用户名: 密码: 验证码:
不同形貌Cu@Ag粉体的制备及其导电胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子工业中主要用锡铅焊料来完成电子元件的封装连接,但锡铅焊料中的铅对人危害大,世界上许多国家出台一系列政策法令限制铅的使用,因此需要研制可能替代锡铅功能的新材料。导电胶与锡铅焊料有相似的功能,但目前银导电胶成本较高,铜粉有较好的导电率但易氧化,在导电胶中性质不稳定。本文制备了不同形貌系列的银包覆铜粉作导电胶导电填料,并研究了其导电胶的性能。
     用环保维生素C(Vc)作还原剂和p-糊精作保护剂,成功制备了纳米级的银包覆铜粉体,主要研究了填料顺序、Vc浓度、温度、pH等因素对铜颗粒形貌、大小的影响,分析了各个因素对铜粉生长的作用。以制得的铜纳米粉体为核,采用异相成核的办法制备了银包覆铜粉体,对银层的成核-生长包覆原理进行了研究。用NH3·H20作络合剂制备了微米级的铜颗粒,通过化学置换的方法一次性制备了含银量较高的银包覆铜粉体,对包覆粉体的结构和抗氧化性能进行了研究,并研究了Ag/Cu比例对复合粉银含量的影响。用XRD、TEM、XPS、FT-IR、 TG-DTA等手段表征了铜粉及包覆粉的组成结构,结果制得的包覆粉体银层较为致密,银层含量较高达到90%以上,抗氧化效果明显。
     研究了温度、模板剂PEG800浓度对片状铜粉的影响,分析了模板剂对片状铜粉生长的导向作用,制备出了(111)方向结晶良好没有氧化的片状铜粉,最终得到较好的制备条件为:CPEG800=90ml/L, T=80℃, CCuSO45H2O=0.2mol/L, CNaH2PO2H2O=0.14mol/L。利用置换的办法制备了银包覆铜片状粉体,研究了不同的Ag/Cu比例对复合粉体含银量的影响,对包覆粉体的结构进行了表征和抗高温氧化性测试,显示包覆后的铜粉抗氧化效果明显。
     用乙胺、联氨、NaOH为原料在常压低温80℃下制备了铜纳米线,研究了乙二胺浓度、NaOH浓度、温度、搅拌作用对铜纳米线生长的影响,利用置换法制备了银包铜纳米线,分析了包覆机理。铜纳米线较好的制备工艺为,乙二胺17.5ml/L、NaOH为17.5M、反应温度为60℃、不搅拌的情况下可得较好的铜纳米线。研究了Ag/Cu比例对银包覆铜纳米线的影响,结果显示铜纳米线因比表面积大,易造成铜的大量损耗。
     将环氧树脂用丙酮稀释,在环氧树脂:丙酮=6:4时,粘度15.11mPa-s的树脂基作为导电胶基体。将所制备的粉体作为导电填料与树脂基复合制备导电胶。对不同形貌的铜粉和银包覆粉导电胶的导电性研究发现:包覆粉的导电胶导电性明显高于同比铜粉导电胶,因为包覆粉体的载流子浓度高于未包覆粉体;片状填料导电胶明显高于球状填料导电胶,因片状粉体导电胶的接触点较多,容易形成导电通路。另外,研究也发现,添加纳米导电粉体对提高导电胶的导电性无益,因为纳米粉体比表面积大、吸胶量大,当纳米粉体位于接触点中间时,相当于增加了接触电阻,导致整个导电胶的电阻率提高。所制备的Ag包覆Cu导电胶的性能与目前国内Ag导电胶的性能相当,但成本大幅降低。
In electronic industry, Sn-Pb solderring alloy is used as electronic packaging material. But Sn-Pb soldering is harmful to human because of the existed Pb. Many countries in the world have made policies to restrict the use of substance containing Pb. So investigation of new material to substitute the Sn-Pb soldering is helpful. Conductive resin has the similar performance as Sn-Pb soldering. And the epoxy conductive resin is friendly to human. Now most epoxy resinsare filled with silver powders, which are expensive. Although copper has the similar electric resistivity with silver, it is easy to be oxidized in atmosphere. In this work, different morphologies of coppers are prep ared and are coated with silver to insure them stable. And the coated powders are used as fillers in epoxy resin.
     Envirmental friendly chemical agents of vitaminC(Vc) as reducing agent and β-cyclodextrins as protective agent were used to prepare monodisperse copper and coated copper nanoparticles. The influences of adding sequence, concentration of Vc, reacting temperature and pH on copper were disscussed. Ammonia as complexing agentis used to combine with copper ions to prepare micron scale spherical copper particles. Different Ag/Cu ratio affects the coating layer outside the copper. And the prepared particles were characterized by XRD, TEM, XPS, FT-IR, TG-DTA. Results show that copper particles were coated with dense silver shells. And TG-DTA reveals the coated copper particles have better oxidation-resistance.
     Flake copper particles were prepared with PEG800as template agent. Effects of PEG800volume concentration and reacting temperature on flake coppers were studied. And effect of PEG800in forming flake copper was analysised. The copper crystal has a (111) preferential orientation. The best conditionsfor preparing flake coppers were CPEG800=90ml/L, T=80℃, CCusO4·5H2O=0.2mol/L, CNaH2O·2H2O=0.14mol/L. Silver coated flake copper were prepared by replacement. And the influence of Ag/Cu on composite was discussed. Also composite powders were characterized and TG-DTA revealed their higher oxidation resistance.
     Copper nanowires were synthetized with quadrol, hydrazine and sodiumhydrate. The quadrol guided the orignal reduced copper nanoparticles to growth into nanowire. Effect of concentration of quadrol, concentration of sodiumhydrate, reacting temperature and stir speed on copper nanowire growth were studied. Better copper nanowires can be obtained by following conditions:quadrol concentration of17.5ml/L, hydrazine concentration of17.5M, reacting temperature of60℃. Influence of different Ag/Cu ratio on coated copper nanowire was studied. The coated copper nanowire was characterized. Results show that the Cu nanowires havea heavy loss at the Ag/Cu>1, because the nanowire has a high specific surface and a rapid replace reaction rate with silver. TG-DTA revealed that resistance to oxygen for silver coated copper nanowire has been improved greatly.
     Epoxy is used as matrix to prepare conductive adhesive. First, viscosity of epoxy is diluted with different epoxy/acetone mass ratio. As epoxy/acetone mass ratio is6:4, the adhesive has a proper viscosity of15.11mPa-s, which is suited for preparing conductive adhesive. The different morphologies of particles are used as fillers in epoxy matrix. Specific resistance and shear strength of epoxy resin were tested. Results show the spherical particles have a higher specific resistance than flake particles. Coated copper has lower resistance than uncoated copper. The volum resistivity is decrease with the increase of volume fractions of particles. The conductivity for adhesive with flake particles as fillers is higher because there are more contacts sites than spherical particles do. The conductivity of coated copper is higher than that of pure copper because core-shell structure affects electronic distribution. Further more, the addition of nanoparticles can't improve the conductivity of epoxy resin, because the added nanoparticles increase the thickness between the particles, which is equivalent to increase contact resistance.
引文
[1]G D Sulka, M Jaskul. Study of the kinetics of silver ions cementation onto copper from sulphuric acid solution[J]. Hydrometallurgy,2003,70:185-196.
    [2]X R Xu, X J Luo, H R Zhuang, etal. Electroless silver coating on fine copper powder and its effects on oxidation resistance[J]. Mater. Lett.,2003(57):3987-3991.
    [3]吴秀华,赵斌,邵佳敏.不同形貌Cu-Ag双金属粉的制备与性能[J].华东理工大学学报,2002,28(4):402-405.
    [4]M. Zwolinski. Electrically conductive adhesives for surface mount solder replacement J]. IEEE Trans. Comp., Packag., Manufact. Technol.,1996,19(4):241-250.
    [5]L. Li, C. Lizzul, K. Hansoo, I. Sacolik, J. E. Morris. Electrical, structural and processing properties of electrically conductive adhesives[J]. IEEE Trans. Comp., Hybrids, Manufact. Technol.,1993,16(8):843-851.
    [6]G. P. Nguyen, J. R. Willieams, F. W. Gibson, and T. Winster. Electrical reliability ofconductive adhesives for surface mount applications[J]. Proceedings of ISHM,1992, 510-517.
    [7]H. L. Hvims, E. Centralen. Solder replacement[C]. In Proc. Int.Electron. Manufact. Technol. Symp.,1993,128.
    [8]J. C. Jagt, P. J. M. Beris, G. F. C. M. Lijten. Electrically conductive adhesives:A prospective alternative for SMD soldering[J]. IEEE Trans. Comp., Packag., Manufact. Technol.1995, 18(2):292-298.
    [9]B. T. Alpet, A. J. Schoenberg. Conductive adhesives as a soldering alternative Electron[J]. Packag. Prod.,1991,130-132.
    [10]J.S.Ma, GH.Chen. R&D of Lead-free Solder In Tsinghua University [J]. Electro-nic components&materials,2004,23(11):45-48.
    [11]J. H. Lau. Electronics Manufacturing with Lead-free, Halogen-free and Conductive adhesive Materials[M]. New York:McGRAW-HILL Company,2003.
    [12]Florenz, H. Karl. (WEEE Directive)European Parliament:Committee on the Environment[C]. Public Health and Consumer Policy Draft Report,2001.
    [13](WEEE Directive)Commission of the European Communities, Proposal for a Directive of the European Parliament and the Council on Waste Electrical and Electronic Equipment: Proposal for a Directive of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment[C], Brussels, 2000.
    [14]吴人洁.复合材料[M].天津:天津大学出版社,2000,158-165.
    [15]M. Cazayous, C. Langlois, T. Oikawa, C. Ricolleau, A. Sacuto. Cu-Ag core-shell nanoparticles:A direct correlation between micro-Raman and electron microscopy[J]. Physical Review,2006,73(11):113402-113405.
    [16]M. Boutonnet, J. Kizling, P. Stenius, G. Maire, Novel method of catalyst preparation for selective hydrogenation of unsaturated aldehydes[J], Colloids Surf.,1982,5:209-225.
    [17]G. Schmid, J. Lifeng, M.Mostafavi. Radiation Physics and Chemistry,1999,10,463
    [18]N. Toshima, T. Yonezawa.Bimetallic nanoparticles-novel materials for chemical and physical applications[J]. New. J. Chem.,1998,22:1179-1201.
    [19]孙维民,史桂梅,徐东年,刘正.松油醇包覆Cu-Ag复合纳米粉的氧化特性[J].复合材料学报,2007,24(4):71-74.
    [20]魏喆良.基于电偶电流的铜基材浸镀银工艺设计[J].表面技术,2007,36(6):81-82.
    [21]S. Fahler, S. Kahl, M. Weisheit, K. Sturm, H. U. Krebs. The interface of laser deposited Cu /Ag multilayers:evidence of the 'subsurface growth mode' during pulsed laser deposition[J]. Applied Surface Science,2000,154:419-423.
    [22]Y. Wang, N. Toshima.Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures[J]. Phys. Chem. B,1997,101:5301-5306.
    [23]J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, H. Komiyama. Enhanced optical properties of metal-coated nano-particles[J].J. Appl. Phys.,1993,73(3):1043-1048.
    [24]A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, W. L. Yang, Z. Gao. ChemComm,2002,350.
    [25]J. Park, J. Cheon. Synthesis of "Solid Solution" and "Core-Shell" Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalation Reactions[J]. J. Am. Chem. Soc.,2001,124: 5743-5746.
    [26]K. Mallik, M. Mandal, N. Pradhan, T. Pal. Nano Letters,2001,6:319.
    [27]M. Treguer, C. Cointet, H. Remita, J. Khatouri, M. Mostafavi, J.Amblard, J. Belloni, R. Keyzer. Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution[J]. J. Phys. Chem.B,1998,102(22):4310-4321.
    [28]J. I. Park, J. Cheon, Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reactions[J].J. Am. Chem. Soc.,2001,123(24), 5743-5746.
    [29]Z. Welie, A. Kumbhar, J. Wiemann, F. Jiye. E. E.Carpenter, C. J. O'Connor. Gold-Coated Iron(Fe@Au) Nanoparticles Sysnthesis Characterization and Magnetic Field-Included Self-Assembly[J]. Journal of Solid State Chemistry,2001,159:26-31
    [30]Z. Welie, A. Kumbhar, J. Wiemann, F. Jiye, E.E. Carpenter, C. J. O'Connor. Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field[J]. Eur. Phys. J. D.,2001,16:289-292.
    [31]N. N. Mallikarjuna, S. V. Rajender. A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C[J], Crystal Growth & Design,2007,7(12): 2582-2587.
    [32]B. Don, B. Jon. Electroless plating process[J]. Metal finishing,1995,9(1):55-57.
    [33]F. Ebrahimi, Q. Zhai, D. Kong. Mechanical properties of Cu/Ag multi-layered composites [J]. Material Science and Engineering,1998,255(1-2):20-32.
    [34]X. Xu, X. Luo, H. Zhuang, etal. Electroless silver coating on fine copper powder and its effects on oxidation resistance [J]. Material Letters,2003,57(24-25):3987-3991.
    [35]Y. Akinori. Electric conducting powders and pastes using thereof for adhering electrodes in IC chip substrates[P]. JP07016784,1995.
    [36]O. Akira. Flexible electroconductive pastes containing Ag-Cu alloy powders[P]. JP10162647, 1998.
    [37]G. D.Sulka, M.Jaskuia. Study of the kinetics of silver ions onto copper from sulphuric acid solution[J]. Hydrometallurgy,2003(70):185-196.
    [38]廖辉伟,李翔,彭汝芳等.包覆型纳米铜-银双金属粉研究[J].无机化学学报,2003,19(12):1327-1330.
    [39]吴懿平,吴大海,袁中发等.镀银铜粉导电胶的研究[J].电子元件与材料,2005,24(4):32-35.
    [40]吴秀华,赵斌,邵佳敏.不同形貌Cu-Ag双金属粉的制备与性能[J].华东理工大学学报,2002,28(4):402-405.
    [41]刘汉诚,汪正平,李宁成,等.电子制造技术[M].北京:化学工业出版社,2005:228-230.
    [42]毛玉平,游敏.国外微电子封装用导电胶力学性能研究进展[J].中国胶粘剂,2005,14(3):41-45.
    [43]I. Mir, D.Kumar. Recent advances in isotropic conductive adhesives for electronics packaging applications [J]. International Journal of Adhesion and Adhesives,2008,28(7): 362-371.
    [44]Y. Li, D. Lu, C. P.Wong. Electrical conductive adhesives with nanotechnologies[M]. New York:Springer,2010:15-19.
    [45]张鞍灵,刘国强.黄酮类化合物生物活性与结构的关系[J].西北林学院学报,2001,16(2):75-79.
    [46]K.Gilleo. Assembly with conductive Adhensives[J]. Soldering and Surface Mount Technology,1995,19:12-17.
    [47]P. G. Hariss. Conductive Adhensives:A Critical Review of Progress to Date[J]. Soldering and Surface Mount Technology,1995,20:19-21.
    [48]A. O. Ogunjimi, O. Boyle, D. C. Whalley, D. J. Williams. A Review of the Impact of Conductive Adhensive Technology on Internection[J]. Journal of Electronics Manufacturing, 1992,2:109-118.
    [49]徐睿杰,雷彩红,李善良,黄伟良.各向异性导电胶研究进展[J].中国胶粘剂,2011,20(4):53-57.
    [50]游敏,郑勇,郑小玲,等.XH-11型胶粘剂最佳固化工艺的研究[J],粘接,1995,(2):22-24.
    [51]吴培熙,沈健.特种性能树脂基复合材料[M],化学工业出版社,2003,461-70.
    [52]王文福.导电金属填料的制备方法[J].世界橡胶工业,2001,28(6):9-11.
    [53]熊胜虎,杨荣春,吴丹菁,等.银粉形貌与尺寸对导电胶电性能的影响[J].电子元件与材料,2005,24(8):14-16
    [54]窿田.尊電性接着剂[J].電子材料,2001,(7):89-96.
    [55]S. Kotthaus, B. H.Gunther, R.Hang, etal. Study of Isotropically Conductive Bondings Filled with Aggregates of Nano-Sized Ag-Particles[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A,1997,20(1):15-20.
    [56]R. C. Conn. Special effects-How silane treated fumed silica influences adhesion properties of a model epoxy adhesive system after water immersion[J]. Adhesives Age,2002,45(2): 47-48.
    [57]R. V. Kumar, Y. Mastai, V. Diamant, A. Gedanken. Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix[J]. J. Mater. Chem.2001,11: 1209-1213.
    [58]B. K. Park, Jeong S., Kim D., J. Moon, etal. Synthesis and size control of monodisperse copper nanoparticles by polyol method[J]. J. Colloid Interface Sci.2007,311:417-424.
    [59]V. Lee, J. R.Choi, K. J.Lee, N. E.Stott, D. Kim. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics[J]. Nanotechnology,2008,19:415604-415610.
    [60]G. R. Dey. Reduction of the copper ion to its metal and clusters in alcoholic media:A radiation chemical study[J]. Rad. Phys. Chem.2005,74:172-184.
    [61]C. Qin, V. Coulombe. Synthesis of organic layer-coated copper nanoparticles in a dual-plasma process[J]. Mater. Lett.,2006,60:1973-1976.
    [62]R. M. Zhou, X. F.Wu, X. F. Hao, F. Zhou, H. B. Li, W. H. Rao. Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation[J]. Nucl. Instrum. Methods Phys. Res. Sect. B,2008,266:599-603.
    [63]E. K. Athanassiou, R. N. Grass, W. J. Stark. Large-scale production of carbon-coated copper nanoparticles for sensor applications[J]. Nanotechnology,2006,17:1668-1673.
    [64]G. Vitulli, M. Bernini, S. Bertozzi, Pitzalis, etal. Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen[J]. Chem. Mater.2002,14: 1183-1186.
    [65]M. Grouchko, A. Kamyshny, K. Ben-Ami, S. Magdassi. Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles[J]. J. Nanopart. Res.,2009,11:713-716.
    [66]A. Kamyshny, S. Magdassi. Colloid Stability:The Role of Surface Forces; Wiley-VCH: Weinheim, Germany,2007.
    [67]F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert and K. Tekaia-Elhsissen, Synthesis of Monodisperse Au, Pt, Pd, Ru and Ir Nanoparticles in Ethylene Glycol[J]. Nanostruct. Mater.,1999,11:1277-1284.
    [68]C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, T. Li. Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications[J]. J. Phys. Chem. B,2005,109:13857-13870.
    [69]I. Pastoriza-Santos, L. M. Liz-Marzan. Formation and Stabilization of Silverthrough Reduction by N, N-dimethylformamide[J]. Langmuir,1999,15:948-951.
    [70]Y. W. Tan, X. H. Dai, Y. F. Li, D. B. Zhu. Preparation of gold, platinum, palladium and silver nanoparticles by thereduction of their salts with a weak reductant-potassium bitartrate[J]. J. Mater. Chem.,2003,13:1069-1075.
    [71]K. S. Chou, C. Y. Ren. Synthesis of nanosized silver particles by chemical reduction method[J]. Mater. Chem. Phys.,2000,64:241-246.
    [72]Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, D. Kim. Large-scale synthesis of copper nanoparticles by chemically controlledreduction for applications of inkjet-printed electronics[J]. Nanotechnology,2008,19:415604-415610.
    [73]N. Leopold, B. Lendl. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride[J]. J. Phys. Chem. B,2003,107:5723-5727.
    [74]K. H. Ng, R. M.Penner. Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation[J]. J. Electroanal. Chem.2002,522:86-94.
    [75]D. Manikandan, S. Mohan, K. G. M Nair. Annealing-induced metallic core-shell clusterization in soda-lime glass:An optical absorption study-experiment and theory[J]. Phys. B,2003,337:64-68.
    [76]W. R. Lee, M. G. Kim, J. R. Choi, J. I. Park, S. J. Ko, etal. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles[J]. JACS,2005,127: 16090-16097.
    [77]高保娇,高建峰,蒋红梅,张忠兴.微米级铜-银双金属镀层结构及其抗氧化性[J].物理化学学报,2000,16(4):366-369.
    [78]徐锐,周康根,胡敏艺.水合腆液相还原法制备银包覆超细铜粉反应机理研究[J].稀有金属材料与工程,2008,37(5):905-908.
    [79]J. W. Mullin. Crystallization[M]. Butterworth-Heinemann, Boston,1993.
    [80]B. Lewis. The growth of crystals of low supersaturation I Theory[J]. Crystal Growth,1974, 21:29-39.
    [81]B. Lewis. The growth of crystals of low supersaturation. II. comparison with experiment[J]. J. Crystal Growth,1974,21:40-50.
    [82]G. H. Nancollas. The growth of crystals in soultion[J]. Advances Colloid and interf. Sci., 1979,10:215-252.
    [83]N. R. Jana, L. G., C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J]. Chem. Commun.,2001,617-618.
    [84]J. Xiong, Y. Wang, Q. Xue, X. Wu. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid[J]. Green Chem.,2011,13:900-904
    [85]X. Zhang, H. Yin, X. Cheng, H. Hu, Q. Yu, A. Wang. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles[J]. Materials Research Bulletin,2006,41:2041-2048.
    [86]T. S. Anderson, R. H. Magruder III, J. E. Wittig, etal. Fabrication of Cu-coated Ag nanocrystals in silica by sequential ion implantation[J]. Nuclear Instruments and Methods in Physics Research B,2000,171:401-405.
    [87]李哲男,董星龙,王威娜.铜系导电涂料中纳米铜粉抗氧化问题的研究[J].四川大学学报(自然科学版),2005,42(2):220-224
    [88]M. Komiyama, H. Hirai. Bull. Chem. Soc. Jpn.,1983,56:2883.
    [89]I. Wilner, D. Mandler. Characterization of palladium-beta-cyclodextrin colloids as catalysts in the photosensitized reduction of bicarbonate to formate[J]. J. Am. Chem. Soc.1989,111: 1330-1336.
    [90]Szejtli. Introduction and General Overview of Cyclodextrin Chemistry [J]. J. Chem. ReV., 1998,98:1743-1754.
    [91]Y. Huang, D. Li, J. Li. β-Cyclodextrin controlled assembling nanostructures from gold nanoparticles to gold nanowires[J]. Chemical Physics Letters,2004,389:14-18.
    [92]V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofers, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Mater,2007,6:241-247.
    [93]V. R. Stamenkovic, B. Fowler, B. S. Mun, etal. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability[J]. Science,2007,315:493-497.
    [94]W. Tang, G. Henkelman. Charge redistribution in core-shell nanoparticles to promote oxygen Reduction[J]. The Journal of Chemical Physics,2009,130:194504-194509.
    [95]M. Sigalas, D. A. Papaconstantopoulos, N. C. Bacalis. Total energy and band structure of the 3d,4d and 5d metals[J]. Phys. Rev.1992, B45:5777-5783.
    [96]S. Djokic. Synthesis and Antimicrobial Activity of Silver Citrate Complexes[J]. Bioinorganic Chemistry and Applications,2008, doi:10.1155/2008/436458.
    [97]周全法,徐正,包建春,等.还原-保护法制备纳米级银粉的研究[J].精细化工,2001,18(1):39-42.
    [98]Z. T. Zhang, L. M. Hu, L. S. Yuan, etal. Preparation of nanometer-size silver powder by polymer protection method[J]. Precious Metals,1995,16(4):45-49
    [99]M. C. Chem. Effect of silver-nano particles aggregation on surface-enhanced Raman scattering from benzoic acid[J]. Physical Review B,1995,51(7):4507-4512.
    [100]黄丹萍,符小艺,凌志远.液相化学还原法制备片状铜粉的研究[J].中国材料科技与设备,2006,(6):30-32.
    [101]L. Drule, D. Taloi. Electrochemical Preparation of Standard-quality Copper Powders[J]. Rev. Chim.,2000,51(8):600-606.
    [102]江龙.胶体化学概论[M].北京:科学技术出版社,2002,62-63.
    [103]郭艳辉,张楠,陈继忠.微细铜粉在250℃-400℃空气中的氧化行为[J].金属学报[J],2008,44(7):821-825.
    [104]Z. Han, L. Lu, H. W. Zhang, Z. Q. Yang, E. H. Wang, K. Lu. Comparison of the oxidation behavior of Nanocrystalline and coarse-grain copper[J].Oxidation of Metals,2005,63(516): 261-275.
    [105]M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. Schuchert, et al. Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes[J]. Adv Mater,2001,13:62-65.
    [106]Z. Liu, Y. Bando. A novel method for preparing copper nanorods and nanowires[J]. Adv Mater,2003,15:303-305.
    [107]Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, etal. Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process[J]. J Phys Chem B,2003, 107:12658-12661.
    [108]B. Lin, G. Gelves, J. Haber, U. Sundararaj. Electrical, Rheological, and Mechanical Properties of Polystyrene/Copper Nanowire Nanocomposites[J]. Ind Eng Chem Res,2007, 46(8):2481-2487.
    [109]J. Wang, M. Tian, T. Mallouk, M. H.. W Chan. Microtwinning in template synthesized single crystal metal nanowires[J]. J Phys Chem B,2004,108:841-845.
    [110]W. Wang, G. Li, Z. Zhang. Surfactantless Hydrothermal Route to Ultralong Copper Submicron Wires[J]. J. Cryst Growth,2007,299:158-164.
    [111]A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, R. P. H. Chang. A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires[J]. Appl. Phys. Lett. 1996,69:345-347.
    [112]Z. Liu, Y. Yang, J. Liang, etal. Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process[J]. Phys. Chem. B.,2003, 107:12658-12661.
    [113]X. Zhang, D. Zhang, X. Ni, H. Zheng. One-step preparation of copper nanorods with rectangular cross sections[J]. Solid State Commun,2006,139(21):412-414.
    [114]Y. Shi, H. Li, L. Chen, X. Huang. Obtaining ultra-long copper nanowires via a hydrothermal process[J]. Sci. Technol. Adv. Mater.,2005,6:761-765.
    [115]B. Deng, A. Xu, G. Chen, R. Song, L. Chen. Synthesis of Copper-Core/Carbon-Sheath Nanocables by a Surfactant-Assisted Hydrothermal Reduction/Carbonization Process[J]. J. Phys. Chem. B,2006,110:11711-11716.
    [116]A. R. Rathmell, S. M. Bergin, H.Yi, L. Zhi, B. J. Wiley.The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films[J]. Adv. Mater. 2010 DOI:10.1002/adma.201000775.
    [117]T. Daff, I. Saadoune, I. Lisiecki, N. Leeuw. Computer simulations of the effect of atomic structure and coordination on the stabilities and melting behaviour of copper surfaces and nano-particles[J]. Surf. Sci.,2009,603:445-454.
    [118]M. I. Baskes. Modified Embedded-Atom Potentials for Cubic Materials and ImpuritiesfJ]. Phys. Rev. B.,1992,46:2727-2742.
    [119]I. Galanakis, N. Papanikolaou, P. Dederichs. Applicability of the broken-bond rule to the surface energy of the fcc metals [J]. Surf. Sci.,2002,511:1-3..
    [120]Y. Wang, X. Jiang, T. Herricks, Y. Xia. Single Crystalline Nanowires of Lead:Large-scale Synthesis, Mechanistic Studies, and TransportMeasurements[J]. J. Phys. Chem. B.,2004, 108:8631-8640.
    [121]M. Singh, J. Wang, M. Tian, Q. Zhang, A. Pereira, N. Kumar, T. Mallouk, M. Chan. Synthesis and Superconductivity of Electrochemically Grown Single-Crystal Aluminum Nanowires[J]. Chem. Mater.,2009,23:5557-5559.
    [122]B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, K. S. Kim. Ultrathin singlecrystalline silver nanowire arrays formed in an ambient solution phase[J]. Science,2001,294:348-351.
    [123]M. Hu, P. Hillyard, G. Hartland. Determination of the Elastic Constants of Gold Nanorods Produced by Seed Mediated Growth[J]. Nano Lett.2004,4:2493-2497.
    [124]X. Lu, M. Yavuz, H. Tuan, B. Korgel, Y. Xia. Ultrathin Gold Nanowires Can Be Obtained by Reducing Polymeric Strands of Oleylamine-AuCl Complexes Formed via Aurophilic Interaction[J]. J. Am. Chem. Soc.,2008,130:8900-8901.
    [125]Y. Chang, M. L. Lye, H. C. Zeng. Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires[J]. Langmuir,2005,21:3746-3748.
    [126]J. Chen, T. Herricks, M. Geissler, Y. Xia. Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process[J]. J. Am. Chem. Soc., 2004,126:10854-10855.
    [127]N. Zettsu, J. M. McLellan, B. J. Wiley, Y. Yin, Z. Y. Li, Y. Xia. Rhodium Multipods: Synthesis, Stability, Surface Plasmonic Properties, and Their Use as Substrates for Surface-Enhanced Raman Scattering[J]. Angew. Chem. Int. Ed.,2006,45:1288-1292.
    [128]S. Panigrahi, S. Kundu, S. Kumar Ghosh, etal.Selective one-pot synthesis of copper nanorods under surfactantless condition[J]. Polyhedron,2006,25:1263-1269.
    [129]付德刚,张海黔.纳米技术与应用[M].北京:人民邮电出版社,2002.
    [130]C. Yu, L. L. Mei, C. Z. Hua. Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires[J]. Langmuir,2005,21:3746-3748.
    [131]S. P. Wu, R. Y. Gao, L. H. Xu. Preparation of micron-sized flake copper powder for base-metal-electrode multi-layer ceramic capacitor[J]. Journal of Materials Processing Technology,2009,209:1129-1133.
    [132]胶粘剂拉伸剪切强度测定方法(金属对金属),中华人民共和国国家标准GB 7124-86.
    [133]曾幸荣.高分子近代测试分析技术[M].广州:华南理工大学出版社,2007.49-105.
    [134]李芝华,孙健,柯于鹏.导电胶粘剂的导电机理研究进展[J].高分子通报,2009,7:53-60.
    [135]苏辉煌,钟新辉,詹国柱,等.导电胶的研究进展[J].粘接,2008,29(6):28-33.
    [136]E. Pike, C. H. Seager. Percolation and conductivity:A computer study Ⅰ and Ⅱ [J]. Phys Rev,1974,10(4B):1421-1434,1435-1446.
    [137]S. K. Patrick. Percolation and conductions[J]. Rev Modern Phys,1973,45(4):574-588.
    [138]陈治中,许佩新,谢文明.铜导电胶老化性能的研究[J].材料科学与工程,1998,16(2):59-60.
    [139]梁璀,钟宏.E-44型环氧树脂固化和应用的研究[J].中国胶粘剂,2006,15(3):26-28.
    [140]苏辉煌,钟新辉,詹国柱,等.导电胶的研究进展[J].粘接,2008,29(6):28-33.
    [141]方俊鑫,陆栋,固体物理学[M].上海,上海科学技术出版社,1981.
    [142]G. R. Ruschau, S. Yoshikawa, R. E. Newnham. Resistivities of conductive composites[J]. J. Appl. Phys.,1992,72(3):953-959.
    [143]V. P. VanBeek Internal field emission in carbon black-loaded natural rubber vulcanizates[J]. J Appl Polym Sci,1962,24:651-655.
    [144]Q. K. Tong, D. L. Markley, G. Frederiekson, etal. Conduetive Adhesives with Stable Contact Resistance and Superior Impact Performance[C]. Eleetronic Components and Technology Conference,1999:347-352.
    [145]L. Daoqiang, Q. K. Tong, C. P. Wong. Mechanisms Underlying the Unstable Contact Resistance of conductive Adhesives[J]. IEEE Transactions on Electronics Packaging Manufacturing Technology,1999,22(3):228-232.
    [146]J. C. Jagt, P. J. M. Beris, G. F. C. M Lijten. Elctrically Conductive Adhesives:a Prospcetive Altraative for Smd Soldering[J]. IEEE Transactions on Components, Packaging, and Manufacturing Teehnology, Part B:advanced Packaging,1995,18(2):292-298.
    [147]肖卫东,何培新,张刚升,等.电子电器用胶黏剂[M].北京:化学工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700