    [186]陆耀庆.实用供热空调设计手册(上册)(第二版)[M].北京:中国建筑工业出版社,2008.5:1097,1190,1181
    [187]陆耀庆.实用供热空调设计手册(下册)(第二版)[M].北京:中国建筑工业出版社,2008.5:1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700