用户名: 密码: 验证码:
双污泥系统颗粒污泥的培养及脱氮除磷性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧颗粒污泥技术、短程硝化技术与反硝化除磷技术是目前国内外水污染控制研究关注的热点技术。基于以上理论,本论文研究了如何从传统的活性污泥培养成具有硝化功能和除磷功能的颗粒污泥,并考察了不同环境条件对其性能的影响。在此基础上,本论文还提出了一种以颗粒污泥为介质的反硝化除磷新工艺。该工艺将颗粒污泥技术和反硝化脱氮除磷技术相耦合,由两个交替运行的厌\缺氧SBR和好氧硝化SBR组成,具有以下特点:(1)发挥了颗粒污泥沉降性能好,生物量大,脱氮除磷效率高的优势;(2)解决了硝化菌和聚磷菌污泥龄不同的矛盾且不需污泥回流,简化了系统装置;(3)节省耗氧量,减少污泥产量。
     本文包括3部分研究内容:
     (1)短程硝化颗粒污泥SBR的研究
     ①短程硝化颗粒污泥的培养:采用SBR反应器,在温度28C,溶解氧(DO)2.0mg/L,污泥龄(SRT)为15d的运行工况下,缩短沉降时间为2min,通过以pH作为氨氧化过程的控制参数,优化曝气时间,防止过曝气,经过80周期(19d)成功实现短程硝化絮状污泥的颗粒化,并维持稳定。形成的颗粒污泥粒径在1.5-2.0mm之间,对COD和氨氮的去除率分别达到80%和95%,亚硝酸盐积累率(NO2--N/NOx--N)平均达到95%。分子生物学FISH技术对颗粒污泥种群结构的定量分析表明,氨氧化细菌(AOB)依旧是优势菌群,约占17.8%左右,亚硝酸盐氧化菌(NOB)占0.6%。曝气初期FA的抑制和实时控制是启动和维持颗粒污泥短程硝化性能的主要原因。
     ②亚硝酸盐氧化菌颗粒污泥的培养及反应动力学研究,采用SBR反应器,在温度25C,曝气量0.2m3/h,DO2.0mg/L,沉降时间为2min的条件下,经过130d成功培养出亚硝酸盐氧化菌颗粒污泥,平均粒径在0.72mm。长期监测发现,颗粒污泥具有良好的亚硝酸盐氧化能力且出水中硝酸盐几乎检测不到。FISH定量分析表明,Nitrospira为优势菌群。利用莫诺特方程测定亚硝酸盐底物,动力学参数Vs为30.94mg/(g VSS·h),Ks为8.19mg/L。
     ③C/N比对硝化颗粒污泥形成和微生物群落迁移变化的影响,采用4个完全相同的SBR系统R1、R2、R3和R4,分别在进水COD/N比为0/200,200/200,400/200,800/200的条件下培养硝化颗粒污泥,结果表明,在R2和R3反应器中,颗粒污泥培养成功。但是发现,R2中的低负荷下培养的颗粒污泥,形态规则,颗粒污泥强度高,粒径较小,硝化活性强,且硝化菌群的数量较高。
     ④温度和游离氨的协同作用对硝化颗粒污泥和絮状污泥氨氧化特性的影响,结果表明,氨氧化速率随着温度的升高逐渐增大,在相同温度下,颗粒污泥的氨氮去除率是絮状污泥的2-3倍。同时还发现,当游离氨升高到90mg/L,温度降低到10C时,两系统的氨氧化都受到明显抑制。随着温度高到30C,氨氧化反应速率增加,这说明高温有利于减轻游离氨的毒害作用。相同条件下,颗粒污泥似乎有着更强的抗FA抑制能力。主要原因是颗粒污泥相对于絮状污泥结氨氧化菌种群数量较高,且游离氨进入颗粒内部传质受到限制,从而表现出抗高氨氮负荷冲击的优势。
     (2)除磷颗粒污泥SBR的研究
     ①除磷颗粒污泥的培养与丝状菌膨胀控制,在SBR反应器中接种普通活性污泥,通过厌氧\好氧交替的运行方式,以沉降时间作为选择要素,经过人工配水快速实现污泥颗粒化、实际生活污水稳定维持以及提高P/COD比强化富集聚磷菌3个阶段,成功培养出聚磷能力良好的好氧颗粒污泥,并稳定运行360周期。模拟废水水质成份单一且易降解是好氧颗粒污泥发生丝状菌膨胀的主要原因,变换水质为实际生活污水可有效控制丝状菌的过度生长。成熟的好氧颗粒污泥平均粒径0.8mm,SVI在17~30ml/g,平均除磷效率在90%以上。FISH定量分析表明,聚磷菌约占总菌的51.48%。
     ②缺氧环境对颗粒污泥强化除磷系统释磷的影响,在厌氧起始阶段投加不同浓度的NO3--N和NO2--N,结果表明,硝态氮的投加对聚磷菌释磷无明显抑制,系统中VFA的吸收、磷的释放和硝态氮的反硝化同时发生,VFA吸收速率增大,比释磷速率降低,主要原因是反硝化菌与聚磷菌竞争碳源。但是在颗粒污泥系统中有明显的亚硝酸盐积累。不同pH和不同浓度的NO2--N批次试验表明,游离亚硝酸(FNA)对磷的释放有明显刺激作用。当FNA增加到0.004mg HNO2-N/L,比磷释放速率增加了4倍。另外,FNA对VFA的吸收和PHA的合成均有明显抑制,分别减少了53%和70%。FNA刺激磷释放的机理是聚磷菌需要释放更多的能量来保持足够的质子驱动力。
     (3)以颗粒污泥为介质的双污泥工艺氮磷去除性能研究
     本研究考察了HRT对双污泥系统脱氮除磷的影响,发现HRT的变化对COD的去除率影响较小,出水COD浓度平均为35.2mg/L。增加好氧硝化SBR的HRT,可实现氨氮的全部氧化,降低出水总氮浓度。增加缺氧SBR的HRT,可增大系统的反硝化除磷能力。本研究同时考察了进水C/P/N对双污泥系统脱氮除磷的影响,随着进水C/P比的逐渐增大,磷的释放能力逐渐增大。进水C/P比为20/1时,磷的去除能力维持在90%,出水磷浓度平均为0.75mg/L,当C/P比增加到40/1时,出水磷浓度较高,平均为3.8mg/L。通过探索影响双污泥工艺的关键因素,优化系统运行工况,实现了以颗粒污泥为介质的双污泥系统完成短程硝化反硝化除磷脱氮,最大程度的优化同步生物脱氮处理工艺。
Aerobic granular sludge technology, partial nitrification technology anddenitrifying phosphorus removal technology are the hot spots for wastewatertreatment at home and abroad. In this study, the cultivation of aerobic granules fornitrogen and phosphorus removal by seeding conventional activated sludge werestudied and the effect of environmental factor on the performance of granules werealso studied. On this basis, a new process called granular two-sludge system wasestablished in this paper which is fundamentally based on the technique ofdenitrifying phosphorus removal. The two-sludge system with simultaneous nitrogenand phosphorus removal consists of sequencing batch reactors (SBR) is workingunder alternating anaerobic/anoxic conditions and an aerobic SBR using granularsludge. This process realizes a combination of granulation technology, denitrifyingphosphorus and nitrogen removal technology and has the characteristics described asfollows:(1) aerobic granules exhibit advantages of excellent settleability, highbiomass and high efficiency of nitrogen and phosphorus removal;(2) the system issimplified without sludge return and solves the contradiction of different SRT ofnitrifying bacteria and PAOs;(3) anoxic stage saves oxygen consumption and reducessludge production.
     There are three parts in this paper:
     (1) Study of partial nitrifying granular sludge in SBR
     ①Cultivation of partial nitrifying granular sludge: Conventional partialfloccular activated sludge were successfully achieved granulation in80cycles (19days) under the conditions of temperature30C, dissolved oxygen (DO)2.0mg/L,sludge retention time (SRT)15days by increase of the settling time and optimizationof aerobic duration in SBR. pH was monitored and used to control aeration in order toavoid excess aeration. Average diameter of the aerobic granular sludge was between1.5-2.0mm. The nitrite accumulation ratio (NO2--N/NOx--N) was over95%as theshort-cut process was operated stably. The granules showed very good capability ofCOD removal with80%and ammonia removal with95%. Enrichment of ammoniaoxidizing bacteria was quantified by fluorescence in situ hybridization (FISH)analysis as17.8%of the total bacteria,on the contrary, the density of NOB decreasedto be0.6%. FA inhibition effect and real-time control were the main factors for stablepartial short-cut nitrification.
     ②Cultivation of granules with nitrite oxidizing bacteria and reaction dynamicsstudy: In this study, a sequencing batch reactor (SBR) was developed to enrich nitriteoxidizing bacteria granular sludge fed with nitrite inorganic wastewater in SBR continuously under the condition of temperature25C, dissolved oxygen (DO)2.0mg/L, settling-time2mins. After130-day operation, sludge flocs becamegranulated with an average diameter of0.72mm. Long-term monitoring of the reactorperformance revealed that steady nitrite oxidation was achieved with the nitrite levelin the effluent almost undetectable. FISH results reported that Nitrospira is thedomitant bacteria. The Monod equation was used to describe their nitrite utilizationrate and the kinetic coefficients were calculated to be Vs=30.94mg/(g VSS h) and Ks=8.19mg/L.
     ③Effect of COD/N ratio on the granulation process and microbial populationsuccession: Four identical sequencing batch reactors, R1, R2, R3and R4wereoperated with various initial COD/N ratios ranging from0/200,200/200,400/200and800/200. Aerobic granules were successfully cultivated in R2and R3. Differently,granules in R2had compact structure, regular shape, strong intensity and high specificnitritation rate and nitrifying bacteria population.
     ④Short-term effects of temperature and free ammonia (FA) on ammoniumoxidization in granular and flocculent system: The results showed that the rate ofammonium oxidation in both cultures increased significantly as temperatureincreasing. The specific ammonium oxidation rate with the granules was2-3timeshigher than that with flocs at the same temperature. Nitrification at various FAconcentrations and temperatures combination exhibited obvious inhibition inammonium oxidation rate when FA was90mg/L and temperature dropped to10C inthe two systems. However, the increase in substrate oxidation rate of ammonia at30Cwas observed. The results suggested that higher reaction temperature was helpful toreduce the toxicity of FA. Granules appeared to be more tolerant to FA attributed tothe much fraction of ammonia oxidizing bacteria (AOB) and higher resistance to thetransfer of ammonia into the bacterial aggregates.
     (2) Study of aerobic granular sludge enriched with phosphorus accumulatingorganisms for phosphorus removal in SBR
     ①Cultivation of aerobic granular sludge enriched with phosphorusaccumulating organisms and filamentous overgrowth controlling: By decreasing thesettling time,aerobic granules enriched with phosphorus accumulating organisms(PAOs) are cultivated under alternate anaerobic/aerobic conditions in a SBRinoculated with conventional activated sludge. The system underwent three phases:rapid start-up with synthetic wastewater, stabilization with real domestic wastewaterand enrichment of PAOs by increasing P/COD and stabilized during the next360cycles. Filamentous sludge bulking happened during start-up phase and readilybiodegradable organics in synthetic wastewater was considered to be the main reasonfor filamentous overgrowth in aerobic granules. It was ultimately controlled through changing the substrate from synthetic wastewater to real domestic wastewater. Thematured aerobic granules had an approximately spherical shape with a size of0.8mm,SVI of17-30ml/g. The average PO43--P removal efficiency was above90%. FISHanalysis showed that PAOs accounted for about51.48%of the total bacteria.
     ②Effects of anoxic condition on phosphorus release of the phosphorusaccumulating microbial granules: It was investigated in batch testes using acetate andpropionate as carbon source by adding different levels of NO3--N and NO2--N in theinitial anaerobic stage. The results showed that nitrate addition had no obviousinhibition effect on phosphorus release. Phosphorus release and denitrificationsimultaneously occurred in the presence of nitrate accompanying VFAs increased andphosphorus release rate decreased. This phenomenon demonstrated a competition fororganic substrate under an anoxic condition between PAOs and ordinary heterotrophicdenitrifying bacteria with equal opportunities. Nitrite accumulation was observed ingranular system. Batch tests of NO2--N with different pH value showed that FNA,rather nitrite, had a strong stimulation effect on P-release. The P-release rate exhibited4times increase when FNA concentration was higher than0.004mg HNO2-N/L. And,VFA uptake rate and PHA synthesis mass were observed to decrease by53%and70%.The mechanism of nitrite toxicity associated with its effect on bacterial membranesand energy generation was that PAOs need release more energy to provide adequateproton motive force.
     ③Nitrogen and phosphorus removal performance of granular two-sludgesystem: In this study, the effect of HRT on nitrogen and phosphorus removal wasinvestigated in the two-sludge system. The results found that COD removal rate wasless affected; the average COD effluent concentration was35.2mg/L. The increaseingHRT of aerobic nitrifying SBR can achieve complete ammonia oxidation and reducetotal nitrogen concentration in effluent. Similarly, a corresponding reduction ofphosphorus in effluent can be attained by increasing the HRT of anoxic stage. Theeffect of influent C/P/N ratio on the two-sludge system was also studied. With theinfluent C/P ratio gradually increasing, the phosphorus release capacity increased.When influent C/P ratio was at20/1, phosphorus removal capacity remained at90%and average effluent phosphorus concentration of0.75mg/L. But when the C/P ratioincreased to40/1, the effluent phosphorus concentration was higher to3.8mg/L. In all,it is expected that this study can optimize simultaneous biological nitrogen andphosphorus removal process to the greatest extent via the aerobic granular media.
引文
[1] Imajo U, Tokutomi T, Furukawa K. Granulation of Anammox microorganisms in up-flowreactors[J]. Water Science and Technology,2004,49(5-6):155-163.
    [2] Guven D, Dapena A, Kartal B, et al. Propionate oxidation by and methanol inhibition ofanaerobic ammonium-oxidizing bacteria[J]. Applied and Environmental Microbiology,2005,71(2):1066-1071.
    [3] Sliekers A O, Haaijer, S.C.M., Stafsnes, M.H., Kuenen, J.G., Jetten, M.S.M. Competitionand coexistence of aerobic ammonium and nitrite oxidising bacteria at low oxygenconcentrations[J]. Applied Microbiology and Biotechnology,2005,68808–817.
    [4] Mishima K, Nakamura M. Self-immobilization of aerobic activated-sludge—a pilot-studyof the aerobic upflow sludge blanket process in municipal seage treatment.15th BiennialConf of the International Assoc on Water Pollution Research and Control. Kyoto,Japan.1990.
    [5]倪丙杰.好氧颗粒污泥的培养过程、作用机制及数学模拟[D].中国科学技术大学.2009.
    [6]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626.
    [7] Tay J H, Liu Q S, Liu Y. Characteristics of aerobic granules grown on glucose and acetatein sequential aerobic sludge blanket reactors[J]. Environmental Technology,2002,23(8):931-936.
    [8] Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-Emission matrixregional integration to quantify spectra for dissolved organic matter[J]. EnvironmentalScience&Technology,2003,37(24):5701-5710.
    [9] Adav S S, Lee D J. Extraction of extracellular polymeric substances from aerobic granulewith compact interior structure[J]. Journal of Hazardous Materials,2008,154(1-3):1120-1126.
    [10] Sheng G P, Yu H Q. Characterization of extracellular polymeric substances of aerobic andanaerobic sludge using three-dimensional excitation and emission matrix fluorescencespectroscopy[J]. Water Research,2006,40(6):1233-1239.
    [11] Adav S S, Lee D J, Lai J Y. Effects of aeration intensity on formation of phenol-fedaerobic granules and extracellular polymeric substances[J]. Applied Microbiology andBiotechnology,2007,77(1):175-182.
    [12] Chiu Z C, Chen M Y, Lee D J, et al. Diffusivity of oxygen in aerobic granules[J].Biotechnology and Bioengineering,2006,94(3):505-513.
    [13] Chiu Z C, Chen M Y, Lee D J, et al. Oxygen diffusion in active layer of aerobic granulewith step change in surrounding oxygen levels[J]. Water Research,2007,41(4):884-892.
    [14] Chiu Z C, Chen M Y, Lee D J, et al. Oxygen diffusion and consumption in active aerobicgranules of heterogeneous structure[J]. Applied Microbiology and Biotechnology,2007,75(3):685-691.
    [15] Jiang H L, Tay J H, Maszenan A M, et al. Bacterial diversity and function of aerobicgranules engineered in a sequencing batch reactor for phenol degradation[J]. Applied andEnvironmental Microbiology,2004,70(11):6767-6775.
    [16] Jiang H L, Tay J H, Maszenan A M, et al. Enhanced phenol biodegradation and aerobicgranulation by two coaggregating bacterial strains[J]. Environmental Science&Technology,2006,40(19):6137-6142.
    [17] Jiang H L, Tay S T L, Maszenan A M, et al. Physiological traits of bacterial strainsisolated from phenol-degrading aerobic granules[J]. Fems Microbiology Ecology,2006,57(2):182-191.
    [18] Jiang H L, Maszenan A M, Tay J H. Bioaugmentation and coexistence of two functionallysimilar bacterial strains in aerobic granules[J]. Applied Microbiology and Biotechnology,2007,75(5):1191-1200.
    [19] Adav S S, Chen M Y, Lee D J, et al. Degradation of phenol by aerobic granules andisolated yeast Candida tropicalis[J]. Biotechnology and Bioengineering,2007,96(5):844-852.
    [20] Jiang Y, Wen J P, Li H M, et al. The biodegradation of phenol at high initial concentrationby the yeast Candida tropicalis[J]. Biochemical Engineering Journal,2005,24(3):243-247.
    [21] Weber S D, Ludwig W, Schleifer K H, et al. Microbial composition and structure ofaerobic granular sewage biofilms[J]. Applied and Environmental Microbiology,2007,73(19):6233-6240.
    [22] Williams J C, de los Reyes Iii F L. Microbial community structure of activated sludgeduring aerobic granulation in an annular gap bioreactor[J]. Water Science and Technology,2006,54(1):139-146.
    [23] Toh S K, Tay J H, Moy B Y P, et al. Size-effect on the physical characteristics of theaerobic granule in a SBR[J]. Applied Microbiology and Biotechnology,2003,60(6):687-695.
    [24] Lemaire R, Yuan Z, Blackall L L, et al. Microbial distribution of Accumulibacter spp. andCompetibacter spp. in aerobic granules from a lab-scale biological nutrient removalsystem[J]. Environmental Microbiology,2008,10(2):354-363.
    [25] Liu Y, Tay J H. The essential role of hydrodynamic shear force in the formation of biofilmand granular sludge[J]. Water Research,2002,36(7):1653-1665.
    [26] Chen M Y, Lee D J, Tay J H. Distribution of extracellular polymeric substances in aerobicgranules[J]. Applied Microbiology and Biotechnology,2007,73(6):1463-1469.
    [27] Chen M Y, Lee D J, Tay J H, et al. Staining of extracellular polymeric substances andcells in bioaggregates[J]. Applied Microbiology and Biotechnology,2007,75(2):467-474.
    [28] Chen M Y, Lee D J, Yang Z, et al. Fluorecent staining for study of extracellular polymericsubstances in membrane biofouling layers[J]. Environmental Science&Technology,2006,40(21):6642-6646.
    [29] Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation in sequentialaerobic sludge blanket reactor[J]. Journal of Applied Microbiology,2001,91(1):168-175.
    [30] Wang X H, Zhang H M, Yang F L, et al. Improved stability and performance of aerobicgranules under stepwise increased selection pressure[J]. Enzyme and MicrobialTechnology,2007,41(3):205-211.
    [31] Tay J H, Yang S F, Liu Y. Hydraulic selection pressure-induced nitrifying granulation insequencing batch reactors[J]. Applied Microbiology and Biotechnology,2002,59(2-3):332-337.
    [32] Liu Y, Yang S F, Tay J H, et al. Cell hydrophobicity is a triggering force ofbiogranulation[J]. Enzyme and Microbial Technology,2004,34(5):371-379.
    [33] Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on theformation and stability of biogranules[J]. Applied Microbiology and Biotechnology,2004,65(2):143-148.
    [34] Wilen B M, Onuki M, Hermansson M, et al. Microbial community structure in activatedsludge floc analysed by fluorescence in situ hybridization and its relation to flocstability[J]. Water Research,2008,42(8-9):2300-2308.
    [35] Zita A H M. Determination of bacterial cell surface hydrophobicity of single cells incultures and in wastewater in situ.[J]. FEMS Microbiol Lett.,1997,18299-306.
    [36] Adav S S, Lee D J, Ren N Q. Biodegradation of pyridine using aerobic granules in thepresence of phenol[J]. Water Research,2007,41(13):2903-2910.
    [37] Tsuneda S, Nagano T, Hoshino T, et al. Characterization of nitrifying granules producedin an aerobic upflow fluidized bed reactor[J]. Water Research,2003,37(20):4965-4973.
    [38] Jiang H L, Tay J H, Liu Y, et al. Ca2+augmentation for enhancement of aerobicallygrown microbial granules in sludge blanket reactors[J]. Biotechnology Letters,2003,25(2):95-99.
    [39] Moy B Y P, Tay J H, Toh S K, et al. High organic loading influences the physicalcharacteristics of aerobic sludge granules[J]. Letters in Applied Microbiology,2002,34(6):407-412.
    [40] Liu Q S, Tay J H, Liu Y. Substrate concentration-independent aerobic granulation insequential aerobic sludge blanket reactor[J]. Environmental Technology,2003,24(10):1235-1242.
    [41] Yang S F, Li X Y, Yu H Q. Formation and characterisation of fungal and bacterial granulesunder different feeding alkalinity and pH conditions[J]. Process Biochemistry,2008,43(1):8-14.
    [42] Yang S F, Tay J H, Liu Y. Inhibition of free ammonia to the formation of aerobicgranules[J]. Biochemical Engineering Journal,2004,17(1):41-48.
    [43] Liu Y Q, Tay J H. Influence of cycle time on kinetic behaviors of steady-state aerobicgranules in sequencing batch reactors[J]. Enzyme and Microbial Technology,2007,41(4):516-522.
    [44] Sutherland I W. Polysaccharases for microbial exopolysaccharides[J]. CarbohydratePolymers,1999,38(4):319-328.
    [45] Castellanos T, Ascencio F, Bashan Y. Starvation-induced changes in the cell surface ofAzospirillum lipoferum[J]. Fems Microbiology Ecology,2000,33(1):1-9.
    [46] Sanin S L, Sanin F D, Bryers J D. Effect of starvation on the adhesive properties ofxenobiotic degrading bacteria[J]. Process Biochemistry,2003,38(6):909-914.
    [47] Liu Y Q, Tay J H. Characteristics and stability of aerobic granules cultivated withdifferent starvation time[J]. Applied Microbiology and Biotechnology,2007,75(1):205-210.
    [48] de Kreuk M, Heijnen J J, van Loosdrecht M C M. Simultaneous COD, nitrogen, andphosphate removal by aerobic granular sludge[J]. Biotechnology and Bioengineering,2005,90(6):761-769.
    [49]卢然超,张晓健,张悦,等. SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响[J].环境科学,2001,22(2):87-90.
    [50]高景峰,郭建秋,陈冉妮,等SBR反应器排水高度与直径比对污泥好氧颗粒化的影响[J].中国环境科学,2008,28(6):512-516.
    [51] Tay J H, Pan S, He Y X, et al. Effect of organic loading rate on aerobic granulation. II:Characteristics of aerobic granules[J]. Journal of Environmental Engineering-Asce,2004,130(10):1102-1109.
    [52] McSwain B S, Irvine R L, Hausner M, et al. Composition and distribution of extracellularpolymeric substances in aerobic flocs and granular sludge[J]. Applied and EnvironmentalMicrobiology,2005,71(2):1051-1057.
    [53] Adav S S, Lee D J, Tay J H. Extracellular polymeric substances and structural stability ofaerobic granule[J]. Water Research,2008,42(6-7):1644-1650.
    [54] Tay S T L, Ivanov V, Yi S, et al. Presence of anaerobic bacteroides in aerobically grownmicrobial granules[J]. Microbial Ecology,2002,44(3):278-285.
    [55] Zhu J R, Wilderer P A. Effect of extended idle conditions on structure and activity ofgranular activated sludge[J]. Water Research,2003,37(9):2013-2018.
    [56] Adav S S, Lee D J, Tay J H. Activity and structure of stored aerobic granules[J].Environmental Technology,2007,28(11):1227-1235.
    [57] Tay J H, Ivanov V, Pan S, et al. Specific layers in aerobically grown microbial granules[J].Letters in Applied Microbiology,2002,34(4):254-257.
    [58] Martins AMP H J, van Loosdrecht MCM. Effect of feeding pattern and storage on thesludge settleability under aerobic conditions[J]. Water Research,2003,37(11):2555-2570.
    [59] Van Loosdrecht MCM E D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ. Biofilmstructures[J]. Water Science and Technology,1995,32(8):35-43.
    [60] Rossetti S, Tomei M C, Nielsen P H, et al."Microthrix parvicella", a filamentousbacterium causing bulking and foaming in activated sludge systems: a review of currentknowledge[J]. FEMS Microbiology Reviews,2005,29(1):49-64.
    [61] Martins A M P, Heijnen J J, van Loosdrecht M C M. Effect of dissolved oxygenconcentration on sludge settleability[J]. Applied Microbiology and Biotechnology,2003,62(5-6):586-593.
    [62] Chudoba J. Control of activated-sludge filamentous bulking.6. Formulation of basicpriciples [J]. Water Research,1985,19(8):1017-1022.
    [63] Wilen BM B P. The effect of dissolved oxygen concentration on the structure, size andsize distribution of activated sludge flocs.[J]. Water Research,1999,33(2):391-400.
    [64] Tandoi V, Rossetti S, Blackall L L, et al. Some physiological properties of an Italianisolate of "Microthrix parvicella"[J]. Water Science and Technology,1998,37(4-5):1-8.
    [65] Jenkins D. Towards a comprehensive model of activated-sludge bulking and foaming.Specialized Seminar on Interactions of Wastewater, Biomass and Reactor Configurationsin Biological Treatment Plants. Copenhagen, Denmark.1991.
    [66] Lin Y M, Liu Y, Tay J H. Development and characteristics of phosphorus-accumulatingmicrobial granules in sequencing batch reactors[J]. Applied Microbiology andBiotechnology,2003,62(4):430-435.
    [67] Beyenal H, Tanyolac A. A mathematical-model for hollow-fiber biofilm reactors[J].Chemical Engineering Journal and the Biochemical Engineering Journal,1994,56(1):B53-B59.
    [68] Chen S K, Juaw C K, Cheng S S. Nitrification and denitrification of high-strengthammonium and nitrite wastewater with biofilm reactors.15th Biennial Conf of theInternational Assoc on Water Pollution Research and Control. Kyoto, Japan.1990.
    [69] BE R. Development and experimental evaluation of a steadystate, multispecies biofilmmodel.[J]. Biotechnol Bioeng,1992,39(914-922).
    [70] Krishna C V L M. Effect of temperature on storage polymers and settleability of activatedsludge[J]. Water Research,1999,33(10):2374-82.
    [71] Palm JC J D, Parker DS. Relationship between organic loading, dissolved oxygenconcentration and sludge settleability in the completely mixed activated sludge process.[J].Water Pollut Control Fed,1980,522484-2506.
    [72] Tay J H, Jiang H L, Tay S T L. High-rate biodegradation of phenol by aerobically grownmicrobial granules[J]. Journal of Environmental Engineering-Asce,2004,130(12):1415-1423.
    [73] Yi S, Zhuang W-Q, Wu B, et al. Biodegradation of p-nitrophenol by aerobic granules in asequencing batch reactor[J]. Environmental Science and Technology,2006,40(7):2396-2401.
    [74] Wang S G, Liu X W, Zhang H Y, et al. Aerobic granulation for2,4-dichlorophenolbiodegradation in a sequencing batch reactor[J]. Chemosphere,2007,69(5):769-775.
    [75] Schwarzenbeck N, Borges J M, Wilderer P A. Treatment of dairy effluents in an aerobicgranular sludge sequencing batch reactor[J]. Applied Microbiology and Biotechnology,2005,66(6):711-718.
    [76] Schwarzenbeck N, Erley R, Mc Swain B S, et al. Treatment of malting wastewater in agranular sludge sequencing batch reactor (SBR)[J]. Acta Hydrochimica EtHydrobiologica,2004,32(1):16-24.
    [77] Beun J J, Heijnen J J, van Loosdrecht M C M. N-removal in a granular sludge sequencingbatch airlift reactor[J]. Biotechnology and Bioengineering,2001,75(1):82-92.
    [78] Mosquera-Corral A, de Kreuk M K, Heijnen J J, et al. Effects of oxygen concentration onN-removal in an aerobic granular sludge reactor[J]. Water Research,2005,39(12):2676-2686.
    [79] Picioreanu C, van Loosdrecht M C M, Heijnen J J. Mathematical modeling of biofilmstructure with a hybrid differential-discrete cellular automaton approach[J].Biotechnology and Bioengineering,1998,58(1):101-116.
    [80] Cassidy D P, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in aSBR with aerobic granular sludge[J]. Water Research,2005,39(19):4817-4823.
    [81] Thayalakumaran N, Bhamidimarri R, Bickers P O. Biological nutrient removal from meatprocessing wastewater using a sequencing batch reactor[J]. Water Sci Technol,2003,47101-108.
    [82] Nancharaiah Y V, Joshi H M, Mohan T V K, et al. Aerobic granular biomass: a novelbiomaterial for efficient uranium removal[J]. Current Science,2006,91(4):503-509.
    [83] Zhang L L, Zhu R Y, Chen J M, et al. Biodegradation of methyl tert-butyl ether as a solecarbon source by aerobic granules cultivated in a sequencing batch reactor[J]. Bioprocessand Biosystems Engineering,2008,31(6):527-534.
    [84] Wang F, Lu S, Wei Y, et al. Characteristics of aerobic granule and nitrogen andphosphorus removal in a SBR[J]. Journal of Hazardous Materials,2008,In Press,Corrected Proof.
    [85] Xu H, Tay J H, Foo S K, et al. Removal of dissolved copper(II) and zinc(II) by aerobicgranular sludge[J]. Water Science and Technology,2004,50(9):155-160.
    [86] Akunna J C, Bizeau C, Moletta R. Nitrate and nitrite reductions with anaerobic sludgeusing various carbon-sources—glucose, glycerol, acetic-acid, lactic-acid and methanol[J].Water Research,1993,27(8):1303-1312.
    [87] Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatmentof wastewater with high ammonia concentration[J]. Water Research,2003,37(6):1371-1377.
    [88] Vadivelu V M, Yuan Z G, Fux C, et al. The inhibitory effects of free nitrous acid on theenergy generation and growth processes of an enriched Nitrobacter culture[J].Environmental Science&Technology,2006,40(14):4442-4448.
    [89] Villaverde S, GarciaEncina P A, FdzPolanco F. Influence of pH over nitrifying biofilmactivity in submerged biofilters[J]. Water Research,1997,31(5):1180-1186.
    [90] Mosquera-Corral A, Gonzalez F, Campos J L, et al. Partial nitrification in a SHARONreactor in the presence of salts and organic carbon compounds[J]. Process Biochemistry,2005,40(9):3109-3118.
    [91] Hunik J H, Meijer H J G, Tramper J. Kinetics on nitrosomonas-Europaea at extremesubstrate, product and salt concentrations[J]. Applied Microbiology and Biotechnology,1992,37(6):802-807.
    [92] Hascoet M C, Florentz M. Influence of nitrates on biological phosphours removal fromwastewater[J]. Water Sa,1985,11(1):1-8.
    [93] Kuba T, Smolders G, Vanloosdrecht M C M, et al. Biological phosphorus removal fromwastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Science andTechnology,1993,27(5-6):241-252.
    [94] Wachtmeister A, Kuba T, vanLoosdrecht M C M, et al. A sludge characterization assay foraerobic and denitrifying phosphorus removing sludge[J]. Water Research,1997,31(3):471-478.
    [95] Wen-Jern N. Sequencing Batch Reactor (SBR) Treatment of Wastewater[M].Environmental Sanitation Information Center.Bangkok..1989.
    [96]令云芳.厌氧/缺氧/硝化双污泥反硝化除磷[D].北京工业大学.2006.
    [97] APHA. Standard Methods for the Examination of Water and Wastewater[M].18thWasingtong: American Public Health Association, America Water Works Associationand Water Environment Federation.1992.
    [98] Laguna A, Ouattara A, Gonzalez R O, et al. A simple and low cost technique fordetermining the granulometry of upflow anaerobic sludge blanket reactor sludge[J]. WaterScience and Technology,1999,40(8):1-8.
    [99]汪善全,孔云华,原媛,等.好氧颗粒污泥中丝状微生物生长研究[J].环境科学,2008,29(3):696-702.
    [100] Amann R I, Krumholz L, Stahl D A. Fluorescent-oligonucleotide probing of whole cellsfor determinative, phylogenetic and environmental studies in microbiology[J]. Journal ofBacteriology,1990,172(2):762-770.
    [101] Ghangrekar M M, Asolekar S R, Ranganathan K R, et al. Experience with UASB reactorstart-up under different operating conditions[J]. Water Science and Technology,1996,34(5-6):421-428.
    [102] Bond PL E R, Wagner M. Identification of some of the major groups of bacteria inefficient and nonefficient biological phosphorus removal activated sludge systems[J].Applied and Environmental Microbiology,1999,65(9):4077-4084.
    [103] Liu H, Fang H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J].Journal of Biotechnology,2002,95(3):249-256.
    [104] I. A R. In situ identification of micro-organisms by whole cell hybridization withrRNA-targeted nucleic acid probes-Molecular microbial ecology manual.[M]. Netherland:Netherland: Kluwer Academic Publishers.1995.
    [105] I A R. In situ identification of micro-organisms by whole cell hybridization withrRNA-targeted nucleic acid probes-Molecular microbial ecology manual.[M]. Netherland:Netherland: Kluwer Academic Publishers.1995.
    [106] Adav S S, Lee D J, Show K Y, et al. Aerobic granular sludge: Recent advances[J].Biotechnology Advances,2008,26(5):411-423.
    [107] Beun J J, Hendriks A, Van Loosdrecht M C M, et al. Aerobic granulation in a sequencingbatch reactor[J]. Water Research,1999,33(10):2283-2290.
    [108] Peng D C, Bernet N, Delgenes J P, et al. Aerobic granular sludge-A case report[J]. WaterResearch,1999,33(3):890-893.
    [109] Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure andmetabolism of aerobic granules[J]. Applied Microbiology and Biotechnology,2001,57(1-2):227-233.
    [110] Jiang H L, Tay J H, Tay S T L. Aggregation of immobilized activated sludge cells intoaerobically grown microbial granules for the aerobic biodegradation of phenol[J]. Lettersin Applied Microbiology,2002,35(5):439-445.
    [111] Zitomer D H, Duran M, Albert R, et al. Thermophilic aerobic granular biomass forenhanced settleability[J]. Water Research,2007,41(4):819-825.
    [112]王强,陈坚,堵国成.选择压法培育好氧颗粒污泥的试验[J].环境科学,2003,24(04):99-104.
    [113]王建龙,张子健,吴伟伟.好氧颗粒污泥的研究进展[J].环境科学学报,2009,29(03):449-473.
    [114]高景峰.沉淀时间及生物膜对实际生活污水形成好氧硝化颗粒污泥的影响[J].环境科学,2007,28(6):1245-1251.
    [115] Tokutomi T, Kiyokawa T, Shibayarna C, et al. Effect of inorganic carbon on nitriteaccumulation in an aerobic granule reactor. International Conference on NutrientManagement in Wastewater Treatment Processes and Recycle Streams. Cracow,POLAND: I W a Publishing.2005.
    [116] Linlin H, Jianlong W, Xianghua W, et al. The formation and characteristics of aerobicgranules in sequencing batch reactor (SBR) by seeding anaerobic granules[J]. ProcessBiochemistry,2005,40(1):5-11.
    [117] Kim D J, Seo D. Selective enrichment and granulation of ammonia oxidizers in asequencing batch airlift reactor[J]. Process Biochemistry,2006,41(5):1055-1062.
    [118] Tsuneda S, Ejiri Y, Nagano T, et al. Formation mechanism of nitrifying granules observedin an aerobic upflow fluidized bed (AUFB) reactor.5th IWA International Conference onBiofilm Systems. Cape Town, South Africa: IWA Publishing.2003.
    [119]高景峰,周建强,彭永臻.处理实际生活污水短程硝化好氧颗粒污泥的快速培养[J].环境科学学报,2007,27(10):1604-1611.
    [120] Chang JS C G, Kim DJ. Nitrite accumulation characteristics in the nitrification of highstrength ammonia wastewater with biofilm airlift suspension reactor[J]. Hwahak Konghak,2002,40114–20.
    [121] Huang Z H, Gedalanga P B, Asvapathanagul P, et al. Influence of physicochemical andoperational parameters on Nitrobacter and Nitrospira communities in an aerobic activatedsludge bioreactor[J]. Water Research,2010,44(15):4351-4358.
    [122] Alawi M, Off S, Kaya M, et al. Temperature influences the population structure ofnitrite-oxidizing bacteria in activated sludge[J]. Environmental Microbiology Reports,2009,1(3):184-190.
    [123] Blackburne R, Vadivelu V M, Yuan Z G, et al. Kinetic characterisation of an enrichedNitrospira culture with comparison to Nitrobacter[J]. Water Research,2007,41(14):3033-3042.
    [124] Shi X Y, Sheng G P, Li X Y, et al. Operation of a sequencing batch reactor for cultivatingautotrophic nitrifying granules[J]. Bioresource Technology,2010,101(9):2960-2964.
    [125] Spieck E, Hartwig C, McCormack I, et al. Selective enrichment and molecularcharacterization of a previously uncultured Nitrospira-like bacterium from activatedsludge[J]. Environmental Microbiology,2006,8(3):405-415.
    [126] Lebedeva E V, Alawi M, Maixner F, et al. Physiological and phylogenetic characterizationof a novel lithoautotrophic nitrite-oxidizing bacterium,'Candidatus Nitrospirabockiana'[J]. International Journal of Systematic and Evolutionary Microbiology,2008,58242-250.
    [127] Daims H, Nielsen J L, Nielsen P H, et al. In situ characterization of Nitrospira-like nitriteoxidizing bacteria active in wastewater treatment plants[J]. Applied and EnvironmentalMicrobiology,2001,67(11):5273-5284.
    [128] Zeng W, Zhang Y, Li L, et al. Control and optimization of nitrifying communities fornitritation from domestic wastewater at room temperatures[J]. Enzyme and MicrobialTechnology,2009,45(3):226-232.
    [129] Kim D J, Kim S H. Effect of nitrite concentration on the distribution and competition ofnitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J].Water Research,2006,40(5):887-894.
    [130] Coskuner G, Curtis T P. In situ characterization of nitrifiers in an activated sludge plant:detection of Nitrobacter Spp[J]. Journal of Applied Microbiology,2002,93(3):431-437.
    [131] Gieseke A, Purkhold U, Wagner M, et al. Community structure and activity dynamics ofnitrifying bacteria in a phosphate-removing biofilm[J]. Applied and EnvironmentalMicrobiology,2001,67(3):1351-1362.
    [132] Nogueira R, Melo L F. Competition between Nitrospira spp. and Nitrobacter spp. innitrite-oxidizing bioreactors[J]. Biotechnology and Bioengineering,2006,95(1):169-175.
    [133] Liu L, Wang Z, Yao J, et al. Investigation on the formation and kinetics of glucose-fedaerobic granular sludge[J]. Enzyme and Microbial Technology,2005,36(5-6):712-716.
    [134] Manser R. Population dynamics and kinetics of nitrifying bacteria in membrane andconventional activated sludge plants[D]. Swiss Federal Institute for EnvironmentalScience and Technology, Swiss Federal Institute of Technology.2005.
    [135] Thanh B X, Visvanathan C, Ben Aim R. Characterization of aerobic granular sludge atvarious organic loading rates[J]. Process Biochemistry,2009,44(2):242-245.
    [136] McSwain B S, Irvine R L, Wilderer P A. Effect of intermittent feeding on aerobic granulestructure.5th IWA International Conference on Biofilm Systems. Cape Town, SouthAfrica.2003.
    [137] Liu Y, Liu Q S. Causes and control of filamentous growth in aerobic granular sludgesequencing batch reactors[J]. Biotechnology Advances,2006,24(1):115-127.
    [138] Wang Z, Liu L, Yao J, et al. Effects of extracellular polymeric substances on aerobicgranulation in sequencing batch reactors[J]. Chemosphere,2006,63(10):1728-1735.
    [139] Prosser J I. Autotrophic nitrification in bacteria[J]. Advances in Microbial Physiology,1989,30125-181.
    [140] Liu Y Q, Moy B Y P, Tay J H. COD removal and nitrification of low-strength domesticwastewater in aerobic granular sludge sequencing batch reactors[J]. Enzyme andMicrobial Technology,2007,42(1):23-28.
    [141] Liu Y, Yang S F, Tay J H. Improved stability of aerobic granules by selectingslow-growing nitrifying bacteria[J]. Journal of Biotechnology,2004,108(2):161-169.
    [142] Belmonte M, Vazquez Padin J R, Figueroa M, et al. Characteristics of nitrifying granulesdeveloped in an air pulsing SBR[J]. Process Biochemistry,2009,44(5):602-606.
    [143] Zheng Y M, Yu H Q, Liu S J, et al. Formation and instability of aerobic granules underhigh organic loading conditions[J]. Chemosphere,2006,63(10):1791-1800.
    [144] Tay J H, Pan S, He Y X, et al. Effect of organic loading rate on aerobic granulation. I:Reactor performance[J]. Journal of Environmental Engineering-Asce,2004,130(10):1094-1101.
    [145] Li X F, Li Y J, Liu H, et al. Correlation between extracellular polymeric substances andaerobic biogranulation in membrane bioreactor[J]. Separation and PurificationTechnology,2008,59(1):26-33.
    [146] Zhang L, Chen X, Chen J, et al. Role mechanism of extracellular polymeric substances inthe formation of aerobic granular sludge[J]. Huanjing Kexue/Environmental Science,2007,28(4):795-799.
    [147] Chung J, Shim H, Park S J, et al. Optimization of free ammonia concentration for nitriteaccumulation in shortcut biological nitrogen removal process[J]. Bioprocess andBiosystems Engineering,2006,28(4):275-282.
    [148] Kim J H, Guo X J, Park H S. Comparison study of the effects of temperature and freeammonia concentration on nitrification and nitrite accumulation[J]. Process Biochemistry,2008,43(2):154-160.
    [149] Liu Y, Tay J H. State of the art of biogranulation technology for wastewater treatment[J].Biotechnology Advances,2004,22(7):533-563.
    [150] Ni B J, Xie W M, Liu S G, et al. Granulation of activated sludge in a pilot-scalesequencing batch reactor for the treatment of low-strength municipal wastewater[J]. WaterResearch,2009,43(3):751-761.
    [151] Zhou Y, Pijuan M, Yuan Z G. Free nitrous acid inhibition on anoxic phosphorus uptakeand denitrification by poly-phosphate accumulating organisms[J]. Biotechnology andBioengineering,2007,98(4):903-912.
    [152] Benyahia F, Polomarkaki R. Mass transfer and kinetic studies under no cell growthconditions in nitrification using alginate gel immobilized Nitrosomonas[J]. ProcessBiochemistry,2005,40(3-4):1251-1262.
    [153] Guo J H, Peng Y Z, Huang H J, et al. Short-and long-term effects of temperature onpartial nitrification in a sequencing batch reactor treating domestic wastewater[J]. Journalof Hazardous Materials,2010,179(1-3):471-479.
    [154] Turk O, Mavinic D S. Maintaining nitrite buildup in a system acclimated to freeammonia[J]. Water Research,1989,23(11):1383-1388.
    [155] Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition of nitrification by ammoniaand nitrous-acid[J]. Journal Water Pollution Control Federation,1976,48(5):835-852.
    [156] Neufeld R D, Hill A J, Adekoya D O. Phenol and free ammonia inhibition to nitrosomonaactivity[J]. Water Research,1980,14(12):1695-1703.
    [157] Li L Y, Peng, Y. Z., Wu, L., Wang, S.Y., Ma, Y. Cultivation and Characteristics Analysisof Nitrifying Granules in Sequencing Batch Reactor[J]. Journal of Civil, Architectural&Environmental Engineering,2010,32(3):119-123.
    [158] Wang J L, Yang N. Partial nitrification under limited dissolved oxygen conditions[J].Process Biochemistry,2004,39(10):1223-1229.
    [159] Bae W, Baek S, Chung J, et al. Optimal operational factors for nitrite accumulation inbatch reactors[J]. Biodegradation,2001,12(5):359-366.
    [160] Charley R C, Hooper D G, McLee A G. Nitrification kinetics in activated-sludge atvarious temperatures and dissolved-oxygen concentrations[J]. Water Research,1980,14(10):1387-1396.
    [161] Randall C W, Benefield L D, Buth D. The effects of temperature on the biochemicalreaction-rate of the activated-sludge process[J]. Water Science and Technology,1982,14(1-2):413-430.
    [162] Painter H A, Loveless J E. Effect of temperature and pH value on the growth-rateconstants of nitrifying bacteria in the activated-suldge process[J]. Water Research,1983,17(3):237-248.
    [163] Wijffels R H, Englund G, Hunik J H, et al. Effects of diffusion limitation on immobiliezednitrifying microorganisms at low-temperatures[J]. Biotechnology and Bioengineering,1995,45(1):1-9.
    [164] Weon S Y, Lee S I, Koopman B. Effect of temperature and dissolved oxygen on biologicalnitrification at high ammonia concentrations[J]. Environmental Technology,2004,25(11):1211-1219.
    [165] Simm R A, Mavinic D S, Ramey W D. A targeted study on possible free ammoniainhibition of Nitrospira[J]. Journal of Environmental Engineering and Science,2006,5(5):365-376.
    [166] Carrera J, Jubany I, Carvallo L, et al. Kinetic models for nitrification inhibition byammonium and nitrite in a suspended and an immobilised biomass systems[J]. ProcessBiochemistry,2004,39(9):1159-1165.
    [167] Mahne I, Princic A, Megusar F. Nitrification/denitrification in nitrogen high-strengthliquid wastes[J]. Water Research,1996,30(9):2107-2111.
    [168] Hunik J H, Meijer H J G, Tramper J. Kinetica of nitrosomonas-europaea at extremesubstrate, product and salt concentrations[J]. Applied Microbiology and Biotechnology,1992,37(6):802-807.
    [169] Martins A M P, Pagilla K, Heijnen J J, et al. Filamentous bulking sludge-a criticalreview[J]. Water Research,2004,38(4):793-817.
    [170] Oehmen A, Zeng R J, Yuan Z G, et al. Anaerobic metabolism of propionate bypolyphosphate-accumulating organisms in enhanced biological phosphorus removalsystems[J]. Biotechnology and Bioengineering,2005,91(1):43-53.
    [171]由阳,彭轶,袁志国,等.富含聚磷菌的好氧颗粒污泥的培养与特性[J].环境科学,2008,29(8):2242-2248.
    [172]高景峰,郭建秋,毕环宇,等.间歇式除磷好氧颗粒污泥反应器的快速启动[J].环境工程,2008,26(1):15-18.
    [173] Rittmann B E, Manem J A. Development and experimental evaluation of steady-state[J].Biotechnology and Bioengineering,1992,39(9):914-922.
    [174] Richard MR C S. Activated sludge microbiology problem and their control.20th USEPANational Operator Trainers Conference. Buffalo, NY.2003.
    [175] YQ L. Comparative study of aerobic granulation in bubble column and airlift SBRsInternal research report[D]. Singapore:Nanyang Technological University.2005.
    [176] Zou H, Du G C, Ruan W Q, et al. Role of nitrate in biological phosphorus removal in asequencing batch reactor[J]. World Journal of Microbiology&Biotechnology,2006,22(7):701-706.
    [177] Lee S H, Ko J H, Kim J R, et al. Identification of the adverse effect of nitrate on thephosphate release rate and improvement of EBPR process models[J]. Water Science andTechnology,2006,53(4-5):115-123.
    [178] Chuang S H, Ouyang C F, Wang Y B. The kinetic behaviors of simultaneous phosphorusrelease and denitrification on sludge for BNR processes[J]. Journal of the ChineseInstitute of Engineers,1996,19(5):575-583.
    [179] Peng Z X, Peng Y Z, Gui L J, et al. Competition for Single Carbon Source BetweenDenitrification and Phosphorus Release in Sludge under Anoxic Condition[J]. ChineseJournal of Chemical Engineering,2010,(03):472-477.
    [180] Kuba T, Wachtmeister A, Vanloosdrecht M C M, et al. Effect of nitrate on phosphorusrelease in biological phosphorus removal systems[J]. Water Science and Technology,1994,30263-269.
    [181] Peng Y Z H, H. X. Sun, H. W. Ma, Y. Effect of nitrate on biological phosphorus removalwith anaerobic-anoxic-aerobic oxidation ditch process[J]. Journal of Harbin Institute ofTech.,2008,40(8):1311-1314.
    [182] Li Y L, Y. Diffusion of substrate and oxygen in aerobic granule[J]. BiochemicalEngineering Journal,2005,27(1):45-52.
    [183] Meinhold J, Arnold E, Isaacs S. Effect of nitrite on anoxic phosphate uptake in biologicalphosphorus removal activated sludge[J]. Water Research,1999,33(8):1871-1883.
    [184] Saito T, Brdjanovic D, van Loosdrecht M C M. Effect of nitrite on phosphate uptake byphosphate accumulating organisms[J]. Water Research,2004,38(17):3760-3768.
    [185] Wang X L, Peng Y Z, Wang S Y, et al. Influence of wastewater composition on nitrogenand phosphorus removal and process control in A2O process[J]. Bioprocess andBiosystems Engineering,2006,28(6):397-404.
    [186] Zhao C H, Peng Y Z, Wang S Y, et al. Effects of influent C/N ratio, C/P ratio andvolumetric exchange ratio on biological phosphorus removal in UniFed SBR process[J].Journal of Chemical Technology and Biotechnology,2008,83(12):1587-1595.
    [187] Oehmen A, Saunders A M, Vives M T, et al. Competition between polyphosphate andglycogen accumulating organisms in enhanced biological phosphorus removal systemswith acetate and propionate as carbon sources[J]. Journal of Biotechnology,2006,123(1):22-32.
    [188] Vadivelu V M, Keller J, Yuan Z G. Effect of free ammonia and free nitrous acidconcentration on the anabolic and catabolic processes of an enriched Nitrosomonasculture[J]. Biotechnology and Bioengineering,2006,95(5):830-839.
    [189] Vadivelu V M, Keller J, Yuan Z. Free ammonia and free nitrous acid inhibition on theanabolic and catabolic processes of Nitrosomonas and Nitrobacter[J]. Water Science andTechnology,2007,56(7):89-97.
    [190] Ma J, Yang Q, Wang S Y, et al. Effect of free nitrous acid as inhibitors on nitrate reductionby a biological nutrient removal sludge[J]. Journal of Hazardous Materials,2010,175(1-3):518-523.
    [191] Ye L, Pijuan M, Yuan Z G. The effect of free nitrous acid on the anabolic and catabolicprocesses of glycogen accumulating organisms[J]. Water Research,2010,44(9):2901-2909.
    [192] Pijuan M, Ye L, Yuan Z. Could nitrite/free nitrous acid favour GAOs over PAOs inenhanced biological phosphorus removal systems?[J]. Water Science and Technology,2011,63(2):345-351.
    [193] Weon S Y, Lee C W, Lee S I, et al. Nitrite inhibition of aerobic growth of Acinetobactersp[J]. Water Research,2002,36(18):4471-4476.
    [194]叶柳.含盐生活污水脱氮除磷特性及优化控制[D].北京工业大学.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700