用户名: 密码: 验证码:
藻菌共生生物膜系统修复煤炭矿区污染水体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭作为中国最主要的能源之一,对我国社会经济有着极其重要的影响,但在煤炭的开采和利用过程中对水环境产生了巨大的危害。在赴陕北神木煤炭矿区实地调查和采样分析的基础上,采用单因子水质标识指数和综合水质标识指数对4处水样进行评价,结果显示:陕北煤炭矿区水体受煤粉污染较为严重,水体中色度、悬浮物、有机物、NH4+-N、NO3-、SO42、Cr6+、Cu2+、Fe3+、Mn2+、Pb、Cd元素比参照水样都有不同程度的升高,尤其是重金属Cr和Cd、COD和TP,都达到严重污染环境的水平;六道沟煤矸石淋溶形成的淤泥附近水样污染最为严重,主要超标污染物为悬浮物、磷酸盐、Cr6+、COD和Cd,综合水质标识指数为3.561。
     针对煤炭矿区污染水体的特点和陕北光照充足的优势,采取藻菌共生生物膜系统修复这一污染水体,利用球形填料和弹性立体填料作为生物附着生长的载体,以Cr(Ⅵ)作为代表重金属,在推流式氧化塘上架设日光灯管模拟自然光照,光暗比14:10,考察了藻菌共生生物膜对Cr(Ⅵ)、COD、NH4+-N、TP、SO42-的去除效果和去除机理,得到以下结论:
     (1)从氧化沟活性污泥中分离筛选出6株耐铬菌株,发现菌株在培养24h后生长状况最好;以耐铬性最好的2-5号菌株做试验,结果显示菌株对Cr(Ⅵ)的去除效率随初始Cr(Ⅵ)浓度的升高呈先上升后下降的趋势,具有最优去除浓度区间和相应的最大去除效率;在含Cr(Ⅵ)浓度为654mg/L的废水中培养24h后,2-5号菌株Cr(Ⅵ)的去除率最高可达76.4%,去除速率为18.9mg/(gSS·h);当废水中含Cr(Ⅵ)浓度较低时,菌废比较高有利于增大去除率,当Cr(Ⅵ)浓度较高时,增大菌废比对去除率影响不大;6株耐铬菌均有较好的生物累积Cr(Ⅵ)的能力,但耐Cr(Ⅵ)能力与去除Cr(Ⅵ)的能力之间没有直接关系。
     (2)在HRT为14.3d,载体为球状填料时,藻菌共生生物膜系统对Cr(Ⅵ)有较高的去除率,最高可达98.3%,能忍耐21.2mg/LCr(Ⅵ),此时去除率为88.2%;在进水端底泥中Cr(Ⅵ)含量高达286μg/g干重底泥,Cr(Ⅵ)主要是被生物还原为Cr(Ⅲ),然后生成Cr(OH)3沉淀进入底泥中;水绵对Cr(Ⅵ)的吸附及积累能力比凤眼莲低,水绵中Cr(Ⅵ)含量为12.08μg/g干重,凤眼莲为79.41μg/g干重。
     (3)COD进水浓度为100mg/L时,去除率稳定在80%以上,利用光照氧化塘可以实现异养细菌和光合生物的互惠共生,协同去除重金属和有机物;NH4+-N进水浓度为6mg/L左右时,最高去除率达65.3%,主要依靠同化作用和硝化去除,夏季升温和水绵的添加有助于NH4+-N去除率的提高,NH4+-N在氧化塘前半部分约有87%被去除;进水中TP为1.7mg/L左右时,TP去除率逐渐稳定在60%以上,最高达76.2%。氧化塘前半部分的去除率约占总去除率的60%,主要依靠同化作用及生成沉淀从氧化塘中去除。
     (4)进水COD为50mg/L时,光照氧化塘内昼间由于藻类光合产氧,溶解氧平均浓度为3.5mg/L,不具备SO42-厌氧还原的条件,SO42-去除率低于10%。进水COD为100mg/L时,昼间溶解氧为1.8mg/L,晚上8:00熄灯时溶解氧最低为0.72mg/L,熄灯一小时后溶解氧最低0.37mg/L,可实现SO42-厌氧还原,在进水SO42-浓度为70.7mg/L时,最大去除率可达65.5%。平均有82%的SO42-在氧化塘的前半部分去除。
     (5)藻菌共生生物膜系统从启动到稳定运行,光照氧化塘内生物大致经历了3个大的变化阶段:水生植物阶段、凤眼莲阶段和水绵生物膜阶段。光照不足、底泥较浅及COD耗氧形成厌氧环境都易导致水生植物死亡;凤眼莲阶段氧化塘内生物多样性丰富,包括水蜗牛、毛饰拟剑水蚤等动物及多种微藻,微藻以绿藻为主;光照强度增大有助于增加水蜗牛及毛饰拟剑水蚤的数量;凤眼莲对周围微生物形成抑制,并可阻止水绵在载体上挂膜;进水Cr(Ⅵ)浓度达10mg/L,氧化塘内Cr(Ⅵ)浓度为1.6mg/L时,凤眼莲无法耐受而死亡;凤眼莲抑制解除后水绵可在载体上形成生物膜,水绵根部多附着在细菌上生长,靠细菌分泌的胞外多聚物与载体粘连;水绵生物膜上藻丝长度(μm)与时间(d)大致关系为y=48.77x,水绵生物膜阶段微藻以蓝藻为主;在485nm处监测4个采样点处的OD值,结果显示进水污染物浓度较高、溶解氧浓度较低时悬浮微藻的数量较小,光照作用强烈时水中悬浮微藻数量增加。
     (6)水绵在立体弹性载体的细丝上缠绕生长,藻丝较长,形成的生物膜较薄(300-500μm),光照及水深对藻类的数量有决定性的影响,细菌的数量主要由COD和Cr(Ⅵ)浓度决定;增加立体弹性载体可增加氧化塘上部的藻类浓度和氧化塘上部、下部的细菌浓度,有助于强化缺氧及厌氧的环境;增加立体弹性载体对COD和TP的去除帮助不大,对Cr(Ⅵ)的去除以及硝化和反硝化作用有改善作用,对SO42-的去除有较好的促进作用。
     (7)HRT的缩短对Cr(Ⅵ)的去除造成的影响较小,HRT为7.2d时,Cr(Ⅵ)去除速率最高可达2.4mg/(L·d);系统对COD的最大去除能力为12.5mg/(L·d),进一步缩小HRT已不能增大COD的去除负荷;减小HRT使硝化作用受到了Cr(Ⅵ)毒性的抑制,造成NH4+-N去除速率的下降;TP的去除负荷最高仅为0.11mg/(L·d),增加负荷后TP的去除途径彻底被破坏,在Cr(Ⅵ)浓度为20mg/L时,要保证TP有一定的去除率,必须保证HRT在14.3d以上;SRB在3.1mg/(L·d)的Cr(Ⅵ)负荷下依然可以生存良好,并能保证一定的SO42-去除率,去除负荷可达7.5mg/(L·d)。
     (8)投加耐铬菌株提高Cr(Ⅵ)的去除效率有短暂帮助,在突发性环境污染事故中可以采用投加高效降解菌株的方法降低污染程度,对于一个连续处理污染物的系统,投加高效降解菌株作用甚小。
Coal is one of the most important energy in China which has a significant influence on our social and economic development. However, coal mining and utilization process caused a serious harmness to local water. Based on pollution investigation and monitoring of4water samples in Shaanbei Shenmu coal mine, the water quality in Shaanbei coal mine were evaluted by methods of single factor water quality identification index and comprehensive water quality identification index. The results showed:coal powder pollution was much serious and color suspended solid (SS), COD, NH4+-N、NO3-,SO42-,Cr6+,Cu2+, Fe3+, Mn2+, Pb. Cd elements in waters were much more than the reference sample, especially heavy metals Cr. Cd. COD and TP were high enough to pollute envrionmental seriously. The water quality near mud caused by coal gangue in Ludaogou was the worst. Its pollutants exceeding the standard were SS. PO43-, COD, Cr, Cd and its comprehensive water quality identification index was3.561.
     According to the characteristics of polluted water in coal mining area and the advantage of Shaanbei with sufficient sunlight, symbiotic algae-bacteria biofilm system was employed to remediate this polluted water. The carriers for attachment of microorganisms and algae included spherical packing and elastic three-dimensional packing. Cr (Ⅵ) was hired as a representative of diverse heavy metals. To simulate natural light, three fluorescent tubes were added on the oxidation ponds with a light:dark than14:10. The removal efficiency and removing mechanism of Cr(Ⅵ), COD, NH4+-N. TP, SO4-2-by symbiotic algae-bacteria biofilm were examined. The results was presented as following:
     (1) Six Cr-tolerant strains were isolated from the active sludge in a oxidation ditch to test their cellular growth mass in different Cr(Ⅵ) concentration liquid medium after24h,48h and72h growth. A high Cr-tolerant strain was choosed from them to removal Cr(Ⅵ) in wastewater. The cellular mass of six strain were decreased with increasing initial Cr(Ⅵ) concentration in most cases. The high Cr-tolerant strain had a maximum Cr(Ⅵ) removal efficiency(76.4%) in a best concentration range (about654mg/L) and the highest Cr(Ⅵ) removal rate was18.9mg/(gSS·h) after24h growth. A higher ratio of biomass to amount of Cr(Ⅵ) was benefit to improve the removal of Cr(Ⅵ) when the Cr(Ⅵ) concentration was lower. However, when the Cr(Ⅵ) concentration was higher, it did not help much for improve the removal of Cr(Ⅵ). All of them presented excellent bioaccumulation abilities, however, it seemed that the resistance and the removal potential of heavy metal had no direct connection.
     (2) When HRT was14.3d and carrier was spheric packing, the algae-bacteria biofilm had a better removal efficiency of98.3%and was tolerant to21.2mg/L Cr(Ⅵ) with a removal potential of88.2%. Cr(Ⅵ) content reacheed286μg/g (dry weight mud) in the sediment of influent side. Cr(Ⅵ) was reduced to Cr(Ⅲ) by microbes. Cr(Ⅲ) turned into Cr(OH)3and then precipitated into sediment. The bioaccumulation potential of Cr(Ⅵ) by Spirogyra (12.08μg/g dry weight) is far less than Eichhornia crassipes's (79.41μg/g dry weight).
     (3) When the concentration of COD in influent was100mg/L. the COD removal efficiency was beyond80%. In oxidation pond the heterotrophic bacteria and algae cooperated with each other to reduce heavy metal and COD. The best removal efficiency of NH4+-N was65.3%with a6mg/L influent concentration. Nitrogen was removed by assimilation anabolism and nitrification. The influent TP concentration was1.7mg/L of which over60%was reduced by assimilation and precipitation.
     (4) When the inflow COD was50mg/L, the dissolved oxygen(DO) was3.5mg/L in reactor for photosynthetic oxygenation by algae which was unsuitable for the reduction of SO42-. After increasing the COD concentration to100mg/L, the diurnal average DO was1.8mg/L and minor night DO was0.37mg/L in which sulfate reduction could take place. The max removal was65.5%with a70.7mg/Linfluent sulfate.
     (5) Algae-bacteria biofilm system went through three periods from start-up to stable operation:hydrophyte stage, Eichhornia crassipe stage and Spirogyra biofilm stage. Eichhomia crassipe could inhibit the formation of Spirogyra biofilm. Green algae grew better in Eichhornia crassipe stage than Spirogyra biofilm.When Eichhornia crassipe was taken out from the reactor Spirogyra began to attach to carriers. Spirogyra prefer to immobilize on extracellular polymeric substances (ESP) excretived by bacteria. The length of Spirogyra filament had a good linear relationship with time(d):y=48.77x.
     (6) Illumination and depth of water were important to algae amount, whereas concentration of COD and Cr(Ⅵ) were key factors for bacterial growth. Addition of the tridimensional elastic carrier could increase the algae amount of upper reactor and the bacteria concentration both upper and lower reactor which was helpful to strengthen anoxic and anaerobic environment for better denitrification and sulfate reduction.
     (7) A shorter hydraulic retention time (HRT) had little effect on Cr(Ⅵ) removal. For a7.2h HRT, Cr (Ⅵ) removal rate could run up to2.4mg/(L·d). The system had reached the maximum COD removal capability of12.5mg/(L·d). Less HRT could impact nitrogen removal potential and was destructive to TP removal unless with a longer HRT than14.3d, however, sulfate-reducing bacteria(SRB) could still survive under a Cr(Ⅵ) loading rate of3.1mg/(L·d) and remove7.5mg sulfate per litre within a day.
     (8)The dosage of Cr-resistance strains had a impermanency improvement for increasing Cr(Ⅵ) removal efficiency. It could be used in a hazardous waste pollution event rather than in a continuous water treatment svstem.
引文
1.茅于轼,盛洪,杨富强,煤炭的真实成本2009,北京:煤炭工业出版社.55.
    2.姬雄华,张晓梅,陕北煤炭企业环保责任与发展对策.商情.2010(5):p.142-143.
    3.中国期刊界:论文发表/论文写作.河断流了、水井干了、山裂缝了2011;Available from:http://www.jiaoyu85.com/huagong/html/?9566.html.
    4.陕西省国家税务局课题组,促进煤炭经济发展方式转变的税收制度变革研究—基于陕西煤炭经济发展的调查.税务研究,2011(11):p.59-63.
    5.张大民,张家峁井田内小煤矿开采对地下水的影响.地下水,2008.30(1):p.32-34.
    6.郑义.谈中国山西矿区的严重水污染问题2011;Available from: http://blog.163.com/kan_richu/blog/static/1773420932011726101557357/.
    7.刘志仁,陕北能源开发与生态环境保护法律对策研究.干旱区资源与环境,2009.23(1):p.18-23.
    8.黄盛初,中国煤炭开发与利用的环境影响研究2003,煤炭信息研究院洁净能源与环境中心
    9.珊鱼.煤炭污染2011;Available from: http://www.hudong.com/wiki/%E7%85%A4%E7%82%AD%E6%B1%A1%E6%9F%93.
    10.张宗元,赵志怀,陈宇松,人工湿地处理酸性煤矿废水的机理研究及展望.科技情报开发与经济,2007.17(5):p.158-160.
    11.张迪,刘听,宋玲玲,煤矸石制砖余热发电研究.环境保护,2009.420(5B):p.86-88.
    12.《中国煤炭》杂志社.2009年煤矸石综合利用率达到62.5%2010;Available from: http://www.tfcoal.com/Article/ShowArticle.asp? ArticleID=33820.
    13.李国平,刘治国,陕北地区煤炭资源开采过程中的生态破坏与对策.干旱区资源与环境,2007.21(1):p.47-50.
    14.史贵禄.关于请求中央关注和支持陕北能源化工基地可持续发展的议案.2009;Available from:http://www.rongmin.com/show.php?contentid=125.
    15.程功林,陈永春,煤研石山的危害及植被生态重建途径探讨.煤田地质与勘探,2009.37(4):p.54-56.
    16.黄振全.建立矿山采空区塌陷区分布信息系统势在必行.2010;Available from: http://blog.gmw.cnyhome-space-uid-5676-do-blog-id-154221.html.
    17.牛福生,张锦瑞,律文智,采煤塌陷区水体重金属污染分析及植物修复技术探讨—以唐山市南湖公园为代表的采煤塌陷区为例,in中国环境科学学会学术年会优秀论文集2006.
    18.律文智,张锦瑞,王艳彦,采煤塌陷区重金属污染水体修复技术探讨及展望——以唐山市南湖公园为例.环境科学与管理,2007.32(1):p.49-52.
    19.郝永艳,郝峰,陈军锋,孔春梅,臧红飞,电厂粉煤灰堆放对水环境的影响及防治对策.山西水利,2010(11):p.19-21.
    20.震惊国人的中国粉煤灰污染2010; Available from: http://photo.huanqiu.coi-n/society/gallery/2010-09/1109220.html.
    21. Hayashi, N.. et al, The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type. Carbohydrate Research,1997.305(2):p. 261-269.
    22.王京,浅析煤化工废水处理工艺.广西轻工业,2009(11):p.99-100.
    23.张兴刚.煤化工零排放,目前基本没做到.中国化工报2011;Available from: http://www.ccin.com.cn/ccin/3058/3061/.
    24.张发旺,侯新伟,韩占涛,煤炭开发引起水土环境演化及其调控技术.地球学报,2001.22(4):p.345-349.
    25.刘慧力,崔龙鹏,淮南矿区水体沉积物中金属污染及环境现状评价.环境科学研究,2009.22(5):p.601-605.
    26.李本军,曹建光,张立才,东胜矿区典型区水环境现状及预测分析.中国煤田地质,2007.19(2):p.51-54.
    27.赵京,张金锁,陕北能源化工基地建设中的环境可持续发展问题探讨.能源技术与管理,2007(5):p.80-85.
    28.范立民,陕北能源重化工基地建设中的水资源问题.国土资源科技管理,2005.22(5):p.17-21.
    29.张汉雄,神府东胜煤田采煤对生态脆弱带环境灾害的影响与对策.环境科学,1996.17(6):p.77-80.
    30.徐志诚,酸性矿井水的人工湿地处理方法综述.矿业安全与环保,2005.32(2):p.40-44.
    31.陶征义,隋天娥,酸性矿山排水被动处理方法研究进展.环境科学与管理,2009.34(3):p.40-44.
    32.杨军耀,刘洁,贡俊,尹秀贞,利用天然排水矿坑生物修复煤矿酸性废水的实验研究.太原理工大学学报,2008.39(3):p.307-310.
    33.王平,国内煤矿矿井水处理技术研究现状.同煤科技,2008(1):p.1-5.
    34.程斌,浅谈煤化工企业的废水处理.经营管理者,2011(17):p.380.
    35.苟鹏,叶向德,吕永涛,王志盈,煤泥水的水质特性及处理技术.工业水处理,2009.29(1):p.53-57.
    36.温京华,刘万银,增设尾煤压滤机实现洗水闭路循环应用与效果.煤炭技术,2005.24(7):p.73-74.
    37.邓寅生,张新,赵福玲,改性土壤对矸石溶出液中主要污染因子的吸附特征.能源环境保护,2006.20(5):p.26-30.
    38.孙亚乔,段磊,钱会,张亚娟,粉煤灰浸出及浸出液对水环境的影响.工程勘察, 2009(7):p.35-39.
    39.常伟明,开滦采煤下沉区改建人工湿地的技术分析.河北科技师范学院学报,2007.21(2):p.32-35.
    40.渠俊峰,李钢,张绍良,基于平原高潜水位采煤塌陷土地复垦的人工湿地规划_以徐州市九里人工湿地规划为例.节水灌溉,2008(3):p.27-30.
    41.高原,硫酸盐还原菌及其在重金属废水治理中的应用.科技信息,2009(1):p.437-438.
    42. R'ios. C.A., Williams, C. D.,Roberts, C. L., Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. Journal of Hazardous Materials,2008.156(1-3):p.23-35.
    43. Fenglian Fu, Q.W., Removal of heavy metal ions from wastewaters:A review. Journal of Environmental Management,2011.92(3):p.407-418.
    44.王家玲,李鹏顺,黄正,环境微生物学(第二版)2004.,北京:高等教育出版社.
    45.张琪,胡锋平,马双群,水体修复技术的研究现状及其发展趋势.南昌高专学报,2007(2):p.97-99.
    46.劳景华,朱文玲,汤仲恩,污染水体生物修复及其发展前景.广东农业科学,2006(8):p.84-86.
    47.武秀琴,张建云,污染水体的生物修复技术研究进展.现代农业科技,2008.17:p.331-333.
    48.刘志刚,岳峥,马东兵,水体生物修复技术研究进展.中国资源综合利用,2008.26(12):p.25-28.
    49.唐玉斌,景观水体的生物激活剂修复.城市环境与生态,2003.16(4):p.37—39.
    50. Huijuan Meng, Y.X., Hong Chen, Bioremediation of surface water co-contaminated with zinc (Ⅱ) and linear alkylbenzene sulfonates by Spirulina platensis Physics and Chemistry of the Earth, Parts A/B/C,2011.
    51.陈亚丽,张先恩,刘虹,甲基对硫磷降解假单胞菌WBC-3的筛选及其降解性能的研究.微生物学报,2002.42(4):p.490-497.
    52. Toyoharu Hozumia, H.T.M.K., Bioremediation on the Shore after an Oil Spill from the Nakhodka in the Sea of Japan. I. Chemistry and Characteristics of Heavy Oil Loaded on the Nakhodka and Biodegradation Tests by a Bioremediation Agent with Microbiological Cultures in the Laboratory. Marine Pollution Bulletin,2000.40(4):p.308-314.
    53. Paniagua-Michel, J. and O. Garcia, Ex-situ bioremediation of shrimp culture effluent using constructed microbial mats. Aquacultural Engineering,2003.28(3-4):p.131-139.
    54. Alejandro R. Gentili, M.A.C., Marcela Ferrero, Maria S. Rodriguez, Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. International Biodeterioration & Biodegradation,2006,.57(4):p. 222-228.
    55. S.S Radwan, R.H.A.-H., S Salamah, S A1-Dabbous, Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. International Biodeterioration & Biodegradation,,2002.50(1):p.55-59.
    56.百度百科.凤眼莲Available from:http://baike.baidu.com/view/6750.htm.
    57. Sandra Alvarado. M.G.. Marco P. Lue-Meru. Graterol Nelson. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresource Technology,2008.99(17):p.8436-8440.
    58.郭蔚华,张智,何冰,高等水生植物修复双龙湖水体叶绿素a变化试验研究.重庆环境科学,2002.24(3):p.45—48,87.
    59.彭喜花,于鹄鹏,城市河道水体修复技术综述.水资源研究,2011.32(2):p.25-27.
    60.翟建国,徐伯兴,李福德,微生物法处理含铬(Ⅵ)废水的研究.化工环保,2005.25(1):p.1-4.
    61.马锦民,翟建国,夏君,李福德,活微生物物和活体微生物处理含铬(Ⅵ)废水研究进展.环境科学与技术,2006.29(4):p.103-105.
    62.杨璐,胡璐,铬污染水体修复技术研究进展.广西轻工业,2008(7):p.96-97.
    63.闫旭,李亚峰,含铬废水的处理方法.辽宁化工,2010.39(2):p.143-145.
    64.高玉红,刘卫洁,王建森,用焦炭吸附处理含铬废水的试验研究.湿法冶金,2010.29(1):p.52-55.
    65.周青龄,桂双林,吴菲.含铬废水处理技术现状及展望.能源研究与管理,2010(2):p.29-33.
    66.张顺成,驯化抗强碱性Cr(VI)还原菌在微生物处理含铬废水的研究.辽宁化工2010.39(9):p.906-908.
    67. Elizabeth Lira-Silva, I.S.R.-L.. Viridiana Olin-Sandoval., Removal, accumulation and resistance to chromium in heterotrophic Euglena gracilis. Journal of Hazardous Materials 2011.193:p.216-224.
    68.李光,方晓兰,蔡志辉,混合硫酸盐还原菌群还原Cr(VI)的初步研究.化学与生物工程,2011.28(6).
    69. K.H. Cheung, J.-D.G. Reduction of chromate (CrCV) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 2003.52:p.1523-1529.
    70. M. Vainshtein, P.K., J. Mattusch, A. Vatsourina, A. Wiessner Model experiments on the microbial removal of chromium from contaminated groundwater. Water Research,2003. 37:p.1401-1405.
    71. F. Pagnanelli, C.C.V., A. Cibati, D. Uccelletti, L. Toro, C. Palleschi, Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol. Journal of Hazardous Materials,2011.
    72. Munoz, R. and B. Guieysse, Algal-bacterial processes for the treatment of hazardous contaminants:A review. Water Research,2006.40(15):p.2799-2815.
    73.A. Khoshmanesh. F.L., I.G. Prince. Cadmium uptake by unicellular green rnicroalgae. The Chemical Engineering Joumal(1996) 81-88,1996.62 p.81-88.
    74. R.P. Van Hille*, G.A.B.. P.D. Rose. J.R. Duncan. A continuous process for the biological treatment of heavy metal contaminated acid mine water. Resources. Conservation and Recycling 1999.27:p.157-167.
    75. Munoz, R., Kollner, C. Guieysse, B., Mattiasson, B., Photosynthetically oxygenated salicylate biodegradation in a continuous stin-ed tank photobioreactor. Biotechnol. Bioeng, 2004.87(6):p.797-803.
    76. Semple, K.T., R.B. Cain, and S. Schmidt, Biodegradation of aromatic compounds by microalgae. FEMS Microbiology Letters,1999.170(2):p.291-300.
    77. Tchobanoglous, G., Burton, F.L., Stensel, H.D., Wastewater Engineering:Treatment and Reuse, ed..2003:McGraw-Hill. New York.
    78. Hamoda, Air pollutants emissions from waste treatment and disposal facilities. Environ. Sci. Health Part A—Toxic/Hazard. Subst. Environ. Eng,2006.41(1):p.77-84.
    79. de Godos, I., et al., Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresource Technology,2011.102(2):p. 923-927.
    80. Godos, I.d., et al., A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresource Technology,2010. 101(14):p.5150-5158.
    81.陈鹏,周琪,高效藻类氧化塘处理有机废水的研究和应用.上海环境科学,2001.20(7):p.309-312.
    82.穆寄林,马华继,熊振湖,藻菌共生系统在城市污水处理中的研究与应用.南平师专学报,2005.24(2):p.64-67.
    83. Buhr, H.O. and S.B. Miller, A dynamic model of the high-rate algal-bacterial wastewater treatment pond. Water Research,1983.17(1):p.29-37.
    84. Muuoz, R., Guieysse, B., Mattiasson, B., Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl. microbiol. Biotechnol., 2003.61:p.271-267.
    85. Munoz, R., et al., Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere,2006.63(6):p.903-911.
    86. Godos, I.d., et al., Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresource Technology,2009. 100(19):p.4332-4339.
    87. Borde, X., et al., Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresource Technology,2003.86(3):p.293-300.
    88. Munoz, R., C. Kollner, and B. Guieysse, Biofilm photobioreactors for the treatment of industrial wastewaters. Journal of Hazardous Materials,2009.161(1):p.29-34.
    89. He. S. and G Xue, Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). Journal of Hazardous Materials,2010. 178(1-3):p.895-899.
    90. Tang, X., et al, Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. Journal of Hazardous Materials.2010.181(1-3):p.1158-1162.
    91. de Godos, I., et al., Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters. Journal of Hazardous Materials,2010. 179(1-3):p.1049-1054.
    92.饶本强,张列宇,陈坤,复合藻-菌净化系统处理麦秆造纸废液初步研究.信阳师范学院学报,2009.22(4):p.593-597.
    93.王高学,姚嘉贇,王绥标,复合藻-菌系统水质净化模型建立与净化养殖水体水质的研究.西北农业学报,2006.15(2):p.22-27.
    94.熊振湖,孙翠珍,刘青春,不同载体固定化藻菌共生系统的脱氮除磷效果.环境科学与技术,2005.28(1):p.83-85.
    95.邹万生,刘良国,张景来,尹富士,王文彬,杨品红,固定化藻菌对珍珠蚌养殖废水中TN和TP去除效果的影响.环境污染与防治,2011.33(3):p.28-33.
    96. NAGATA, Y., Light-induced Adhesion of Spirogyra Cells to Glass. Plant Physiol., 1977.59:p.680-683.
    97.马沛明.利用着生藻类去除N、P营养物质的研究,in中国科学院研究生院(水生生物研究所)2005.
    98. Antonella Guzzon, A.B., Marco Diociaiuti, Patrizia Albertano, Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Research,2008.42:p. 4357-4367.
    99. G. Roeselers, M.C.M.v.L., G. Muyzer, Phototrophic biofilms and their potential applications. J Appl Phycol,2008.20:p.227-235.
    100.魏群,肖波,et al.,利用藻类生物膜技术处理生活污水研究.中国给水排水,2008.24(5):p.27-30.
    101. 牛曼,张小平,王秀,肖贤声,“菌藻-菌”系统处理高浓度有机废水的研究.环境工程学报, 2010.4(8):p.1819-1823.
    102. 吴永红,方涛,丘昌强,刘剑彤,藻-菌生物膜法改善富营养化水体水质的效果.环境科学,2005.26(1):p.84-89.
    103. Babu, M.A., et al., Nitrification rates of algal-bacterial biofilms in wastewater stabilization ponds under light and dark conditions. Ecological Engineering,2010.36(12):p. 1741-1746.
    104. Chavan, A. and S. Mukherji, Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor:Effect of N:P ratio. Journal of Hazardous Materials,2008.154(1-3):p.63-72.
    105. V.K. Gupta, A.R., Biosorption of lead from aqueous solutions by green algae Spirogyra species:kinetics and equilibrium studies. J. Hazard. Mater..2008.152(1):p. 407-414.
    106. Y. E1-Sherif, A.A., S. Badr, Biosorption of cadmium and nickel by Nile water algae. Appl. Sci. Res.,2008.4(4):p.391-396.
    107. R. Herrero. B.C., P. Lodeiro, C. Rev-Castro, M.E. Sastre de Vicente,. Interactions of cadmium(Ⅱ) and protons with dead biomass of marine algae Fucus sp. Mar. Chem.,2006.99 (1-4.):p.106-116.
    108. Karina Yew-Hoong Gina, Y.-Z.T.,*. M.A. Aziz. Derivation and application of a new model for heavy metal biosorption by algae. Water Research 2002.36:p.1313-1323.
    109. Thomas A. Davisa, b., Bohumil Voleskya. Alfonso Muccib.*, A review of the biochemistry of heavy metal biosorption by brown algae. Water Research (2003),2003.37: p.4311-4330.
    110. Sai Krishna Reddy Yadanaparthi, D.G.. Ray von Wandruszka, Adsorbents for the removal of arsenic. cadmium,and lead from contaminated waters. Journal of Hazardous Materials 2009.171:p.1-15.
    111. 张道勇,赵勇胜,潘响亮,胞外聚合物(EPS)在藻菌生物膜去除污水中Cd的作用.环境科学研究2004.17(5):p.52-55.
    112. Duong, T.T., et al., Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with bio film maturity. Science of The Total Environment,2010.408(3):p.552-562.
    113. 徐祖信,我国河流单因子水质标识指数评价方法研究.同济大学学报(自然科学版),2005.33(3):p.321-325.
    114. 徐祖信,我国河流综合水质标识指数评价方法研究.同济大学学报(自然科学版),2005.33(4):p.482-488.
    115. 解莹,李叙勇,王慧亮,李文赞,滦河流域上游地区主要河流水污染特征及评价.环境科学学报,2012.32(3):p.645-653.
    116. 杨虹伟,含有重金属废水的微生物处理方法.科协论坛,2009(6(下)):p.126.
    117. 张玉刚,陈雪梅,微生物处理重金属废水的研究进展.环境科学与技术,2008.31(6):p.58-63.
    118. G. C, etinkaya Do"nmez a, Z.A.b.,*, A.08 ztu'rk c, T. Kutsal, A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry,1999. 34:p.885-892.
    119. Singh, R., et al., Removal of sulphate, COD and Cr(Ⅵ) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresource Technology,2011.102(2):p.677-682.
    120. T. Srinath, T.V., P.W. Ramteke, S.K. Garg,, Chromium(Ⅵ) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere,2002.48:p.427-435.
    121. Travieso, L., Can-izares, R.O., Borja, R., Benitez, F., Dorm'nguez, A.R..Dupeyro'n, R., Valiente, V.., Heavy metal removal by microalgae. Bull. Environ. Contain. Toxicl., 1999.62:p.144-151.
    122. Bankar, A.V. and A.R. Kumar. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. Journal of Hazardous Materials,2009.170(1):p.487-494.
    123. Chen. Y. and G. Gu, Preliminary studies on continuous chromium(VI) biological removal from wastewater by anaerobic-aerobic activated sludge process. Bioresource Technology,2005.96(15):p.1713-1721.
    124. 付春平,钟成华,邓春光,pH与三峡库区底泥氮磷释放关系的试验.重庆大学学报,2004.27(10):p.125-127.
    125. 上海水产大学生命学院.团藻目Volvocales. Available from: http://sckx.shou.edu.cn/11_wsjx/10264_3_f_2/cn-zhiwu/chlorophyta/fl_tzm. asp. html.
    126. 南方周末.三亿人饮水有安全问题人大委员建议加大责罚.2007;Available from:http://news.qq.com/a/20070906/002453_1.htm.
    127. 舒阳,刘振乾,李丽君,凤眼莲浸出液对东海原甲藻生长的抑制作用.生态科学.2006.25(2):p.124-127.
    128. 刘光涛,周长芳,孙利芳,朱薇薇,姜昊,王涵兴,安树青,凤眼莲化感物质对铜绿微囊藻斜生栅藻生长及细胞数相对比例的影响.环境科学学报,2011.31(10):p.2303-2311.
    129. 陈芝兰,杨维东,刘洁生,凤眼莲根系分泌物对塔玛亚历山大藻的化感作用水生生物学报,2005(3).
    130. 彭少麟,邵华,化感作用的研究意义及发展前景应用生态学报,2001.12(5):p.780-786.
    131. 王安,操卫平,外来物种水葫芦的生态环境效应.世界科技研究与发展,2004.26(2):p.25-29.
    132. 唐萍,吴国荣,陆长梅,凤眼莲根系分泌物对栅藻结构及代谢的影响.环境科学学报,2000.20(3):p.355-359.
    133. 郑师章,何敏,水葫芦根部分泌物对若干细菌作用的研究.生态学杂志,1990.9(5):p.56-57.
    134. 毕列爵,水绵.生物学通报,1986(12):p.4-5.
    135. 胡鸿钧,李.魏.,中国淡水藻类1980,上海:上海科学技术出版社.
    136. 张宪政,植物叶绿素含量测定——丙酮乙醇混合液法.辽宁农业科学,1986(3):p.26-28.
    137. 刘晓琼,生态脆弱区大型能源开发对区域发展的影响及优化调控-以榆林市为例,2007,陕西师范大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700