用户名: 密码: 验证码:
粘土颗粒和有机物对浸没式超滤膜给水处理的膜污染特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对微污染地表水源水中的粘土颗粒和有机物,在实验室条件下通过分析超滤过程中膜比通量的变化,并结合有机物分子量分布、树脂分级、扫描电镜(SEM)、能谱分析(EDS)、傅立叶红外光谱(FTIR)、三维荧光光谱(FEEM)等测试方法,分别研究了其对浸没式超滤膜的膜污染特性,并考察了混凝、粉末活性炭(PAC)吸附、混凝-PAC预处理工艺对其造成的各种膜污染(总膜污染、可逆膜污染、不可逆膜污染)特性的影响。
     有机物造成的膜污染过程包括膜比通量的快速下降、短期过渡、平稳下降以及反冲洗后上升四个阶段,主要属于不可逆膜污染。直接超滤处理含有机物的原水时,膜比通量的下降速率与原水有机物的浓度成指数关系,符合y=0.0157e0.0588x。有机物在过滤初期对超滤膜造成的膜孔窄化和孔内吸附堵塞,是导致其产生不可逆膜污染的主要原因。有机物造成的不可逆膜污染随过滤的进程呈线性增长。
     粘土颗粒造成的膜污染主要属于可逆膜污染。直接超滤处理含粘土颗粒的原水时,膜比通量的下降速率与原水浊度成线性关系。提高反冲洗的频率可以减轻可逆膜污染。试验用浸没式中空纤维超滤膜能耐受混合液的浊度在40000NTU以下。粘土颗粒的存在增加了有机物造成的总膜污染,降低了其不可逆膜污染。粘土颗粒和有机物共存时形成的滤饼层,增加了膜表层过滤微孔的开孔率,减小了膜孔内部吸附的有机物,从而降低了有机物造成的不可逆膜污染。
     混凝预处理有效降低了有机物产生的不可逆膜污染和总膜污染。选择合理的混凝停留时间、混凝剂投加量、曝气强度、反洗周期等运行参数,采用连续投加混凝剂的方式,均可以有效降低有机物产生的不可逆膜污染。
     投加粉末活性炭降低了有机物产生的不可逆膜污染,但会增加其总膜污染。采用一次投加PAC方式优于连续投加方式,更适宜于工程应用。
     联合使用混凝和PAC预处理工艺时,其对不可逆膜污染减轻的效果小于二者单独对不可逆膜污染减轻效果之和,并不是二者效果的简单叠加。投加混凝剂和PAC改善了膜表面的污染层结构,降低了有机物在过滤初期造成的膜孔窄化程度,这是降低其不可逆膜污染的关键。
     文中还对不可逆膜污染的定期化学清洗,进行了碱洗、酸洗条件的对比研究。
     以上研究成果对于深入了解超滤膜污染特性及其控制机理有重要参考价值。
This paper was mainly conducted in laboratorary to study the characteristics ofimmersed ultrafiltration (UF) membrane fouling caused by clay particle and organicmatter in source water and investigate the influence of pretreatment, such as coagulation,adsorption of powdered activated carbon (PAC), coagulation-PAC on different type ofmembrane fouling (including total membrane fouling, reversible membrane fouling andirreversible membrane fouling). Based on the experimental filtration study, a morecomprehensive understanding of membrane fouling and the control mechnism wereobtained by the analysis of the molecular weight (MW) distributions of organic, XADresin fractionation, and scanning electron microscope (SEM), X-ray energy dispersivespectra (EDS), fourier transform infrared spectroscopy (FTIR) and fluorescenceexcitation-emission matrix (FEEM).
     The membrane fouling caused by organic matter is mainly irreversible. It includesfour courses of the membrane specific flux as quickly decline, the short-term steady,the smooth decline and increase after the backwash. The decline rate of membranespecific flux has an exponential relationship with TOC of source water in ultrafiltrationof organic matter: y=0.0157e0.0588x. The irreversible fouling caused by organic matteris mainly due to the narrowed membrane pore at the beginning of the filtration. Theirreversible fouling increased lineally with filtration time in the study.
     The membrane fouling caused by clay particle is mainly reversible due to cakelayer formation on the membrane surface. Experimental results demonstrate positivecorrelation between the turbidity of source water and the decrease rate of membranespecific flux. The predominant resistance was the cake resistance, which could beminimized by increasing the frequency of backwashing. The immersed hollow fiber UFmembrane could endure the mixture in membrane tank with turbidity below40000NTU. The existence of clay particle in the HA solution was found to be able to mitigatethe irreversible fouling caused by organic matter. However, the total membrane foulingby organic matter was increased. The SEM imagines demonstrated that cake layerformed by clay particle could prevent organics into the membrane pore hole andincreased the porosity of membrane surface, which greatly decreased irreversiblefouling.
     Coagulation pretreatment effectively decreased the total membrane fouling and theirreversible membrane fouling caused by organic matter. The irreversible membranefouling by organic matter was decreased by selecting appropriate operation parameters,such as coagulation retention time, dosage of coagulant, aeration strength, backwashingperiod and continuous dosing of coagulant.
     PAC pretreatment decreased the irreversible membrane fouling and increased thetotal membrane fouling caused by organic matter. Batch dosing of PAC was better andmore suitable for engineering application over continuous dosing. The combined effectof coagulant and PAC on irreversible membrane fouling was not the simple addition ofthe individual’s effect, but less than the sum of the individual’s effect. Addition ofcoagulant and PAC improved the structure of fouling layer on the membrane surface,declined the degree of membrane pore narrowed by organic matter at the early stage ofultrafiltration, which is the key reason to mitigate the irreversible membrane fouling byorganic matter.
     Regular chemical cleaning for removal of irreversible membrane fouling was alsoinvestigated with sodium hydroxide, hydrochloric acid and citric acid in this paper.
     The research results above would provide any insight into the characteristics ofimmersed ultrafiltration membrane fouling and the control mechanism in dringkingwater treatment.
引文
[1]我国超过四成农村饮用水未达卫生标准.给水排水,2008,34(4):19.
    [2]《全国农村饮水安全工程“十一五”规划》摘要.中国水利,2007,(10).
    [3]张晓健.农村饮水的水质安全要求与水质保障技术.给水排水,2009,35(6):1-3.
    [4]中华人民共和国环境保护部.2009年《中国环境状况公报》. http://www.sepa.gov.cn.
    [5]胡孟,刘文朝,窦以松,等.我国农村饮水安全技术标准发展动态及需求分析.标准化,2006,(4):9-13.
    [6]侯志强,杨培岭,王成志,等.我国村镇供水工程建设研究.中国农村水利水电,2008,(9):79-81.
    [7]郝爱玲.用于微污染地表水处理的膜生物反应器的中试研究[博士学位论文].天津:天津大学环境科学与工程学院.2004.
    [8]王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社.1999.
    [9]杨艳玲,李星,李圭白.水中颗粒物的检测及应用.北京:化学工业出版社.2007:38-40.
    [10]潘碌亭.中国微污染水源水处理技术研究现状与进展.工业水处理,2006,26(6):6-10.
    [11]宁海丽,朱琨.微污染水处理技术研究进展.环境科学与管理,2006,31(2):98-100.
    [12]莫罹,黄霞.微滤膜处理微污染原水研究.中国给水排水,2002,18(4):40-43.
    [13]蔡月琪,林楚娟.纳滤膜在微污染水处理中的应用.广东化工,2007,34(10):92-94.
    [14]王占生,刘文君.水源水质与净水厂改造适用工艺.建设科技,2010,(21):31-33.
    [15]许保玖.论水质科学与工程兼论21世纪的水处理科技.工业水处理,2000,20(1):1-4.
    [16]金兆丰.21世纪的水处理.北京:化学工业出版社.2003:26-32.
    [17]董浩,董福平,杨新新.膜法水处理技术在农村饮用水工程中的应用.水处理技术,2006,32(5):80-82.
    [18]杨新新.超滤与纳滤水处理技术在农村微污染水源地区的应用.水处理技术,2008,34(8):1-4.
    [19]李攀岳.超滤膜在农村饮水安全工程中的应用.饮水安全,2009,(5):60-61.
    [20]许保玖.给水处理理论.北京:中国建筑工业出版社,.2000.
    [21]汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(上卷水体颗粒物).北京:中国环境科学出版社,2000.
    [22] Rautenbach(王乐夫译)R.膜工艺—组件和装置设计基础.北京:化学工业出版社.1998,220.
    [23]崔淑霞.超滤技术在饮用水深度处理上的应用.中国农村水力水电,2009,(2):61-62.
    [24] Hofman J A M H, Beumer M M, Baars E T, et al. Enhanced surface water treatment byultrafiltration. Desalination,1998,119(1-3):113-125.
    [25] Vedavyasan C V. Pretreatment trends-an overview. Desalination,2007,203(1-3):296-299.
    [26] Fatone F, Battistoni P, Pavan P, et al. Operation and maintenance of full-scale municipalmembrane biological reactors: A detailed overview on a case study. Industrial&EngineeringChemistry Research,2007,46(21):6688-6695.
    [27] Laine J M, Vial D, Moulart P. Status after10years of operation-overview of UF technologytoday. Desalination,2000,131(1-3):17-25.
    [28] Xia S, Li X, Liu R, et al. Study of reservoir water treatment by ultrafiltration for drinkingwater production. Desalination,2004,167:23-26.
    [29]梁好,盛选军,刘传胜.饮用水安全保障技术.北京:化学工业出版社.2007.
    [30]陈杰,陈清,陈良刚.膜技术在农村饮水工程中的应用.中国水利,2007,(10):119-121.
    [31]陈良刚.膜分离技术在农村改水工程中的应用前景.中国水利,2006,(5).
    [32]徐兵,王建良,施力.湖州基山村超滤膜水厂工程介绍.中国给水排水,2006,22(14):49-51.
    [33] Nghiem L D, Oschmann N, Schafer A I. Fouling in greywater recycling by directultrafiltration. Desalination,2006,187(1-3):283-290.
    [34]任立刚,马红刚.内压式与外压式超滤膜在实际应用中的分析比较.冶金动力,2009,(5):78-80.
    [35]罗敏.浸没式超滤膜在大型给水厂中的应用.给水排水,2009,35(12):17-22.
    [36]顾宇人,曹林春,陈春圣,等.超滤膜法短流程工艺在南通市芦泾水厂提标改造工程中的应用.给水排水,2010,36(11):9-15.
    [37] Laine J M, Campos C, Baudin I, et al. Understanding membrane fouling: A review of over adecade of research. Water Science and Technology: Water Supply,2003,3(5-6):155-164.
    [38] Roorda J H, van der Graaf J H J M. Understanding membrane fouling in ultrafiltration ofWWTP-effluent. Water Science and Technology,2000,41(10-11):345-353.
    [39] Nakatsuka S, Nakate I, Miyano T. Drinking water treatment by using ultrafiltration hollowfiber membranes. Desalination,1996,106(1-3):55-61.
    [40] Yamamura H, Kimura K, Watanabe Y. Mechanism involved in the evolution of physicallyirreversible fouling in microfiltration and ultrafiltration membranes used for drinking watertreatment. Environmental Science&Technology,2007,41(19):6789-6794.
    [41] Yamamura H, Chae S, Kimura K, et al. Transition in fouling mechanism in microfiltration of asurface water. Water Research,2007,41(17):3812-3822.
    [42] Lee N, Amy G, Lozier J. Understanding natural organic matter fouling in low-pressuremembrane filtration. Desalination,2005,178(1-3SPEC ISS):85-93.
    [43] Johnson G, Culkin B, Monroe M. Vibratory shear guards against mineral scale membranefouling. Filtration&Separation,2003,40(1):24-29.
    [44] Park Y G. Effect of ozonation for reducing membrane-fouling in the UF membrane.Desalination,2002,147(1-3):43-48.
    [45] Cabassud C, Laborie S, Durand-Bourlier L, et al. Air sparging in ultrafiltration hollow fibers:relationship between flux enhancement, cake characteristics and hydrodynamic parameters.Journal of Membrane Science,2001,181(1):57-69.
    [46] Jagannadh S N, Muralidhara H S. Electrokinetics methods to control membrane fouling.Industrial&Engineering Chemistry Research,1996,35(4):1133-1140.
    [47] Reuben B G, Perl O, Morgan N L, et al. Phospholipid Coatings for the Prevention ofMembrane Fouling. Journal of Chemical Technology and Biotechnology,1995,63(1):85-91.
    [48] Davis R H. Hydrodynamic Approaches to Reducing Membrane Fouling. Abstracts of Papersof the American Chemical Society,1995,209:152-IEC.
    [49] Mikulasek P. Methods to Reduce Concentration Polarization and Fouling in MembraneFiltration. Collection of Czechoslovak Chemical Communications,1994,59(4):737-755.
    [50] Rabiller-Baudry M, Paugam L, Begoin L, et al. Alkaline cleaning of PES membranes used inskimmed milk ultrafiltration: from reactor to spiral-wound module via a plate-and-framemodule. Desalination,2006,191(1-3):334-343.
    [51] Psoch C, Schiewer S. Anti-fouling application of air sparging and backflushing for MBR.Journal of Membrane Science,2006,283(1-2):273-280.
    [52] Muthukumaran S, Kentish S E, Stevens G W, et al. Application of ultrasound in membraneseparation processes: A review. Reviews in Chemical Engineering,2006,22(3):155-194.
    [53] Lindau J, Jonsson A S. Cleaning of Ultrafiltration Membranes after Treatment of OilyWaste-Water. Journal of Membrane Science,1994,87(1-2):71-78.
    [54] Yu H Y, He X C, Liu L Q, et al. Surface modification of poly(propylene) microporousmembrane to improve its antifouling characteristics in an SMBR: O-2plasma treatment.Plasma Processes and Polymers,2008,5(1):84-91.
    [55] Chen D, Weavers L K, Walker H W, et al. Ultrasonic control of ceramic membrane foulingcaused by natural organic matter and silica particles. Journal of Membrane Science,2006,276(1-2):135-144.
    [56] Mosqueda-Jimenez D B, Narbaitz R M, Matsuura T. Membrane fouling test: Apparatusevaluation. Journal of Environmental Engineering-Asce,2004,130(1):90-99.
    [57] Zhang Z X, Greenberg A R, Krantz W B, et al. Study of membrane fouling and cleaning inspiral wound modules using ultrasonic time-domain reflectometryMembrane Science andTechnology. Elsevier,2003:65-88.
    [58] Boerlage S F E, Kennedy M D, Aniye M P, et al. Monitoring particulate fouling in membranesystems. Desalination,1998,118(1-3):131-142.
    [59] Lawrence N D, Perera J M, Iyer M, et al. The use of streaming potential measurements tostudy the fouling and cleaning of ultrafiltration membranes. Separation and PurificationTechnology,2006,48(2):106-112.
    [60] Zhang Z X, Bright V M, Greenberg A R. Use of capacitive microsensors and ultrasonictime-domain reflectometry for in-situ quantification of concentration polarization andmembrane fouling in pressure-driven membrane filtration. Sensors and Actuators B-Chemical,2006,117(2):323-331.
    [61] de Roever E W F, Huisman I H. Microscopy as a tool for analysis of membrane failure andfouling. Desalination,2007,207(1-3):35-44.
    [62] Zondervan E, Betlem B H L, Blankert B, et al. Modeling and optimization of a sequence ofchemical cleaning cycles in dead-end ultrafiltration. Journal of Membrane Science,2008,308(1-2):207-217.
    [63] Shengji X, Juanjuan Y, Naiyun G. An empirical model for membrane flux prediction inultrafiltration of surface water. Desalination,2008,221(1-3):370-375.
    [64] Liu Q F, Kim S H. Evaluation of membrane fouling models based on bench-scale experiments:A comparison between constant flowrate blocking lawsand artificial neural network (ANNs)model. Journal of Membrane Science,2008,310(1-2):393-401.
    [65] Huang H, Young T A, Jacangelo J G. Unified membrane fouling index for low pressuremembrane filtration of natural waters: Principles and methodology. Environmental Science&Technology,2008,42(3):714-720.
    [66] Wintgens T, Rosen J, Melin T, et al. Modelling of a membrane bioreactor system formunicipal wastewater treatment. Journal of Membrane Science,2003,216(1-2):55-65.
    [67] Konieczny K, Klomfas G. Using activated carbon to improve natural water treatment byporous membranes. Desalination,2002,147(1-3):109-116.
    [68] Jones K L, Odderstol E S, Wetterau G E, et al. Using a Hydraulic Model to PredictHollow-Fiber Uf Performance. Journal American Water Works Association,1993,85(10):87-97.
    [69] Yu H Y, Liu L Q, Tang Z Q, et al. Mitigated membrane fouling in an SMBR by surfacemodification. Journal of Membrane Science,2008,310(1-2):409-417.
    [70] Ju H, McCloskey B D, Sagle A C, et al. Crosslinked poly(ethylene oxide) fouling resistantcoating materials for oil/water separation. Journal of Membrane Science,2008,307(2):260-267.
    [71] Wang W, Wang L, Wang C L, et al. Study an the surface grafting of polypropylene fibers.Journal of Applied Polymer Science,2006,99(3):734-737.
    [72] Baba T, Beppu M, Kamizawa C. Preparation of N-Propionyl Chitosan Membranes forUltrafiltration and Their Properties of Chemical-Resistance. Kobunshi Ronbunshu,1994,51(8):523-529.
    [73] Lodge B N, Judd S J. A statistical approach to the optimisation of membrane operation. Waterand Environment Journal,2006,20(2):96-100.
    [74]赵英,于丹丹,秦东平,等. PAC投加量对MBR混合液性质及膜污染的影响.水处理技术,2005,31(11):52-55.
    [75]刘志阳,赵英,顾平.用MPE延缓MBR工艺中膜污染.膜科学与技术,2008,28(3):23-26.
    [76]高元.投加PAC对MBR污泥混合液特性及膜污染的影响研究[硕士学位论文].哈尔滨:东北农业大学.2010.
    [77] Lee N, Amy G, Croue J-P, et al. Identification and understanding of fouling in low-pressuremembrane (MF/UF) filtration by natural organic matter (NOM). Water Research,2004,38(20):4511-4523.
    [78] Zularisam A W, Ismail A F, Salim M R, et al. The effects of natural organic matter (NOM)fractions on fouling characteristics and flux recovery of ultrafiltration membranes.Desalination,2007,212(1-3):191-208.
    [79]邓玲,王晔.超滤过程中膜的吸附现象是造成膜污染的关键.过滤与分离,1997,(4):13-17.
    [80] Zhang G J, Ji S L, Gao X, et al. Adsorptive fouling of extracellular polymeric substances withpolymeric ultrafiltration membrances. Journal of Membrane Science,2008,309(1-2):28-35.
    [81] Choo K H, Lee C H. Understanding membrane fouling in terms of surface free energychanges. Journal of Colloid and Interface Science,2000,226(2):367-370.
    [82] Kim S H, Moon S Y, Yoon C H. Identification of fouling-causing materials in theultrafiltration of surface water. Desalination,2005,177(1-3):201-207.
    [83] Huang H, Lee N, Young T, et al. Natural organic matter fouling of low-pressure, hollow-fibermembranes: Effects of NOM source and hydrodynamic conditions. Water Research,2007,41(17):3823-3832.
    [84] Zularisam A W, Ismail A F, Salim M R, et al. Fabrication, fouling and foulant analyses ofasymmetric polysulfone (PSF) ultrafiltration membrane fouled with natural organic matter(NOM) source waters. Journal of Membrane Science,2007,299(1-2):97-113.
    [85] Jermann D, Pronk W, Meylan S, et al. Interplay of different NOM fouling mechanisms duringultrafiltration for drinking water production. Water Research,2007,41(8):1713-1722.
    [86] Aoustin E, Schafer A I, Fane A G, et al. Ultrafiltration of natural organic matter. Separationand Purification Technology,2001,22-3(1-3):63-78.
    [87]董秉直,冯晶.有机物对UF膜过滤通量的影响.环境科学学报,2007,27(5):758-762.
    [88] Chen Y, Dong B Z, Gao N Y, et al. Effect of coagulation pretreatment on fouling of anultrafiltration membrane. Desalination,2007,204(1-3):181-188.
    [89] Lee N H, Amy G, Croue J P, et al. Identification and understanding of fouling in low-pressuremembrane (MF/UF) filtration by natural organic matter (NOM). Water Research,2004,38(20):4511-4523.
    [90] Kimura K, Yamamura H, Watanabe Y. Irreversible fouling in MF/UF membranes caused bynatural organic matters (NOMs) isolated from different origins. Separation Science andTechnology,2006,41(7):1331-1344.
    [91] Boerlage S F E, Kennedy M D, Bonne P A C, et al. Prediction of flux decline in membranesystems due to particulate fouling. Desalination,1997,113(2-3):231-233.
    [92] Jermann D, Pronk W, Kagi R, et al. Influence of interactions between NOM and particles onUF fouling mechanisms. Water Research,2008,42(14):3870-3878.
    [93] Hermia J. constant pressure blocking filtration laws-application to power-law non-newtonianfluids. transactions of the institution of chemical engineers,1982,60(3):183-187
    [94] Katsoufidou K, Yiantsios S G, Karabelas A J. A study of ultrafiltration membrane fouling byhumic acids and flux recovery by backwashing: Experiments and modeling. Journal ofMembrane Science,2005,266(1-2):40-50.
    [95] Campos C, Marinas B J, Snoeyink V L, et al. Adsorption of trace organic compounds inCRISTAL (R) processes. Desalination,1998,117(1-3):265-271.
    [96]王旭东.基于膜结构特征和水中有机物性状的超滤膜污染模型的建立和评价研究[博士学位论文].西安:西安建筑科技大学.2007.
    [97] Susanto H, Ulbricht M. High-performance thin-layer hydrogel composite membranes forultrafiltration of natural organic matter. Water Research,2008,42(10-11):2827-2835.
    [98] Galjaard G, Buijs P, Beerendonk E, et al. Pre-coating (EPCE (R)) UF membranes for directtreatment of surface water. Desalination,2001,139(1-3):305-316.
    [99] Song K G, Kim Y, Ahn K H. Effect of coagulant addition on membrane fouling and nutrientremoval in a submerged membrane bioreactor. Desalination,2008,221(1-3):467-474.
    [100] Omer S, Yaxi S, Ailing H, et al. Effect of PAC addition on MBR process for drinking watertreatment. Separation and Purification Technology,2008,58(3):320-327.
    [101] Heng L, Yanling Y L, Weijia G J, et al. Effect of pretreatment by permanganate/chlorine onalgae fouling control for ultrafiltration (UF) membrane system. Desalination,2008,222(1-3):74-80.
    [102] Fan L H, Nguyen T, Roddick F A, et al. Low-pressure membrane filtration of secondaryeffluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science,2008,320(1-2):135-142.
    [103]尹华升,陈治安,陈益清,等.超滤处理微污染水库水的中试研究.中国给水排水,2006,22(11):9-12.
    [104] Xia S, Nan J, Liu R, et al. Study of drinking water treatment by ultrafiltration of surface waterand its application to China. Desalination,2004,170(1):41-47.
    [105]董秉直,刘风仙,桂波.在线混凝处理微污染水源水的中试研究.工业水处理,2008,28(1):40-43.
    [106] Huang H, Schwab K, Jacangelo J G. Pretreatment for Low Pressure Membranes in WaterTreatment: A Review. Environmental Science&Technology,2009,43(9):3011-3019.
    [107] Matsui Y, Hasegawa H, Ohno K, et al. Effects of super-powdered activated carbonpretreatment on coagulation and trans-membrane pressure buildup during microfiltration.Water Research,2009,43(20):5160-5170.
    [108]董秉直,陈艳,高乃云.粉末活性炭-超滤膜处理微污染原水试验研究.同济大学学报(自然科学版),2005,(6):777-780.
    [109] Lin C F, Huang Y J, Hao I J. Ultrafiltration processes for removing humic substances: Effectof molecular weight fractions and PAC treatment. Water Research,1999,33(5):1252-1264.
    [110]田家宇,梁恒,李星,等.一体化超滤膜混凝吸附生物反应器饮用水除污染效能.给水排水,2008,34(8):17-21.
    [111] Kim S L, Chen J P, Ting Y P. Study on feed pretreatment for membrane filtration of secondaryeffluent. Separation and Purification Technology,2002,29(2):171-179.
    [112] Oh H, Yu M, Takizawa S, et al. Evaluation of PAC behavior and fouling formation in anintegrated PAC-UF membrane for surface water treatment. Desalination,2006,192(1-3):54-62.
    [113] Al-Bastaki N, Abbas A. Use of fluid instabilities to enhance membrane performance: a review.Desalination,2001,136(1-3):255-262.
    [114] Su Y C, Huang C P, Pan J R, et al. Characteristics of membrane fouling in submergedmembrane bioreactor under sub-critical flux operation. Water Science and Technology,2008,57(4):601-605.
    [115] Wu J L, Chen F T, Huang X, et al. Using inorganic coagulants to control membrane fouling ina submerged membrane bioreactor. Desalination,2006,197(1-3):124-136.
    [116] Wang L, Wang X, Fukushi K-i. Effects of operational conditions on ultrafiltration membranefouling. Desalination,2008,229(1-3):181-191.
    [117] Dong B Z, Chen Y, Gao N Y, et al. Effect of pH on UF membrane fouling. Desalination,2006,195(1-3):201-208.
    [118] Hu X, Bekassy-Molnar E, Vatai G. Analysis and characterization of membrane fouling ofultrafiltration separation for oil-in-water emulsion. Chemical Papers-Chemicke Zvesti,2003,57(1):16-20.
    [119]康华,何文杰,韩宏大,等.中空纤维超滤膜处理滦河水中试研究.中国给水排水,2008,24(1):5-8.
    [120] Sui P Z, Wen X H, Huang X. Feasibility of employing ultrasound for on-line membranefouling control in an anaerobic membrane bioreactor. Desalination,2008,219(1-3):203-213.
    [121] Chen D, Weavers L K, Walker H W. Ultrasonic control of ceramic membrane fouling: Effectof particle characteristics. Water Research,2006,40(4):840-850.
    [122] Wang X D, Wang L, Liu Y, et al. Ozonation pretreatment for ultrafiltration of the secondaryeffluent. Journal of Membrane Science,2007,287(2):187-191.
    [123] You S H, Tseng D H, Hsu W C. Effect and mechanism of ultrafiltration membrane foulingremoval by ozonation. Desalination,2007,202(1-3):224-230.
    [124] Zheng J, Feng C, Matsuura T. Study on reduction of inorganic membrane fouling byultraviolet irradiation. Journal of Membrane Science,2004,244(1-2):179-182.
    [125]刘瑞兴,董君英.菜籽蛋白超滤液反冲对超滤膜污染的控制研究.食品科学,2005,26(12):165-168.
    [126] Liang H, Gong W, Chen J, et al. Cleaning of fouled ultrafiltration (UF) membrane by algaeduring reservoir water treatment. Desalination,2008,220(1-3):267-272.
    [127] Muthukumaran S, Yang K, Seuren A, et al. The use of ultrasonic cleaning for ultrafiltrationmembranes in the dairy industry. Separation and Purification Technology,2004,39(1-2):99-107.
    [128]柴国墉.超声监测技术在膜分离过程中的应用研究.膜科学与技术,2003,(4):134-140.
    [129] Horsch P, Gorenflo A, Fuder C, et al. Biofouling of ultra-and nanofiltration membranes fordrinking water treatment characterized by fluorescence in situ hybridization (FISH).Desalination,2005,172(1):41-52.
    [130] Zator M, Ferrando M, Lopez F, et al. Membrane fouling characterization by confocalmicroscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science,2007,301(1-2):57-66.
    [131] Liu J X, Li J X, Chen X M, et al. Monitoring of polymeric membrane fouling in hollow fibermodule using ultrasonic nondestructive testing. Transactions of Nonferrous Metals Society ofChina,2006,16:845-848.
    [132] Xia S J, Li X, Zhang Q L, et al. Ultrafiltration of surface water with coagulation pretreatmentby streaming current control. Desalination,2007,204(1-3):351-358.
    [133] Chai G Y, Greenberg A R, Krantz W B. Ultrasound, gravimetric, and SEM studies of inorganicfouling in spiral-wound membrane modules. Desalination,2007,208(1-3):277-293.
    [134] Dong B Z, Chen Y, Gao N Y, et al. Effect of coagulation pretreatment on the fouling ofultrafiltration membrane. Journal of Environmental Sciences-China,2007,19(3):278-283.
    [135] Xia S, Li X, Liu R, et al. Pilot study of drinking water production with ultrafiltration of waterfrom the Songhuajiang River (China). Desalination,2005,179(1-3):369-374.
    [136] Huang X, Wei C H, Yu K C. Mechanism of membrane fouling control by suspended carriersin a submerged membrane bioreactor. Journal of Membrane Science,2008,309(1-2):7-16.
    [137] Wei C H, Huang X, Wang C W, et al. Effect of a suspended carrier on membrane fouling in asubmerged membrane bioreactor. Water Science and Technology,2006,53(6):211-220.
    [138] Sagbo O, Sun Y, Hao A, et al. Effect of PAC addition on MBR process for drinking watertreatment. Separation and Purification Technology,2008,58(3):320-327.
    [139]郝爱玲,陈永玲,顾平.膜生物反应器用于微污染地表水处理的中试研究.化工学报,2006,57(1):136-139.
    [140]赵英,顾平,白晓琴.运行工艺对膜生物反应器的影响.化工学报,2008,59(1):209-213.
    [141]张颖,顾平,王启山.预膜法用于控制膜生物反应器膜污染.天津大学学报,2006,(S1):316-319.
    [142] Wang X, Wang L, Liu Y, et al. Ozonation pretreatment for ultrafiltration of the secondaryeffluent. Journal of Membrane Science,2007,287(2):187-191.
    [143] Zularisam A W, Ismail A F, Salim R. Behaviours of natural organic matter in membranefiltration for surface water treatment-a review. Desalination,2006,194(1-3):211-231.
    [144]董秉直,曹达文,陈艳.饮用水膜深度处理技术.北京:化学工业出版社.2006:13-15.
    [145]林毅,刘文君,李德生,等.水源中溶解性有机物分子量分布特性.供水技术,2007,1(5):10-13.
    [146]董月芬,张丽云.水源中溶解性有机物分子量分布特性研究.河北化工,2008,31(11):23-25.
    [147]陈超.控制消毒副产物的顺序氯化消毒及水处理工艺优化研究[博士学位论文].北京:清华大学环境科学与工程系.2005:82-84.
    [148] Jerry A, Leenheer. Comprehensive Approach to Preparative Isolation and Fractionation ofDissolved Organic Carbon from Natural Waters and Wastewaters. Environmental Science&Technology,1981,15(5):578-587.
    [149]朱玲侠.氯化消毒副产物的前体物及其去除特性研究[硕士学位论文].北京:清华大学环境科学与工程系.2005:37-39.
    [150]朱洪涛.臭氧-微滤工艺处理二级出水过程中的膜污染及控制机理[博士学位论文].北京:清华大学环境科学与工程系.2009:51-57.
    [151]欧阳二明,张锡辉,王伟.常规净水工艺去除有机物效果的三维荧光光谱分析法.光谱学与光谱分析,2007,27(7):1373-1376.
    [152]李宏斌,刘文清,张玉钧,等.三维荧光光谱技术在水监测中的应用.光学技术,2006,32(1):27-30.
    [153] Marhaba T F. Fluorescence technique for rapid identification of DOM fractions. Journal ofEnvironmental Engineering-Asce,2000,126(2):145-152.
    [154] Baker A. Fluorescence excitation-emission matrix characterization of some sewage-impactedrivers. Environmental Science&Technology,2001,35(5):948-953.
    [155] Her N, Amy G, McKnight D, et al. Characterization of DOM as a function of MW byfluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. WaterResearch,2003,37(17):4295-4303.
    [156] Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-Emission matrix regionalintegration to quantify spectra for dissolved organic matter. Environmental Science&Technology,2003,37(24):5701-5710.
    [157] Pearce G K. Fouling behaviour for different module formats in membrane filtrationapplications for surface water treatment. Desalination and Water Treatment,2009,1(8):48-53.
    [158]董秉直,李伟英,陈艳.用有机物分子量分布变化评价不同处理方法去除有机物的效果.水处理技术,2003,(03).
    [159] Kim J, Shi W, Yuan Y, et al. A serial filtration investigation of membrane fouling by naturalorganic matter. Journal of Membrane Science,2007,294(1-2):115-126.
    [160] Xia S-j, Liu Y-n, Li X, et al. Drinking water production by ultrafiltration of SonghuajiangRiver with PAC adsorption. Journal of Environmental Sciences,2007,19(5):536-539.
    [161] Choksuchart P, Heran M, Grasmick A. Ultrafiltration enhanced by coagulation in an immersedmembrane system. Desalination,2002,145(1-3):265-272.
    [162] Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system. WaterResearch,2002,36(16):4137-4143.
    [163] Lee H, Amy G, Cho J W, et al. Cleaning strategies for flux recovery of an ultrafiltrationmembrane fouled by natural organic matter. Water Research,2001,35(14):3301-3308.
    [164] Lin J C T, Lee D J, Huang C P. Membrane Fouling Mitigation: Membrane Cleaning.Separation Science and Technology,2010,45(7):858-872.
    [165]肖建平.中空纤维超滤膜的有机污染及清洗方法研究[硕士学位论文].重庆:重庆大学城市建设与环境工程学院.2004.
    [166] Tian J-y, Chen Z-l, Yang Y-l, et al. Consecutive chemical cleaning of fouled PVC membraneusing NaOH and ethanol during ultrafiltration of river water. Water Research,44(1):59-68.
    [167] Puspitasari V, Granville A, Le-Clech P, et al. Cleaning and ageing effect of sodiumhypochlorite on polyvinylidene fluoride (PVDF) membrane. Separation and PurificationTechnology,2010,72(3):301-308.
    [168] Guo X Y, Gao W, Li J H, et al. Fouling and Cleaning Characteristics of Ultrafiltration ofHydrophobic Dissolved Organic Matter by a Polyvinyl Chloride Hollow Fiber Membrane.Water Environment Research,2009,81(6):626-632.
    [169] Porcelli N, Judd S. Chemical cleaning of potable water membranes: A review. Separation andPurification Technology,2009,71(2):137-143.
    [170] Yan X X, Gerards R, Vriens L, et al. Hollow fiber membrane fouling and cleaning in amembrane bioreactor for molasses wastewater treatment. Desalination and Water Treatment,2010,18(1-3):192-197.
    [171]莫罹,黄霞,吴金玲.混凝-微滤膜净水工艺的膜污染特征及其清洗.中国环境科学,2002,22(3):258-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700