用户名: 密码: 验证码:
城市污水处理厂曝气节能方法与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前能源紧缺的大背景下,可持续发展、绿色发展成为人们关注的话题。污水处理属于能耗密集型行业,污水厂能源消耗在全社会各行业消耗总量中占有一定的比例,城市污水处理厂的节能减排越来越受到国家的重视,但城市污水处理厂节能降耗技术在能耗核算管理、节能降耗途径选择和工程实施中存在方法不健全、技术可实施性差及工程应用短缺等问题。本文以清洁生产、可持续发展的理念为指导,挖掘城市污水处理厂的节能潜力,探索实现节能降耗的多重途径,为污水处理系统的节能降耗提供可行性的解决方案。
     本研究采用现场调研、中试试验研究、生产性试验及工程应用相结合的方式,重点研究了城市污水处理系统的曝气节能降耗技术。在城市污水处理厂能耗分布分析、节能潜力挖掘及能耗核算体系建立等研究的基础上,进行了曝气器的曝气性能影响因素、进水水量配置方法及智能曝气控制技术研究,并在北京清河城市污水处理厂开展20万m3/d的水量配置和智能曝气控制工程应用。
     通过对城市污水处理厂处理单元及单元设备能耗的分析,提出了污水处理系统的主要耗能单元及设备,进一步挖掘其节能空间。从污水处理能耗核算管理的角度,在全国10个不同处理规模(5万~80万m3/d)的典型城市污水处理系统调研分析的基础上,建立了污水处理系统COD、NH4+-N、TP等主要污染物削减的比能耗模型,以及化学除磷药耗成本模型。
     进水水量分配的不均不仅影响水厂的处理效果,而且增加曝气系统能耗,降低曝气池的空间利用率。文中研究了进水水量配置的方法,并在城市污水处理厂进行了进水水量分配调节闸的工程应用,分析了水量调节方法的可行性及其与生物处理系统的关系。结果表明,水量调节闸能够均衡各单元的进水水量,充分发挥曝气池的作用,提高生物处理系统各单元的处理效果,解决城市污水处理厂进水水量不均造成的水量与曝气气量不匹配的矛盾,保证了城市污水处理厂的处理水量及处理效果。
     曝气系统的优化运行是实现城市污水处理厂节能降耗及优化生物处理系统性能的重要手段。曝气器充氧性能关系到整个曝气系统性能的发挥,本文通过中试系统研究了影响曝气器性能的主要因素,为城市污水处理厂曝气器的选择、更换提供技术支持。曝气智能控制具有改善生物处理系统性能和节能降耗的双重作用。本文对曝气智能控制技术方法、原理等进行研究,基于ASM2d建立了曝气动力学模型并进行优化求解。在20万m3/d的城市污水处理厂进行工程应用,实施了基于曝气池曝气需氧量计算的鼓风机控制及DO控制模式,并通过出水水质、鼓风机节能效果分析了智能曝气控制的应用效果。研究及应用结果表明,曝气智能控制系统可稳定控制曝气池的DO,提高曝气池亚硝酸盐的积累率,改善生物处理工艺的性能,不仅从设备的角度实现节能,而且从工艺角度(短程硝化反硝化)实现了节能降耗。在出水NH_4~+-N小于3.7mg/L及处理水量基本保持20万m3/d的前提下,实现了月均能耗降低7%,月均单耗降低9.7%的节能效果。
Sustainable and green development becomes the subject of attention under the background of the current energy shortage. Municipal wastewater treatment plant belongs to the energy consumption-intensive industries, energy consumption of which occupies a certain proportion of the total annual consumption of all national industry, so energy saving and pollution emission reduction of municipal wastewater treatment plant is increasingly concerned by nation. But the energy saving technology of municipal wastewater treatment plant have many problems needed to solve in the aspect of power accounting management, selection of energy-saving methods and project implementation, which include imperfection of energy saving method, difficulty of technical implementation and shortage of engineering application.In order to provide practical solutions for energy saving of the municipal wastewater treatment plant.the concept of clean production and sustainable development was used as a guide to excavate the energy saving potential of the WWTP and to explore multiple ways to achieve energy saving.
     The research method which combined field investigation, pilot experiment research, production testing and engineering application was adopted to focus on the aeration energy saving technology of WWTP. Analysis of energy consumption distribution, excavation of energy-saving potential and establishment of energy consumption evaluating system were followed by research on influence factors of oxygen transfer performance for aerator, allocation of water quantity and accurate control technology of aeration system, which were applied on the second phase(treatment capacity of200000m3/d) of QIN HE municipal wastewater treatment plant.
     The main energy consumption units and equipments were put forward and the energy saving spaces of which were excavated by the Analysis on the energy consumption of municipal wastewater treatment unit and equipment. energy accounting model which was described by ratio of energy consumption to removal quality of COD, NH4+-N,TP and cost model of chemical phosphorus removal which was calculated by consumption of chemicals were established by investigating on the energy and chemicals consumption of10different treatment scale(50000-800000m3/d)WWTP in China in the perspective of energy accounting management.
     Unequal distributions of influent water quantity not only deteriorate the treatment effect, but also increase energy consumption of aeration equipment and reduce the space utilization of the aeration tank. The allocation method of influent water quantity was investigated, and which was applied in the municipal wastewater treatment plant.The feasibility and contribution to the biological treatment system of influent distribution allocation was researched.The result shows that water distribution allocation systems can equalize the influent water of each parallel unit, fully use the function the aeration tank,improve the treatment effect of biological treatment unit,solve the contradictions between uneven influent water quantity and not matched aeration volume,ensure treated water volume and the treatment effect.
     The optimal operation of the aeration system is an important means to achieve energy saving and optimize the properties of biological treatment systems for WWTP. Oxygenation capacity of aerators plays an important role in properties of whole aerator systems. The main factors affecting the properties of the aerator were investigated using pilot experiment to provide technical support for the selection and replacement of aerator.
     Intelligent aeration control not only improves performance of biological treatment system but also save the energy consumption. The methods and principles of intelligent aeration control was investigated, and which was applied in the municipal wastewater treatment plant of200000m3/d. Aeration model based on the ASM2d was established and solved.Blower and DO of aerobic tank were controlled by calculating oxygen demand of aerobic tank which was based on influent load. The effect of intelligent aeration control was investigated by analyzing energy saving of blower aeration and nullity of the effluent water. The result showed that the DO of aerobic tank was stably controlled and nitrite accumulation rate of31.8%was achieved,the treatment effect of biological systems was improved by the application of intelligent aeration system.Energy saving was achieved not only from the view of equipment but also from technology(Short-cut nitrification and denitrification). On the promise of that effluent NH4+-N was less than3.7mg/L and treatment quantity was basically200000m3/d, the average energy consumption and average specific energy consumption of every month were decreased by7%and9.7%respectively.
引文
[1]魏东岩.水资源危机论[J].化工矿产地质,2006,3(28):176-184.
    [2]环境保护部.2010年中国环境质量公报[M].北京:社会科学文献出版社,2011.
    [3]严嫣,赵洪才.“十五”期间我国城市污水处理设施建设情况分析[J].给水排水,2008,34(4):49-52.
    [4]朱五星,舒锦琼.城市污水处理厂能量优化策略研究.给水排水[J],2005,31(12):31-33.
    [5]高旭.城市污水处理工艺能量平衡分析研究和应用[D].重庆:重庆大学,2002.
    [6]林荣忱,李金河.污水处理厂泵站与曝气系统的节能途径.中国给水排水.1999,15(1):21-23.
    [7]吕乃熙.城市污水处理厂节能技术及其发展主要趋向[J].建筑选刊,1990,(1):15-23.
    [8]孟德良,刘建广.污水处理厂的能耗与能量的回收利用[J].给水排水,2002,28(4):18-20.
    [9]蔚洋.河南省城镇污水处理厂能耗现状调查分析[D].郑州:郑州大学,2009.
    [10]催民选.中国能源发展报告(2010)[M].北京:社会科学文献出版社,2010.
    [11]Water Environment Federation,Energy conservation in water and wastewater facilities MOP32[M]. Alexandria, Virgina:WEF,2009.
    [12]URBAIN V., WRIGHT P. THOMAS M.. Performance of the full-scale biological nutrient removal plant at Noosa in Queensland, Australia:nutrient removal and disinfection [J]. Wat Sci&Technol,2001,44(2-3):57-62.
    [13]WINKLER S, MATSCHe N, GASSER M, et al. Upgrading of wastewater treatment plants for nutrient removal under optimal use of existing structures [J].Wat Sci&Technol,2008,57(9):1437-1443.
    [14]U.S.EPA.Ensuring a sustainable future:an energy management guidebook for wastewater and water utilities [EB/OL].[2008-01]. http://www.epa.gov/waterinfrastructure/pdfs/guidebook_si_energymanagement.pdf.
    [15]S(?)RENSEN J,ANDERSEN J,ANDREASEN K,et al. Experience with the upgrading of14treatment plants to N&P removal in the municipality of Aarhus[J].Wat Sci&Technol,1998,37(9):201-208.
    [16]刘月月.三全力争北京中心城区污水全收集全处理全回用[N].中国建设报,2012-2-27,(6).
    [17]EYUP DEBIK,GUL KAYKIOGLU, et al.Reuse of anaerobically and aerobically pre-treated textile wastewater by UF and NF membranes[J]. Desalination,2010,256:174-180.
    [18]L.S. TAM,T.W. TAMG,G.N. LAU,et al.A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems[J].Desalination,2007,202:106-113.
    [19]LUQING QI,XIAOJUN WANG,QIKUN XU. Coupling of biological methods with membrane filtration using ozone as pre-treatment for water reuse [J].Desalination,2011,270:264-268.
    [20]李建勇,王建华,等.曝气流量控制系统用于污水处理厂的节能降耗[J].中国给水排水,2007,23(12):80-85.
    [21]王夙,刘峻.污水处理厂能耗分析与节能技术研究进展[J].四川有色金属,2011(9):59-65.
    [22]张自杰.排水工程[M].北京:中国建筑工业出版社,2003.
    [23]SIQING XIA,JUNYING LI,RONGCHANG WANG. Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor[J]. Ecological Engineering,2008,32:256-262.
    [24]XINPING YANG,SHIMEIWANG,LIXIANG ZHOU. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6[J]. Bioresource Technology,2012,104:65-72.
    [25]IAN W. OLIVER,CAMERRON D.GRANT, ROBER S. MURRAY. Assessing effects of aerobic and anaerobic conditions on phosphorus sorption and retention capacity of water treatment residuals [J]. Journal of Environmental Management,2011,92:960-966.
    [26]YONGZHEN PENG,HONGXUN HOU,SHUYING WANG,et al. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system[J]. Journal of Environmental Sciences,2008,20:398-403.
    [27]张冰,周雪飞,任南琪.新型城市污水脱氮除磷工艺的试验研究与优化设计[J].环境科学,2008,29(6):1518-1526.
    [28]张杰,臧景红,杨宏,等.A2/O工艺的固有缺欠和对策研究[J].给水排水,2003,29(3):22-25.
    [29]周雹,周丹,张礼文,等.活性污泥工艺的设计计算方法探讨[J].中国给水排水,2001,17(5):45-49.
    [30]羊寿生.城市污水厂的能源消耗[J].给水排水,1984,(6):15-19.
    [31]高健磊,蔚洋.污水处理系统能耗分布调查分析与节能建议[J].河南科学,2009,27(11):1449-1452.
    [32]常江,杨岸明,甘一萍.城市污水处理厂能耗分析及节能途径[J].中国给水排水,2011,27(4):33-37.
    [33]杨淑霞,丁志强,曹瑞钰.曝气池中曝气器布置方式改进的研究工业用水与废水,2003.34(6):55-57.
    [34]FAYOLLE Y,COCLX A,GILLOT,et al.Oxygen transfer prediction in aeration tanks using CFD[J].Chemical Engineering Science,2007,62:7163-7171.
    [35]李尔,范跃华.采用气水比评价微孔曝气系统性能[J].给水排水,2006,32(增刊)32-34.
    [36]刘春,张磊,杨景亮,等.微气泡氧传质特性研究[J].环境工程学报,2010,4(3)585-589.
    [37]欧阳云生,贺玉龙,倪明亮.邛崃市污水处理厂A2/O微曝氧化沟系统的设计[J].中国给水排水,2008,24(22):30-33.
    [38]张志峰,虞伟权,薛秀燕.微孔曝气器合理选用探讨[J].给水排水,2007,33(8):101-103.
    [39]吕乃熙.城市污水厂节能技术及其发展主要趋向[J].建筑选刊:给水排水,1990,(1):17-23.
    [40]牛克胜,牟晋鹏,戴新,等.浅谈橡胶膜片式微孔曝气装置的日常维护及保养[J].给水排水,2005,31(05):96-97.
    [41]ONNERTH T,NIELSEN M,STAMER C. Advanced computer control based on real and software sensors[J], Water Sci&Technol,1996,33(1):237-245.
    [42]张自杰.排水工程下册(第四版)[M].北京:中国建筑工业出版社,2000.
    [43]MARK A. JORDAN,DAVID T.WELSH,PETER R.TEASDALE,et al.A ferricyanide-mediated activated sludge bioassay for fast determination of the biochemical oxygen demand of wastewaters [J].Water Research,2010,44:5981-5988
    [44]HENZE, M., HARREMOeS, P., LA COUR JANSEN,et al.Wastewater Treatment, Biological and Chemical Processes[M].3rd ed.Springer, Berlin, Heidelberg, Germany,1995.
    [45]OLSSON, G., NEWELL, B.. Wastewater Treatment Systems[M]. IWA Publishing, New York,1999.
    [46]INGILDESN, P., OLSSON, G., YUAN, Z..A hedging point strategy-balancing effluent quality economy and robustness in the control of wastewater treatment plants[J]. Water Sci.Technol.,2002,45:317-324.
    [47]朱五星,舒锦琼.城市污水处理厂能量优化策略研究[J].给水排水.2005,31(12)31-33.
    [48]YONG MA, YONGZHEN PENG, SHUYING WANG. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system [J]. Bioprocess and Biosystems Engineering,2005(27):223-228.
    [49]WENJUN LIU,GEORGE LEE.应用工艺智能优化控制系统降低污水厂能耗[J].中国给水排水.2006,22(16):29-32.
    [50]M. GALLUZZO, R. DUCATO,V. BARTOLOZZI,et al. Expert control of DO in the aerobic reactor of an activated sludge process[J]. Comput.Chem. Eng,2001(25)619-625.
    [51]A. TRAORe, S. GRIEU, S. PUIG,et al. Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant[J].Chemical Engineering Journal,2008,111:13-19.
    [52]胡寿松.自动控制原理(第四版)[M].北京:科学出版社,2001.
    [53]TCHOBANOGLOUS G,BURTON F,STENSEL D. Wastewater engineering treatment and reuse[M]. McGraw Hill Higher Education,2002.
    [54]M. FIKAR., B. CHACHUAT, M.A. LATIFI. Optimal operation of alternating activated sludge processes[J].Control Engineering Practice,2005,13:853-861.
    [55]YU R,LIAW S,CHANG C, et al. Monitoring and control using on-line ORP on the continuous-flow activated sludge batch reactor system[J]. Wat Sci&Technol,1997,35(1):57-66.
    [56]LI Y,PENG C,PENG Y, et al. Nitrogen removal from pharmaceutical manufacturing wastewater via nitrite and the process optimization with on-line control[J]. Wat Sci&Technol,2004,50(6):25-30.
    [57]杨岸明,王淑莹,等.以pH和ORP作为脉冲SBR工艺的实时控制参数[J].环境污染治理技术与设备,2006,7(12):32-36.
    [58]M.A. BRDYS, M.GROCHOWSKI,T.,et al. Hierarchical predictive control of integrated wastewater treatment systems[J]. Original Control Engineering Practice,2008,16(6):751-767.
    [59]BENOIT BERAUD, JEAN PHILIPPE STEYER, CYRILLE LEMOINE,et al. Optimization of WWTP control by means of multi-objective genetic algorithms and sensitivity analysis.[J]Computer Aided Chemical Engineering,2008,25:539-544.
    [60]HENZE M., GUJER W., MINO T.,et al. Activated sludge models ASM1, ASM2, ASM2d and ASM3[M]. IWA Publishing, London, UK,2000.
    [61]COPP,J.. The COST Simulation Benchmark:Description and Simulator Manual [M]. Office for Official Publications of the European Community, Luxembourg,2001.
    [62]林叶华.集散型控制系统在大型污水处理厂的应用[J].中国给水排水,2006,22(22):66-68.
    [63]王华强,宣浩.污水处理厂自动控制系统[J].仪器仪表用户,2006(4):46-47.
    [64]夏文辉,刘芬,周雹.污水处理厂曝气控制研究[J].给水排水,2009,35(1):121-125.
    [65]赵冬泉,佟庆远,李宁,等.基于节能的鼓风曝气系统溶解氧稳定智能控制方法[J].给水排水,2008,34(7):116-119.
    [66]薛万新,城市污水处理厂的能耗分布与节能管理对策探析[J],资源环境,2009,32(6):72-73.
    [67]姚远,张丹丹,楚英豪.城市污水处理厂中的能耗及能源综合利用[J].资源开发与市场,2010,26(3):202-206.
    [68]M.A. MORENO,P. PLANELLS,et al.Development of a new methodology to obtain the characteristic pump curves that minimize the total cost at pumping stations[J].Biosystems engineering,2009(102)95-105.
    [69]ROBERT DEURER. Pumping systems opportunities for Power savings[J] Water Engineering&Management,1983,(8):27-29.
    [70]李亚峰,马学文.浅谈城市污水处理厂的节能[J].节能,1998(1):35-37.
    [71]高健磊,蔚洋.污水处理系统能耗分布调查分析与节能建议[J].河南科学,2009,11:1449-1451
    [72]秦怀东,邵文卿.污水处理厂泵站与曝气系统的节能途径[J].山西煤炭,2000,20(4):24-26.
    [73]Durmus Kaya,E Alptekin Yagmur etl. Energy efficiency in pumps.[J] Energy Conversion and Management,2008(49):1662-1673.
    [74]刘晓东,段亚萍,桂浩尧.短程硝化-反硝化生物脱氮技术研究.[J]沈阳大学学报,2007,19(2):74-78.
    [75]VOTES J P. Removal of nitrogen from highly nitrogenous wastewater [J]. JWPCF,1975,47(4):394-398.
    [76]ZHU G, PENG Y,LI B,et al.Biological Removal of Nitrogen from Wastewater[J]. Rev. Environ. Contam. Toxicol.,2008,192:159-195.
    [77]袁林江,彭党聪,王志盈.短程硝化反硝化生物脱氮[J[.中国给水排水,2000,94(2):29-31.
    [78]PARK S, BAE W.Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J].Process Biochemistry,2009,44(2):631-640.
    [79]VADIVELU V M,KELLER J,YUAN Z.Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter[J].Wat.Sci.Technol.,2007,56(7):89-97.
    [80]JIANHUA GUO,YONGZHEN PENG, HUIJUN HUANG,et al. Short-and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater[J]. Journal of Hazardous Materials,2010,179:471-479.
    [81]BLACKBURNE R,YUAN Z,KELLER J.Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J].Biodegradation,2008,19(2):303-312.
    [82]曾薇,李磊,等.A20工艺处理生活污水短程硝化反硝化的研究.[J]中国环境科学,2010,30(5):625-632.
    [83]HELLINGA C,SCHELLEN A,MULDER J W,et al. The SHARON process:an innovative method for nitrogen removal from ammomium rich wastewater [J]. Wat Sci Tech,1998,37(9):135-142.
    [84]傅金祥,徐岩岩.碳氮比对短程硝化反硝化的影响.[J]沈阳建筑大学学报(自然科学版),2009,25(4):728-732.
    [85]祝贵兵,彭永臻,郭建华.短程硝化反硝化生物脱氮技术[J].哈尔滨工业大学学报,2008,40(10):152-1558.
    [86]BRODA E. Two kinds of lithotrophs missing in nature[J]. Z Allg.Microbioll,1977,17:491-493.
    [87]MULDER A, VANDE GRAAF A A, ROBERTSON L A,et al. Anareobic ammonium oxidation discovered in a denitrifying fluidized bedreactor[J]. FEMS Microbiol.Ecol.,1995,16(3):177-183.
    [88]VANDE GRAAF A A, DE BRUIJN P,ROBERTSON L A,et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15studies in a fluidized bed reactor [J]. Microbiology,1997,143(7):2415-2421.
    [89]王全,张克峰,王洪波,王永磊,李梅.厌氧氨氧化技术研究进展[J].山东建筑大学学报,2011,26(1):80-84.
    [90]王俊安,李冬,张杰.低氨氮条件下厌氧氨氧化生物滤池快速启动[J].北京工业大学学报,2011,37(7):1090-1096.
    [91]张龙,肖文德,李伟,等.SBR系统中同时硝化反硝化生物脱氮研究[J].环境工程,2005,23(4):29-32.
    [92]张鹏,周琪.低氧条件下完全混合系统同时硝化和反硝化的试验研究[J].上海环境科学,2003,22(11):755-759.
    [93]王景峰,王暄,季民,等.聚糖菌颗粒污泥基于胞内储存物质的同步硝化反硝化[J].环境科学,2006,27(3):473-477.
    [94]KRUL JM. The relationship between dissimilatory nitrate reduction and oxygen uptake by cells of an Alcaligenes strain in flocs and in suspension and by activated sludge flocs [J]. Water Res,1976,10:337-341.
    [95]RITTMANN B E, LANGELAND W E. Simultaneous denitrification with nitrification in single-channel oxidation ditches [J]. J Water Pollut Contr Fed,1985,57:300-308.
    [96]SHENG BING HE,GANG XUE,BAOZHEN WANG. Affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor [J].Journal of Hazardous Materials,2009,168:704-710.
    [97]KLANGDUEN POCHANA,JuRG KELLER..Study of factors affecting simultaneous nitrification and denitrification (SND)[J].Water Science and Technology,1999,39:61-68.
    [98]PATRICIA A.M. ARTS, LESLEY A. ROBERTSON, J. GIJS KUENEN.Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat culture s[J].FEMS Microbiology Ecology,1995,18:305-315.
    [99]方茜,荣宏伟,张立秋,杜馨.同步硝化反硝化脱氮模型及动力学分析[J].广州大学学报(自然科学版).2009,8(2):60-66.
    [100]OLSSON, G., G., ICA and me-A subjective review [J], Water Research (2012), doi:10.1016/j.watres.2011.12.054.
    [101]BRIGGS, R., KNOWLES, G., SCRAGG, L.J.. A continuous recorder to dissolved oxygen in water. Analyst, London79,744,2000.
    [102]BRIGGS, R, DAVIES, F.S., DYKE, G.V.. Use of wide-bore dropping-mercury electrode and zinc reference electrode for continuous polarography. Chem. Ind.,1957,223.
    [103]BRIGGS, R, K.,OATEN, A.B..Monitoring and Automatic Control of Dissolved Oxygen Level in Activated Sludge Plants.Effluent and Water Treatment Convention, London,1967.
    [104]BRIGGS, R.. Instrumentation and control in sewage treatment. In:ICA (1973).
    [105]Meredith, W.D.. Dissolved oxygen control of activated sludge process. In:ICA,1973.
    [106]Brouzes, P.. Automated activated sludge plants with respiratory metabolism control. In: Jenkins, S.H.(Ed.),Advances in Water Pollution Res. Pergamon Press, New York,1969.
    [107]Petersack, J.R., Stepner, D.E.. Computerized data management and control of a secondary wastewater treatment plant. In:ICA,1973.
    [108]Roesler, J.F.. Plant performance using dissolved oxygen control. J. Environ. Eng. Division, ASCE100(EE5),1974:1069-1076.
    [110]Beckman, W.J.,1973. Design of wastewater treatment plants for computer control. In: ICA,1973.
    [111]BARGMAN, R.D., BETZ, J.M. GARBER, W.F.. Biological treatment of wastewaters and process automation. In:ICA,1973.
    [112]IWAKI, H., OHTO, T., NOGITA, S., et al. Preliminary study of dissolved oxygen control of a diffused air aeration plant[J]. Prog.Water Technol,1977,9(5-6):393-397.
    [113]S(?)RENSEN, P.E.. Evaluation of control schemes for the activated sludge process using large pilot-scale experiments[J].Prog. Water Technol,1977,9(5-6):419-425.
    [114]BRACKEN,B.D., FLANAGAN, M.J... Design recommendations for automatic dissolved oxygen control[J]. Prog. Water Technol,1977,9(5-6):551-555.
    [115]LINDBERG, C.F., CARLSSON, B.. Nonlinear and set-point control of the dissolved oxygen concentration in an activated sludge process[J]. Water Sci. Technol,1996,34(3-4):135-142.
    [116]INGILDESN, P., JEPPSSON, U., OLSSON, G.. Dissolved oxygen controller based on on-line measurements of ammonium combining feed-forward and feedback[J]. Water Sci. Technol.2002,45(4-5):453-460.
    [117]VRECKO, HVALA N.,STARE A.,et al. Improvement of ammonia removal in activated sludge process with feedforward-feedback aeration controllers [J]. Water Sci. Technol.2006,53(4-5):125-132.
    [118]NIELSEN, M.K., PERSSON, O., et al. Computer control of nitrifying and denitrifying activated sludge process[J]. Water Sci.Technol,1981,13:285-291.
    [119]LONDONG, J.. Strategies for optimised nitrate reduction with primary denitrification[J]. Water Sci. Technol,1992,26(5-6):1087-1096.
    [120]YUAN, Z., OEHMEN, A., INGILDSEN, P.. Control of nitrate recirculation flow in predenitrification systems[J]. Water Sci.Technol,2002,45(4-5):29-36.
    [121]DAIGGER, G.T.. A practitioner's perspective on the uses and future developments for wastewater treatment modelling[J].Water Sci. Technol,2011,63:516-526.
    [122]TORPEY, W.N.. Practical results of step aeration. Sewage Works J.[J],1948,20,781.
    [123]BUSBY, J.B., ANDREWS, J.F.. Dynamic modelling and control strategies for the activated sludge process[J]. J. Water Pollut. Control Fed.,1975,47(5):1055-1080.
    [124]OLSSON, G., HOLMBERG, U., WIKSTOoM, A.. A model library for dynamic simulation of activated sludge systems. In:ICA,721-728,1985.
    [125]HENZE, M., GRADY JR., C.P.L.,et al. A general model for single-sludge wastewater treatment systems [J]. Water Res.,1987,21:505-515.
    [126]HENZE, M.,GUJER, W., MINO, T., et al. Activated Sludge Model No.2. Scientific and Technical Report, No.3, IWA ublishing, London,1995.
    [127]BATSTONE, D.J., KELLER, J., ANGELIDAKI, I., et al. Anaerobic Digestion Model No.1. Scientific and Technical Report No.13, IWA Publishing, London,2002.
    [128]EBERL, H., MORGENROTH, E., NOGUERA, D.. Mathematical Modeling of Biofilms. IWA Publishing, London, UK,2006.
    [129]YUAN, Z., BOGAERT, H.. Titrimetric respirometer measuring the nitrifiable nitrogen in wastewater using in-sensorexperiment[J].Water Res,2001,35:143-150.
    [130]GUJER, W.. Is modelling of biological wastewater treatment a mature technology?[J]. Water Sci. Technol,2011,63(8):1739-1743.
    [131]OLSSON, G., NEWELL, B.. Wastewater Treatment Systems.Modelling, Diagnosis and Control. IWA Publishing, London,1999.
    [132]FLORES ALSINA, X., SIN, G., RODRIGUEZ RODA, I.,et la.Multicriteria evaluation of wastewater treatment plant control strategies under uncertainty [J]. Water Res,2008,42(17):4485-4497.
    [133]VANROLLEGHEM, P.A., GILLOT, S.. Robustness and economic measures as control benchmark performance criteria[J]. Water Sci. Technol,2002,45(4-5):117-126.
    [134]BELIA, E., AMERLINCK, Y., BENEDETTI, L.,et al. Wastewater treatment modelling: dealing with uncertainties[J]. Water Sci. Technol,2009,60(8):1929-1941.
    [135]VANROLLEGHEM, P.A., BERTRAND KRAJEWSKI, J.L., BROWN, R., et al. Uncertainties in water system models Breaking down the water discipline silos. In: Watermatex,8th IWA Symp. on Systems Analysis and Integrated Assessment, San Sebastian, Spain,2011.
    [136]F. HERNANDEZ, HERNANDEZ SANCHO, M.MOLINOS SENANTE, et al. Cost modelling for wastewater treatment processes [J]. Desalination,2011,268:1-5.
    [137]ERAN FRIEDLER, EHUD PISANTY. Effects of design flow and treatment level on construction and operation costs of municipal wastewater treatment plants and their implications on policy making[J]. Water Research,2006,(40):3751-3758.
    [138]杨岸明,常江,等.臭氧氧化二级出水有机物可生化性研究.[J]环境科学,2010,31(2):363-368.
    [139]孙从军,陈季华.水温对氧转移速率的影响研究[J].环境科学研究,1998,11(4):13-15
    [140]王鹤立,王绍文,吕炳南.均匀受限曝气机理及清水充氧试验研究[J].中国给水排水,2001,17(1).
    [141]李永光,曹瑞钰.污水处理中影响微孔曝气充氧性能因素的研究[J].新疆环境保护2004,20(3):05-08.
    [142]HUANG,H.J.STENSTROM,M.K..Evaluation of fine bubble alpha factors in near full-scale equipment[J].JWPCF,1985,57(12):143-1151.
    [143]李海英、张贵杰、孙贵石.降低中小型污水处理厂能耗的有效途径[J].节能,2007,(3):34-36.
    [144]汤国桢.确定微孔曝气器传质总系数KLa的探讨[J].中国给水排水,1999,15(8).
    [145]赵静野,郑晓萌,高军.曝气充氧中氧总传质系数的探讨[J].北京建筑工程学院学报,2006,22(1):11-14.
    [146]BARR, T, TAYLOR, J, DUFF, S. Effect of HRT, SRT and temperature on the performance of activated sludge reactors treating bleached kraft mill effluent[J]. Wat. Res.,1996,30(4):799-810.
    [147]YONG MA, YONGZHEN PENG, XIAOLIAN WANG, et al. Intelligent control aeration and external carbon addition for improving nitrogen removal[J]. Environ. Model. Softw.,2006,21:821-828.
    [148]黄浩华,张杰,文湘华.城市污水处理厂A2/O工艺的节能降耗途径研究[J].环境工程学报,2009,3(1):35-38.
    [149]G ZHU, Y PENG, B LI,et al. Biological Removal of Nitrogen from Wastewater[J].Rev.Environ.Contam.Toxicol.,2008,192:159-195.
    [150]曾薇,张悦,李磊,等.生活污水常温处理系统中AOB与NOB竞争优势的调控[J].环境科学,2009,30(5):1430-1436.
    [151]VADIVELU V M, KELLER J, YUAN Z.Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter[J].Wat.Sci.Technol.,2007,56(7):89-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700