用户名: 密码: 验证码:
微生物分子生态学技术在石油污染土壤修复中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先简要回顾了国内外石油污染耕地生物修复技术及其实际应用现状,重点介绍了微生物分子生态学技术在揭示土壤修复过程中土壤微生物种类、数量以及功能基因的变化等方面的研究进展,展望了该技术在生物修复过程的设计、实施以及效果评估方面的应用前景。
     研究了接种阴沟肠杆菌(E. cloacae)的石油污染土壤的生物强化修复过程,PCR-DGGE分析结果显示阴沟肠杆菌可在污染土壤中稳定存在,在接种微生物的同时添加麦秸可显著增加土壤微生物群落的种类和数量;所获得的真菌和细菌的数量最多,分别达到5.5×10~3和4.6×10~7;土壤脱氢酶活最高,达到0.79;石油烃的降解率也最高,处理56d后的石油烃降解率达到56%。微生态分析结果还显示了不同的修复操作所获得的土壤微生态组成上的差异。
     采用基因文库法分析对比了污染耕地、修复耕地和正常耕地的细菌和真核生物的基因类型和组成。结果显示正常耕地细菌和真核生物的基因类型分别为122个和34个,细菌优势菌门是变形杆菌门、酸杆菌门和拟杆菌门;真核生物优势门是节肢动物门、真菌未知、双核真菌门和丝足虫门。石油污染导致土壤细菌和真菌基因类型分别减少到96个和21个,优势细菌菌门分布和真核生物门组成也发生明显变化。经过生物修复后,耕地的基因类型分别恢复到115个和30个,优势细菌菌门分布和真核生物门种类也恢复到正常耕地的水平。
     以氮循环过程中固氮、硝化以及氨化作用的特征基因,即nifH、narG和amoA为例,考察了生物修复过程的土壤生物功能性变化。对于nifH而言,正常耕地共发现25个基因型,而污染耕地仅存在15个基因型,修复后耕地的基因型数量恢复到21个,聚类分析表明三种土壤均分为6个类群,包括放线菌亚纲、α、γ、β和δ变形杆菌亚纲和未确定亚纲,但组成比例存在差异。类似的情形也出现在amoA和narG基因,后者则会因石油污染而消失。修复后的基因类型则达到甚至超过了正常耕地水平,在优势菌株和比例组成上与正常耕地相似,表明修复耕地的功能基因恢复到了正常耕地的水平。
This dissertation started with an overview of the recent advancement ofbioremediation techniques and their applications in the remediation ofpetroleum-contaminated soil. The application of molecular biological techniques toprobe the microbial ecological changes in terms of composition and quantity of bothmicrobial community and functional genes was highlighted. The prospects of thesetechniques as enabling tools in the design, implementation and assessment ofbioremediation practice were discussed.
     The variation of microbial society occurred to a bioaugmentation of petroleumcontaminated soil using Enterobacter cloacae as an inoculant was monitored bydenaturing gradient gel electrophoresis (DGGE) of16S rDNA of the bacteria. It wasshown that the addition of wheat straw in the augmentation enhanced the growth ofbacterium and fungi in comparison to that obtained with solely inoculant. A maximumconcentration of4.6×10~7and5.5×10~3, for bacterial and fungal species respectively, wasobtained in case of adding wheat straw, which also resulted in a highest dehydrogenaseactivity (0.79) and degradation rate (56%in56d). The remediated soil with differenttreatment presented different bacterial composition, as shown by PCR-DGGE.
     The variations in the microbial ecological system of remediated soil (R) andpetroleum contaminated soil (P) based on comparison with soil that has not beencontaminated (N) was profiled using a cloning library of taxonomic genes (16S rDNAfor bacterium and18S rDNA for eukaryotes). The genotype number of prokaryote andeukaryote found in the N soil was122and34, respectively. Proteobacterial,Acidobacteria, Bacteroidetes, and Arthropoda were the predominant bacterial phylum,while Incertae seids, Dikarya and Cercozoa accounted for predominant ones ineukaryotic composition. The contamination with crude oil led to a reduction ofgenotype number to96(bacteria) and21(fungi), respectively, and, moreover, analteration in composition and proportion of both bacterial and eukaryotic phylum in theP soil. The R soil, as treated using a microbial consortium of Enterobacter cloacae andCunninghamella echinulata as inoculant, gave a genotype number of115(bacteria) and30(fungi), and moreover, a more close distribution of predominant bacterial andeukaryotic phylum with reference to the N soil. The restoration of microbial ecology, as indicated by aforementioned results, confirmed the effectiveness of the remediationpractice.
     The change of soil function due to the bioagumentation using a microbialconsortium of Enterobacter cloacae and Cunninghamella echinulata as inoculant wasevaluated using three genes encoding the key enzyme in nitrogen fixation, nitrificationand ammoniation as target genes, i.e., nifH, amoA and narG. For nifH gene, while thepetroleum contamination led to a reduction of genotype number in the P soil from25to15, the R soil presented a genotype number of21, being close to that of the N soil.Moreover, the cluster analysis showed the existence of six subclasses in the three soilsample, which was Actinbacteridae, α-,γ-,β-, δ-Proteobacteria and unclassified group,though the relative density of each subclass varied, particularly that of the contaminatedsoil. Similar results were found for amoA and narG gene, the latter was absent in the Psoil, a direct evidence of the imperfection of soil nitrogen cycle due to petroleumcontamination. The remedation restored the above mentioned genotype and gaveenhanced narG gene diversity with reference to the normal soil. These confirmed theremediation of the soil in terms of functional genes. The results obtained by the presentstudy provided a microbial ecological insight that can be used to aid the design andimplementation of bioaugmentation.
引文
[1]中华人民共和国国民经济和社会发展十一五规划纲要:[EB/OL].2006-03-14[2010-10-07].http://news.xinhuanet.com/politics/2006-03/16/content_4312362.htm.
    [2]关注大型油田的生态环境问题:[EB/OL].2005-09-16[2010-10-07]. http://lunwen.ckzl.net/huanjingbaohu/lunwen_98126.shtml.
    [3]钱暑强,刘铮.污染土壤修复技术介绍.化工进展,2000,19(4):10-12.
    [4]周生贤.在全国土壤污染状况调查视频会议上强调采取有效措施保障土壤环境安全和人体健康:[EB/OL].2006-07-18[2010-10-07]. http://www.sepa.gov.cn/xcjy/zwhb/200607/t20060718_78512.html.
    [5]关于发布863计划资源环境技术领域2007年度第二批重点项目申请指南的通知[EB/OL]:2007-05-30[2010-10-07]. http://www.most.gov.cn/tztg/200705/t20070530_50116.htm.
    [6]王连生.有机污染化学.北京:高等教育出版社,2004.
    [7]叶为民,孙风慧.土壤石油污染的生物修复技术.上海地质,2002,57(4):22-24.
    [8]陆光华,万蕾,苏瑞莲.石油烃类污染土壤的生物修复技术研究进展.生态环境,2003,12(2):220-223.
    [9] Swannell R, Head I M. Oil-spills-bioremediation comes of age. NATURE,1994,368(6470):396-397.
    [10]姚德明,许华夏,张海荣,等.石油污染土壤生物修复过程中微生物生态研究.生态学杂志,2002,21(1):26-28.
    [11]张坤.麦秸强化油-盐污染土壤生物修复过程研究及场地中试:[博士学位论文].北京:清华大学,2008.
    [12] Zhou Q X, Hua T. Bioremediation: A review of applications and problems to be resolved.PROGRESS IN NATURAL SCIENCE,2004,14(11):937-944.
    [13] Alcalde M, Ferrer M, Plou F J, et al. Environmental biocatalysis: From remediation withenzymes to novel green processes. TRENDS IN BIOTECHNOLOGY,2006,24(6):281-287.
    [14] Whiteley C G, Lee D J. Enzyme technology and biological remediation. ENZYME ANDMICROBIAL TECHNOLOGY,2006,38(3/4):291-316.
    [15]邢新会,刘则华.环境生物修复技术的研究进展.化工进展,2004,23(6):579-584.
    [16] Mulligan C N, Yong R N. Natural attenuation of contaminated soils. ENVIRONMENTINTERNATIONAL,2004,30(4):587-601.
    [17] Scow K M, Hicks K A. Natural attenuation and enhanced bioremediation of organiccontaminants in groundwater. CURRENT OPINION IN BIOTECHNOLOGY,2005,16(3):246-253.
    [18] Seklemova E, Pavlova A, Kovacheva K. Biostimulation-based bioremediation of diesel fuel:field demonstration. BIODEGRADATION,2001,12(5):311-316.
    [19] Xia W X, Li J C, Zheng X L, et al. Enhanced biodegradation of diesel oil in seawatersupplemented with nutrients. ENGINEERING IN LIFE SCIENCES,2006,6(1):80-85.
    [20] Delille D, Coulon F, Pelletier E. Long-term changes of bacterial abundance, hydrocarbonconcentration and toxicity during a biostimulation treatment of oil-amended organic andmineral sub-Antarctic soils. POLAR BIOLOGY,2007,30(7):925-933.
    [21] Thompson I P, van der Gast C J, Ciric L, et al. Bioaugmentation for bioremediation: thechallenge of strain selection. ENVIRONMENTAL MICROBIOLOGY,2005,7(7):909-915.
    [22] El Fantroussi S, Agathos S N. Is bioaugmentation a feasible strategy for pollutant removal andsite remediation? CURRENT OPINION IN MICROBIOLOGY,2005,8(3):268-275.
    [23]汪洋,史典义,聂春雨,等.石油污染土壤的微生物修复技术.生物技术,2009,19(2):94-96.
    [24]郑良永,林家丽,曹启民,等.污染土壤生物修复研究进展.广东农业科学,2006,2:79-81.
    [25]吴凡,刘训理.石油污染土壤的生物修复研究进展.土壤,2007,39(5):701-707.
    [26]隋红,李鑫钢,黄国强,等.土壤有机污染的原位修复技术.环境污染治理技术与设备,2003,4(8):41-45.
    [27]姜昌亮,孙铁珩,李培军,等.石油污染土壤长料堆式异位生物修复技术研究.应用生态学报,2001,12(2):279-282.
    [28] Mohn W W, Radziminski C Z, Fortin M C, et al. On site bioremediation ofhydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. APPLIEDMICROBIOLOGY AND BIOTECHNOLOGY,2001,57(1/2):242-247.
    [29]夏立江,张从.污染土壤生物修复技术.北京:环境科学出版社,2000.
    [30]丁克强,骆永明.生物修复石油污染土壤.土壤,2001,33(4):179-184.
    [31]张建,史德青,桂召龙,等.预制床法生物修复胜利油田含油污泥的研究.环境污染与防治,2007,29(12):912-915.
    [32]丁克强,骆永明.多环芳烃污染土壤的生物修复.土壤,2001,33(4):169-178.
    [33] May R, Schroder P, Sandermann H. Ex-situ process for treating PAH-contaminated soil withPhanerochaete chrysosporium. ENVIRONMENTAL SCIENCE&TECHNOLOGY,1997,31(9):2626-2633.
    [34] Schaefer M, Filser J. The influence of earthworms and organic additives on thebiodegradation of oil contaminated soil. APPLIED SOIL ECOLOGY,2007,36(1):53-62.
    [35] Ayotamuno M J, Kogbara R B, Ogaji S, et al. Bioremediation of a crude-oil pollutedagricultural-soil at Port Harcourt, Nigeria. APPLIED ENERGY,2006,83(11):1249-1257.
    [36] Bull A T, Goodfellow M, Slater J H. Biodiversity as a source of innovation in biotechnology.ANNUAL REVIEW OF MICROBIOLOGY,1992,46:219-252.
    [37] Kiyohara H, Nagao K, Yana K. Rapid screen for bacteria degrading water-insoluble, solidhydrocarbons on agar plates. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,1982,43(2):454-457.
    [38] Ashok B T, Saxena S, Musarrat J. Isolation and characterization of four polycyclic aromatichydrocarbon-degrading bacteria from soil near an oil refinery. LETTERS IN APPLIEDMICROBIOLOGY,1995,21(4):246-248.
    [39] Osipov A I, Ponomareva L V, Ivanova T A. Biological clearance of petroleum-contaminatedsoil. DOKLADY ROSSIISKOI AKADEMII SEL'SKOKHOZYAISTVENNYKH NAUK,1998,0(6):20-22.
    [40] Daane L L, Harjono I, Zylstra G J, et al. Isolation and characterization of polycyclic aromatichydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2001,67(6):2683-2691.
    [41] Tzarkova E K, Groudeva V I. Bioremediation of petroleum-polluted soils by adsorptiveimmobilized Cornyebacterium sp. RB-96. BIOTECHNOLOGY&BIOTECHNOLOGICALEQUIPMENT,2000,14(1):72-75.
    [42] Foght J, Semple K, Westlake D, et al. Development of a standard bacterial consortium forlaboratory efficacy testing of commercial freshwater oil spill bioremediation agents.JOURNAL OF INDUSTRIAL MICROBIOLOGY&BIOTECHNOLOGY,1998,21(6):322-330.
    [43] Murygina V P, Markarova M Y, Kalyuzhnyi S V. Application of biopreparation "Rhoder" forremediation of oil polluted polar marshy wetlands in Komi Republic. ENVIRONMENTINTERNATIONAL,2005,31(2):163-166.
    [44] Sathishkumar M, Binupriya A R, Baik S H, et al. Biodegradation of crude oil by individualbacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminatedareas. CLEAN-SOIL AIR WATER,2008,36(1):92-96.
    [45] Rahman K, Banat I M, Thahira J, et al. Bioremediation of gasoline contaminated soil by abacterial consortium amended with poultry litter, coir pith, and rhamnolipid biosurfactant.BIORESOURCE TECHNOLOGY,2002,81(1):25-32.
    [46]梁生康,王修林,汪卫东,等.高效石油降解菌的筛选及其在油田废水深度处理中的应用.化工环保,2004,24(1):41-46.
    [47]杨雪莲,李凤梅,刘婉婷,等.高效石油降解菌的筛选及其降解特性.农业环境科学学报,2008,27(1):230-233.
    [48]杨乐,李春,鲁建江,等.石油降解菌的筛选及其降解能力的初步研究.石河子大学学报(自然科学版),2007,25(4):484-487.
    [49]徐金兰,黄廷林,唐智新,等.高效石油降解菌的筛选及石油污染土壤生物修复特性的研究.环境科学学报,2007,27(4):622-628.
    [50]黄廷林,肖洲强,徐金兰,等.生物菌剂修复陕北石油污染土壤实验研究.西安建筑科技大学学报:自然科学版,2007,39(1):14-17.
    [51]徐金兰,黄廷林,唐智新,等.高效石油降解菌的筛选及石油污染土壤生物修复特性的研究.环境科学学报,2007,27(4):622-628.
    [52]黄廷林,肖洲强,徐金兰,等.匀强电场和微生物联合修复石油污染土壤的实验研究.西安建筑科技大学学报:自然科学版,2006,38(6):790-794.
    [53]李宝明,阮志勇,姜瑞波.石油降解菌的筛选、鉴定及菌群构建.中国土壤与肥料,2007,3:68-72.
    [54]陈晓鹏,易筱筠,陶雪琴,等.石油污染土壤中芘高效降解菌群的筛选及降解特性研究.环境工程学报,2008,2(3):413-417.
    [55]韩慧龙.真菌-细菌强化修复石油污染土壤的研究:[博士学位论文].北京:清华大学,2008.
    [56] Bussmann I, Philipp B, Schink B. Factors influencing the cultivability of lake water bacteria.JOURNAL OF MICROBIOLOGICAL METHODS,2001,47(1):41-50.
    [57] Kaeberlein T, Lewis K, Epstein S S. Isolating "uncultivable" microorganisms in pure culturein a simulated natural environment. SCIENCE,2002,296(5570):1127-1129.
    [58] Zengler K, Toledo G, Rappe M, et al. Cultivating the uncultured. PROCEEDINGS OF THENATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,2002,99(24):15681-15686.
    [59] Lee M D, Swindoll C M. Bioventing for in-situ remediation. HYDROLOGICAL SCIENCESJOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES,1993,38(4):273-282.
    [60] Cooley A I, Billings G K. Bio-sparging: An integrated remediation technology for petroleumhydrocarbon sites: Petro-Safe '93/4th Annual Oil, Gas, and Petrochemical IndustriesEnvironmental and Satety Conference.1993,33-60.
    [61] Glaze W H. What is environmental research? ENVIRONMENTAL SCIENCE&TECHNOLOGY,2001,35(11):225A.
    [62] Miller M E, Drake J T. Design of a novel injection scheme for enhanced anaerobicbioremediation: COLUMBUS: BATTELLE PRESS,2001:6,273-279.
    [63]杨建涛,朱琨,马娟.表面活性剂对黄土中石油污染物的解吸影响研究.环境污染治理技术与设备,2003,4(2):6-9.
    [64]杨建涛,朱琨,马娟,等.土壤中苯系物在表面活性剂溶液中的解吸研究.农业环境科学学报,2003,22(5):620-623.
    [65]张胜,陈立,崔晓梅,等.西北黄土区石油污染土壤原位微生物生态修复试验研究.微生物学通报,2008,35(5):765-771.
    [66]韩慧龙,陈镇,杨健民,等.真菌-细菌协同修复石油污染土壤的场地试验.环境科学,2008,29(2):454-461.
    [67] Micheal J B, Julian M M. Pilot bioremediation tells all about petroleum contaminated soil.POLLUTION ENGINEERING,1989:110-112.
    [68] Peltola R. Composting methods: USA, US5685891.1997-05-12.
    [69] Beaudin N, Caron R F, Legros R, et al. Identification of the key factors affecting compostingof a weathered hydrocarbon-contaminated soil. BIODEGRADATION,1999,10(2):127-133.
    [70] Namkoong W, Hwang E Y, Park J S, et al. Bioremediation of diesel-contaminated soil withcomposting. ENVIRONMENTAL POLLUTION,2002,119(1):23-31.
    [71] Trejo-Hernandez M R, Ortiz A, Okoh A I, et al. Biodegradation of heavy crude oil Mayausing spent compost and sugar cane bagasse wastes. CHEMOSPHERE,2007,68(5):848-855.
    [72] Pizzul L, Sjogren A, Castillo M D, et al. Degradation of polycyclic aromatic hydrocarbons insoil by a two-step sequential treatment. BIODEGRADATION,2007,18(5):607-616.
    [73]牛明芬,韩晓日,郭书海,等.生物表面活性剂在石油污染土壤生物预制床修复中的应用研究.土壤通报,2005,36(5):712-715.
    [74]魏德洲,秦煜民.表面活性剂对石油污染物生物降解的影响.东北大学学报:自然科学版,1998,2:125-127.
    [75]姜昌亮,孙铁珩,李培军,等.石油污染土壤长料堆式异位生物修复技术研究.应用生态学报,2001,12(2):279-282.
    [76] Lindner G. In plants for toxicity assessment. PHILADEPHIA: AMERICAN SOCIETY FORTESTING AND MATERIALS,1990.
    [77] Gregson S, Clifton S, Roberts R D. Plants as bioindicators of natural and anteropogenicallyderived contamination. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY,1994,48(1):15-22.
    [78] Amadi A, Dickson A A, Maate G O. Remediation of oil polluted soils.1. Effect of organicand inorganic nutrient supplements on the performance of maize (Zea-may L). WATER AIRAND SOIL POLLUTION,1993,66(1/2):59-76.
    [79] Baek K H, Kim H S, Oh H M, et al. Effects of crude oil, oil components, and bioremediationon plant growth. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PARTA-TOXIC/HAZARDOUS SUBSTANCES&ENVIRONMENTAL ENGINEERING,2004,39(9):2465-2472.
    [80] Phillips T M, Liu D, Seech A G, et al. Bioremediation in field box plots of a soil contaminatedwith wood-preservatives: A comparison of treatment conditions using toxicity testing as amonitoring technique. WATER AIR AND SOIL POLLUTION,2000,121(1/2/3/4):173-187.
    [81] van Gestel C, van der Waarde J J, Derksen J, et al. The use of acute and chronic bioassays todetermine the ecological risk and bioremediation efficiency of oil-polluted soils.ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY,2001,20(7):1438-1449.
    [82] Phillips T M, Liu D, Seech A G, et al. Monitoring bioremediation in creosote-contaminatedsoils using chemical analysis and toxicity tests. JOURNAL OF INDUSTRIALMICROBIOLOGY&BIOTECHNOLOGY,2000,24(2):132-139.
    [83] Salanitro J P, Dorn P B, Huesemann M H, et al. Crude oil hydrocarbon bioremediation andsoil ecotoxicity assessment. ENVIRONMENTAL SCIENCE&TECHNOLOGY,1997,31(6):1769-1776.
    [84] Gunderson C A, Kostuk J M, Gibbs M H, et al. Multispecies toxicity assessment of compostproduced in bioremediation of an explosives-contaminated sediment. ENVIRONMENTALTOXICOLOGY AND CHEMISTRY,1997,16(12):2529-2537.
    [85] Meier J R, Chang L W, Jacobs S, et al. Use of plant and earthworm bioassays to evaluateremediation of soil from a site contaminated with polychlorinated biphenyls.ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY,1997,16(5):928-938.
    [86] Sublette K, Jennings E, Mehta C, et al. Monitoring soil ecosystem recovery followingbioremediation of a terrestrial crude oil spill with and without a fertilizer amendment. SOIL&SEDIMENT CONTAMINATION,2007,16(2):181-208.
    [87] Washington State Department of Program. Washington state department of ecology toxicscleanup program:[S]. USA,1995.
    [88] Prince Edward Island. Petroleum contaminated site remediation guidelines:[S]. CANADA,1999.
    [89] The Environment Agency. Guidance on the use of stabilistion/solidification for the treatmentof contaminated soil:[S]. THE UNITED KINGDOM,2004.
    [90]污染场地土壤修复技术导则:征求意见稿:[EB/OL].2009-12-23[2010-10-07]. http://www.zhb.gov.cn/gkml/hbb/bgth/200912/W020091223374051880140.pdf.
    [91]杨芳,徐秋芳.土壤微生物多样性研究进展.浙江林业科技,2002,22(6):39-41.
    [92]杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展.南华大学学报:自然科学版,2005,19(4):21-26.
    [93] Donnison L M, Griffith G S, Hedger J, et al. Management influences on soil microbialcommunities and their function in botanically diverse haymeadows of northern England andWales. SOIL BIOLOGY&BIOCHEMISTRY,2000,32(2):253-263.
    [94] Vogel T M, Walter M V. Bioaugmentation. In manual of environmental microbiology.WASHINGTON, DC: AMERICAN SOCIETY FOR MICROBIOLOGY PRESS,2001.
    [95] Ranjard L, Poly F, Lata J C, et al. Characterization of bacterial and fungal soil communitiesby automated ribosomal intergenic spacer analysis fingerprints: Biological andmethodological variability. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2001,67(10):4479-4487.
    [96] Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emergingphylogenetic view of bacterial diversity (vol180, pg4765,1998). JOURNAL OFBACTERIOLOGY,1998,180(24):6793.
    [97] Muyzer G, Dewaal E C, Uitterlinden A G. Profiling of complex microbial-populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifiedgenes-coding for16S ribosomal-RNA. APPLIED AND ENVIRONMENTALMICROBIOLOGY,1993,59(3):695-700.
    [98] Donegan K K, Palm C J, Fieland V J, et al. Changes in levels, species and DNA fingerprintsof soil-microorganisms associated with cotton expressing the bacillus-thuringiensis varkurstaki endotoxim. APPLIED SOIL ECOLOGY,1995,2(2):111-124.
    [99] Clement B G, Kehl L E, Debord K L, et al. Terminal restriction fragment patterns (TRFPs), arapid, PCR-based method for the comparison of complex bacterial communities. JOURNALOF MICROBIOLOGICAL METHODS,1998,31(3):135-142.
    [100] Borneman J T E. Molecular microbial diversity in soils from eastern Amazonia: Evidence forunusual microorganisms and microbial population shifts associated with deforestation.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,1997,63(7):2647-2653.
    [101] Hadrys H, Balick M, Schierwater B. Applications of random amplified polymorphic DNA(RAPD) in molecular ecology. MOLECULAR ECOLOGY,1992,1(1):55-63.
    [102] Lerman L S, Fischer S G, Hurley I, et al. Sequence-determined DNA separations. ANNUALREVIEW OF BIOPHYSICS AND BIOENGINEERING,1984,13:399-423.
    [103]吴作军,卢滇楠,刘铮,等.微生物分子生态学技术在石油污染土壤修复中的应用研究.化工进展,2010,29(5):101-107.
    [104] Wilfred F M, Michael G M, Martin J. Bacterial community dynamics and hydrocarbondegradation during a field-scale evaluation of bioremediation on a Mudflat Beachcontaminated with buried oil. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2004,70:2603-2613.
    [105] Marc V, Jordi S, María J. Bacterial community dynamics and polycyclic aromatic hydrocarbondegradation during bioremediation of heavily creosote-contaminated soil. APPLIED ANDENVIRONMENTAL MICROBIOLOGY,2005,71:7008-7018.
    [106] Zhang H, Zhang C G, Chen G X. Effect of petroleum-containing wastewater irrigation onbacterial diversities and enzymatic activities in a paddy soil irrigation area. JOURNAL OFENVIRONMENTAL QUALITY,2005,34(3):1073-1080.
    [107] Cunliffe M, Kertesz M A. Effect of Sphingobium yanoikuyae B1inoculation on bacterialcommunity dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshlyPAH-contaminated soils. ENVIRONMENTAL POLLUTION,2006,144(1):228-237.
    [108] Jimenez N, Vinas M, Bayona J M, et al. The Prestige oil spill: bacterial community dynamicsduring a field biostimulation assay. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY,2007,77(4):935-945.
    [109] Li H, Zhang Y, Irina K, et al. Dynamic changes in microbial activity and community structureduring biodegradation of petroleum compounds: A laboratory experiment. JOURNAL OFENVIRONMENTAL SCIENCES-CHINA,2007,19(8):1003-1013.
    [110] Coppotelli B M, Ibarrolaza A, Del Panno M T, et al. Effects of the inoculant strainSphingomonas paucimobilis20006FA on soil bacterial community and biodegradation inphenanthrene-contaminated soil. MICROBIAL ECOLOGY,2008,55(2):173-183.
    [111] Smalla K, Wachtendorf U, Heuer H, et al. Analysis of BIOLOG GN substrate utilizationpatterns by microbial communities. APPLIED AND ENVIRONMENTALMICROBIOLOGY,1998,64(4):1220-1225.
    [112] Wawer C, Jetten M S M, Muyzer G. Genetic diversity and expression of the [NiFe]hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples. APPLIEDAND ENVIRONMENTAL MICROBIOLOGY,1997,63(11):4360-4369.
    [113] Mehta M P, Butterfield D A, Baross J A. Phylogenetic diversity of nitrogenase (nifH) genes indeep-sea and hydrothermal vent environments of the Juan de Fuca ridge. APPLIED ANDENVIRONMENTAL MICROBIOLOGY,2003,69(2):960-970.
    [114] Wang W P, Wang L P, Shao Z Z. Diversity and abundance of oil-degrading bacteria andalkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen island. MICROBIALECOLOGY,2010,60(2):429-439.
    [115] Kim S J, Hwang S, Kim Y C. DNA sequence of the phnN gene for benzaldehydedehydrogenase from Pseudomonas sp DJ77and its substrate preference. JOURNAL OFMICROBIOLOGY,1999,37(4):224-228.
    [116] Giovannoni S J, Britschgi T B, Moyer C L, et al. Genetic diversity in Sargasso seabacterioplankton. NATURE,1990,345(6270):60-63.
    [117] Garcia-Armisen T, Papalexandratou Z, Hendryckx H, et al. Diversity of the total bacterialcommunity associated with Ghanaian and Brazilian cocoa bean fermentation samples asrevealed by a16S rRNA gene clone library. APPLIED MICROBIOLOGY ANDBIOTECHNOLOGY,2010,87(6):2281-2292.
    [118] Rastogi G, Osman S, Vaishampayan P A, et al. Microbial diversity in uraniummining-impacted soils as revealed by high-density16S microarray and clone library.MICROBIAL ECOLOGY,2010,59(1):94-108.
    [119] Krober M, Bekel T, Diaz N N, et al. Phylogenetic characterization of a biogas plant microbialcommunity integrating clone library16S rDNA sequences and metagenome sequence dataobtained by454-pyrosequencing. JOURNAL OF BIOTECHNOLOGY,2009,142(1Sp. Iss.SI):38-49.
    [120] Jones R T, Robeson M S, Lauber C L, et al. A comprehensive survey of soil acidobacterialdiversity using pyrosequencing and clone library analyses. ISME JOURNAL,2009,3(4):442-453.
    [121] Medina-Pons F J, Terrados J, Lopez-Lopez A, et al. Evaluation of the18S rRNA clone libraryapproach to study the diversity of the macroeukaryotic leaf-epiphytic community of theseagrass Posidonia oceanica (L.) delile. MARINE BIOLOGY,2009,156(9):1963-1976.
    [122] Chen B W, Liu X Y, Liu W Y, et al. Application of clone library analysis and real-time PCRfor comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate.JOURNAL OF INDUSTRIAL MICROBIOLOGY&BIOTECHNOLOGY,2009,36(11):1409-1416.
    [123] Dang H Y, Li J, Chen M N, et al. Fine-scale vertical distribution of bacteria in the East Pacificdeep-sea sediments determined via16S rRNA gene T-RFLP and clone library analyses.WORLD JOURNAL OF MICROBIOLOGY&BIOTECHNOLOGY,2009,25(2):179-188.
    [124] de Vasconcellos S P, Angolini C, Garcia I, et al. Screening for hydrocarbon biodegraders in ametagenomic clone library derived from Brazilian petroleum reservoirs. ORGANICGEOCHEMISTRY,2010,41(7):675-681.
    [125] Cancilla Mr P I H A. Rapid genomic fingerprinting of lactococcus-lactis strains by arbitrarilyprimed polymerase chain reaction with P-32and fluorescent labels. APPLIED ANDENVIRONMENTAL MICROBIOLOGY,1992,58(5):1772-1775.
    [126] Avanissaghajani E, Jones K, Chapman D, et al. A molecular technique for identification ofbacteria using small-subunit ribosomal-RNA sequences. BIOTECHNIQUES,1994,17(1):144.
    [127] Liu W T, Marsh T L, Cheng H, et al. Characterization of microbial diversity by determiningterminal restriction fragment length polymorphisms of genes encoding16S rRNA. APPLIEDAND ENVIRONMENTAL MICROBIOLOGY,1997,63(11):4516-4522.
    [128] Wu X L, Chin K J, Conrad R. Effect of temperature stress on structure and function of themethanogenic archaeal community in a rice field soil. FEMS MICROBIOLOGY ECOLOGY,2002,39(3):211-218.
    [129] Wu X L, Friedrich M W, Conrad R. Diversity and ubiquity of thermophilic methanogenicarchaea in temperate anoxic soils. ENVIRONMENTAL MICROBIOLOGY,2006,8(3):394-404.
    [130]章戴荣,白林,周东胜.利用T-RFLP技术分析微生物的多样性:中国畜牧兽医学会动物微生态学分会第三届第八次全国学术研讨会暨动物微生态企业发展战略论坛.广州:2006,16-19.
    [131] Katsivela E, Moore E, Maroukli D, et al. Bacterial community dynamics during in-situbioremediation of petroleum waste sludge in landfarming sites. BIODEGRADATION,2005,16(2):169-180.
    [132] Denaro R, D'Auria G, Di Marco G, et al. Assessing terminal restriction fragment lengthpolymorphism suitability for the description of bacterial community structure and dynamics inhydrocarbon-polluted marine environments. ENVIRONMENTAL MICROBIOLOGY,2005,7(1):78-87.
    [133] Hartmann M, Frey B, Kolliker R, et al. Semi-automated genetic analyses of soil microbialcommunities: Comparison of T-RFLP and RISA based on descriptive and discriminativestatistical approaches. JOURNAL OF MICROBIOLOGICAL METHODS,2005,61(3):349-360.
    [134] Morandi S, Brasca M, Lodi R, et al. Biochemical profiles, restriction fragment lengthpolymorphism (RFLP), random amplified polymorphic DNA (RAPD) and multilocus variablenumber tandem repeat analysis (MLVA) for typing Staphylococcus aureus isolated from dairyproducts. RESEARCH IN VETERINARY SCIENCE,2010,88(3):427-435.
    [135] Holland P M, Abramson R D, Watson R, et al. Detection of specific polymerase chain-reactionproduct by utilizing the5'-3' exonuclease activity of thermus-aquaticus DNA-polymerase.PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITEDSTATES OF AMERICA,1991,88(16):7276-7280.
    [136] Boulos L, Prevost M, Barbeau B, et al. LIVE/DEAD (R) BacLight (TM): application of a newrapid staining method for direct enumeration of viable and total bacteria in drinking water.JOURNAL OF MICROBIOLOGICAL METHODS,1999,37(1):77-86.
    [137] Gall L, Pardue J G. Formation of RNA-DNA hybrid molecules in cytogenetical preparations.PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE OF USA,1969,63:378-383.
    [138] Wu X L, Chin K J, Stubner S, et al. Functional patterns and temperature response ofcellulose-fermenting microbial cultures containing different methanogenic communities.APPLIED MICROBIOLOGY AND BIOTECHNOLOGY,2001,56(1/2):212-219.
    [139] Wu X L, Conrad R. Functional and structural response of a cellulose-degrading methanogenicmicrobial community to multiple aeration stress at two different temperatures.ENVIRONMENTAL MICROBIOLOGY,2001,3(6):355-362.
    [140] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in-situ detection ofindividual microbial-cells without cultivation. MICROBIOLOGICAL REVIEWS,1995,59:143-169.
    [141] Wu Y P, Yu X S, Wang H Z, et al. Does history matter? Temperature effects on soil microbialbiomass and community structure based on the phospholipid fatty acid (PLFA) analysis.JOURNAL OF SOILS AND SEDIMENTS,2010,10(2):223-230.
    [142]王秋红,蓝江林,朱育菁,等.脂肪酸甲酯谱图分析方法及其在微生物学领域的应用.福建农业学报,2007,22(2):213-218.
    [143] Mariano A P, Kataoka A, de Angelis D, et al. Laboratory study on the bioremediation of dieseloil contaminated soil from a petrol station. BRAZILIAN JOURNAL OF MICROBIOLOGY,2007,38(2):346-353.
    [144] Pozdnyakova N N, Nikitina V E, Turovskaya O V. Bioremediation of oil-polluted soil with anassociation including the fungus Pleurotus ostreatus and soil microflora. APPLIEDBIOCHEMISTRY AND MICROBIOLOGY,2008,44(1):60-65.
    [145] Jacques R, Okeke B C, Bento F M, et al. Microbial consortium bioaugmentation of apolycyclic aromatic hydrocarbons contaminated soil. BIORESOURCE TECHNOLOGY,2008,99(7):2637-2643.
    [146] Ueno A, Hasanuzzaman M, Yumoto I, et al. Verification of degradation of n-alkanes in dieseloil by Pseudomonas aeruginosa strain WatG in soil microcosms. CURRENTMICROBIOLOGY,2006,52(3):182-185.
    [147] Liu P, Whang L M, Yang M C, et al. Biodegradation of diesel-contaminated soil: A soilcolumn study. JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS,2008,39(5):419-428.
    [148] Federici E, Leonardi V, Giubilei M A, et al. Addition of allochthonous fungi to a historicallycontaminated soil affects both remediation efficiency and bacterial diversity. APPLIEDMICROBIOLOGY AND BIOTECHNOLOGY,2007,77(1):203-211.
    [149] Dejonghe W, Boon N, Seghers D, et al. Bioaugmentation of soils by increasing microbialrichness: missing links. ENVIRONMENTAL MICROBIOLOGY,2001,3(10):649-657.
    [150] Newby D T, Josephson K L, Pepper I L. Detection and characterization of plasmid pJP4transfer to indigenous soil bacteria. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2000,66(1):290-296.
    [151] Newby D T, Gentry T J, Pepper I L. Comparison of2,4-dichlorophenoxyacetic aciddegradation and plasmid transfer in soil resulting from bioaugmentation with two differentpJP4donors. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2000,66(8):3399-3407.
    [152] Top E M, Springael D, Boon N. Catabolic mobile genetic elements and their potential use inbioaugmentation of polluted soils and waters. FEMS MICROBIOLOGY ECOLOGY,2002,42(2):199-208.
    [153] Gardin H, Pauss A. kappa-carrageenan/gelatin gel beads for the co-immobilization of aerobicand anaerobic microbial communities degrading2,4,6-trichlorophenol under air-limitedconditions. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY,2001,56(3/4):517-523.
    [154] Moslemy P, Neufeld R J, Guiot S R. Biodegradation of gasoline by gellan gum-encapsulatedbacterial cells. BIOTECHNOLOGY AND BIOENGINEERING,2002,80(2):175-184.
    [155] Quan X C, Shi H C, Wang J L, et al. Biodegradation of2,4-dichlorophenol in sequencingbatch reactors augmented with immobilized mixed culture. CHEMOSPHERE,2003,50(8):1069-1074.
    [156] Olsen P E, Rice W A, Bordeleau L M, et al. Levels and identities of nonrhizobialmicroorganisms found in commercial legume inoculant made with nonsterile neat carrier.CANADIAN JOURNAL OF MICROBIOLOGY,1996,42(1):72-75.
    [157] Kok C J, Hageman P, Maas P, et al. Processed manure as carrier to introduce Trichodermaharzianum: Population dynamics and biocontrol effect on Rhizoctonia solani. BIOCONTROLSCIENCE AND TECHNOLOGY,1996,6(2):147-161.
    [158] Jones R W, Pettit R E, Taber R A. Lignite and stillage-carrier and subtrate for application offungal biocontrol agents to soil. PHYTOPATHOLOGY,1984,74(10):1167-1170.
    [159] Ben Rebah F, Tyagi R D, Prevost D. Wastewater sludge as a substrate for growth and carrierfor rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti.BIORESOURCE TECHNOLOGY,2002,83(2):145-151.
    [160] Beck D P. Suitability of charoal-amended mineral soil as carrier for rhizobium inoculants.SOIL BIOLOGY&BIOCHEMISTRY,1991,23(1):41-44.
    [161] Zhang K, Hua X F, Han H L, et al. Enhanced bioaugmentation of petroleum-andsalt-contaminated soil using wheat straw. CHEMOSPHERE,2008,73(9):1387-1392.
    [162] Garcia-Junco M, Gomez-Lahoz C, Niqui-Arroyo J L, et al. Biosurfactant-andbiodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons fromnonaqueous-phase liquids. ENVIRONMENTAL SCIENCE&TECHNOLOGY,2003,37(13):2988-2996.
    [163] Hong K J, Tokunaga S, Kajiuchi T. Evaluation of remediation process with plant-derivedbiosurfactant for recovery of heavy metals from contaminated soils. CHEMOSPHERE,2002,49(4):379-387.
    [164] Mata-Sandoval J C, Karns J, Torrents A. Influence of rhamnolipids and Triton X-100on thedesorption of pesticides from soils. ENVIRONMENTAL SCIENCE&TECHNOLOGY,2002,36(21):4669-4675.
    [165] Sandrin T R, Chech A M, Maier R M. A rhamnolipid biosurfactant reduces cadmium toxicityduring naphthalene biodegradation. APPLIED AND ENVIRONMENTALMICROBIOLOGY,2000,66(10):4585-4588.
    [166] Maier R M, Neilson J W, Artiola J F, et al. Remediation of metal-contaminated soil and sludgeusing biosurfactant technology. INTERNATIONAL JOURNAL OF OCCUPATIONALMEDICINE AND ENVIRONMENTAL HEALTH,2001,14(3):241-248.
    [167]韩慧龙,汤晶,江皓,等.真菌-细菌修复石油污染土壤的协同作用机制研究.环境科学,2008,29(1):189-195.
    [168] US EPA.3546Microwave Extraction:[EB/OL].2007-09-01[2009-06-05]. http://www. epa.Gov/sw2846/pdfs/3546. pdf.
    [169]黄宁选,马宏瑞,王晓蓉,等.环境中石油烃污染物组分的气相色谱分析.陕西科技大学学报:自然科学版,2003,21(6):25-29.
    [170]吴国庆,孟宪庭,俞毓馨.环境工程微生物检验手册.北京:中国环境科学出版社,1990.
    [171]沈萍,范秀容,李广武.微生物学实验.北京:高等教育出版社,2004.
    [172] Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,1996,62(2):316-322.
    [173] Yan S, Miyanaga K, Xing X H, et al. Succession of bacterial community and enzymaticactivities of activated sludge by heat-treatment for reduction of excess sludge.BIOCHEMICAL ENGINEERING JOURNAL,2008,39(3):598-603.
    [174]李宝明.石油污染土壤微生物修复的研究:[博士学位论文].北京:中国农业科学院,2007.
    [175] Morgante V, Lopez-Lopez A, Flores C, et al. Bioaugmentation with Pseudomonas sp. strainMHP41promotes simazine attenuation and bacterial community changes in agricultural soils.FEMS MICROBIOLOGY ECOLOGY,2010,72(1):152.
    [176] Sako Y, Takai K, Ishida Y, et al. Rhodothermus obamensis sp. nov, a modern lineage ofextremely thermophilic marine bacteria. INTERNATIONAL JOURNAL OF SYSTEMATICBACTERIOLOGY,1996,46(4):1099-1104.
    [177] Weisburg W G, Barns S M, Pelletier D A, et al.16S ribosomal DNA amolification forphylogenetic study. JOURNAL OF BACTERIOLOGY,1991,173(2):697-703.
    [178] Kowalchuk G A, Gerards S, Woldendorp J W. Detection and characterization of fungalinfections of Ammophila arenaria (marram grass) roots by denaturing gradient gelelectrophoresis of specifically amplified18S rDNA. APPLIED AND ENVIRONMENTALMICROBIOLOGY,1997,63(10):3858-3865.
    [179] Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a newgeneration of protein database search programs. NUCLEIC ACIDS RESEARCH,1997,25(17):3389-3402.
    [180] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary geneticsanalysis and sequence alignment. BRIEFINGS IN BIOINFORMATICS,2004,5(2):150-163.
    [181] Bissett A, Bowman J, Burke C. Bacterial diversity in organically-enriched fish farm sediments.FEMS MICROBIOLOGY ECOLOGY,2006,55(1):48-56.
    [182] Hugenholtz P, Tyson G W, Webb R I, et al. Investigation of candidate division TM7, arecently recognized major lineage of the domain bacteria with no known pure-culturerepresentatives. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2001,67(1):411-419.
    [183] Rosch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in anacid forest soil. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2002,68(8):3818-3829.
    [184] Philippot L, Piutti S, Martin-Laurent F, et al. Molecular analysis of the nitrate-reducingcommunity from unplanted and maize-planted soils. APPLIED AND ENVIRONMENTALMICROBIOLOGY,2002,68(12):6121-6128.
    [185] Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoAas a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizingpopulations. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,1997,63(12):4704-4712.
    [186] Shannon C E, Weaver W. The mathematical theory of communication. URBANA:UNIVERSITY OF ILLINOIS PRESS,1949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700