用户名: 密码: 验证码:
酞菁配合物-TiO_2/SnO_2复合材料的制备及脱硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酞菁配合物是一种化学性质稳定且具有优异光学性能的染料,在光催化领域受到了人们越来越多的关注。酞菁配合物敏化半导体光化学氧化法是一种更加有效的深度氧化脱硫的途径。本文在对国内外文献研究的基础上,采用改进的固相熔融法合成具有代表性结构的两类酞菁配合物,并采用溶胶凝胶-水热法将酞菁配合物键合在半导体材料Ti02和Sn02表面,形成酞菁配合物-Ti02和酞菁配合物-SnO2光敏催化剂。在紫外和可见光照射下利用制备的光催化剂催化氧化模拟燃油中的噻吩,探讨复合材料结构和光催化性能的关系,总结光催化氧化脱硫反应的特点和规律,为酞菁配合物-Ti02(Sn02)光催化脱硫剂的应用与实践提供有益的借鉴和启示。
     本论文内容如下:
     1.选取酞菁配合物和四羧基取代酞菁配合物作为敏化剂。采用改进的固相熔融法制备得到无取代酞菁配合物MPc四羧基取代酞菁配合物MPcTc(M=Mn(Ⅱ)、Fe(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ));并对所得到的酞菁配合物进行元素分析、红外光谱和紫外光谱等表征。
     2.采用溶胶凝胶-水热法合成酞菁配合物敏化二氧化钛光催化氧化脱硫剂。以酞菁配合物和四羧基取代酞菁配合物作为敏化剂,通过改变反应温度、摩尔比以及水热反应时间来制备脱硫催化剂两类12种(MPc-TiO2复合物和MPcTc-TiO2复合物,其中M=Mn(Ⅱ)、Fe(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)),得到催化剂制备的最佳反应条件:表观摩尔比1:100,水热反应温度200℃,反应时间为4h。并对所得催化剂进行红外光谱、XRD、SEM、XPS以及荧光光谱等测试。红外吸收光谱中特征吸收峰的变化,荧光光谱中荧光淬灭现象的出现,以及光电子能谱中主要元素结合能的较大变化都说明复合材料中存在强烈的化学作用。
     3.采用溶胶凝胶-水热法合成染料敏化二氧化锡光催化氧化脱硫剂。以酞菁配合物和四羧基取代酞菁配合物作为敏化剂,在相同条件下制备了脱硫催化剂两类12种(MPc-SnO2复合物和MPcTc-SnO2复合物,其中M=Mn(Ⅱ)、Fe(Ⅱ)、 Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)).对所得催化剂进行红外光谱、XRD、SEM、XPS以及荧光等测试。红外吸收光谱中特征吸收峰的变化,荧光光谱中荧光淬灭现象的出现,以及光电子能谱中主要元素结合能的较大变化都说明复合材料中存在强烈的化学作用。
     4.通过紫外光和可见光降解模拟燃油中噻吩的实验研究了酞菁配合物-TiO2催化剂的脱硫性能,研究了影响光催化降解的主要因素,得到光催化降解反应的最佳条件:催化剂加入量均为0.10g·100L-1,空气流速100mL·min-1。并对紫外光催化降解产物进行了研究,发现氧化产物主要为CO2、砜和SO42-。结果表明,所制备的催化剂在鼓空气的条件下3h燃油中的噻吩降解转化率可达到90%以上,效果良好。
     5.在相同条件下研究了酞菁配合物-SnO2催化剂的脱硫性能。结果显示TiO2的光催化性能要明显高于SnO2。在紫外光照射180min后,酞菁配合物敏化半导体复合光催化氧化剂相对于纯半导体催化剂具有较好的光催化效果。但敏化剂为羧基取代酞菁配合物时紫外光照射下催化效果略低于无取代酞菁配合物。在300w碘钨灯照射90min后,不管半导体是TiO2还是SnO2,羧基取代酞菁配合物敏化的半导体复合催化剂光催化性能都优于无取代酞菁配合物。在分析实验结果的基础上,对光催化反应机理进行数理论证,确定光催化氧化噻吩为表观一级动力学反应,动力学方程为ln(C0/Ct)=Kt+A。
Metal phthalocyanine has been given more and more attention in the field of photo catalysis because of the stable chemical properties and the excellent optical properties.The photochemical oxidation technology of dye-sensitized semiconductor is a promising way for deep oxidative desulfurization. In this paper, a facile developed 'sol-gel hydrothermal” technique was used to synthesize metal phthalocyanine (MPc)-semiconductor (TiO2or SnO2) catalysts for photodegradation of thiophene. The photocatalytic properties were evaluated by the degradation of thiophene in the UV and visible light irradiation conditions.
     The main work in this paper is as follows:
     1. The metal phthalocyanine (MPc) and four carboxyl substituted metal phthalocyanine (MPcTc)(M=Mn(Ⅱ), Fe(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ))have been synthesized by the method of solid phase and characterized by elemental analysis, infrared spectroscopy and ultraviolet spectroscopy.
     2. The composites of dye-sensitized TiO2have been synthesized by the method of sol-gel hydrothermal technique and characterized by IR, XRD spectra, SEM, XPS and fluorescence spectroscopy. The composites were two types of the MPc-TiO2catalyst and MPcTc-TiO2catalyst, which M=Mn(Ⅱ)、Fe(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)、 Cu(Ⅱ)、Zn(Ⅱ). The characteristic absorption peaks changing of the infrared absorption spectrum, fluorescence quenching phenomenon of the fluorescence spectroscopy and larger changes for major element binding energy of photo electron spectroscopy show the presence of strong chemical bonds in the composites.
     3. The composites of dye-sensitized SnO2have been synthesized by the method of sol-gel hydrothermal technique and characterized by Infrared spectroscopy(IR), Scanning electron microscopy(SEM), X-ray diffraction(XRD), X-ray Photoelectron spectroscopy(XPS) and fluorescence spectroscopy. The composites were two types of the MPc-SnO2catalyst and MPcTc-SnO2catalyst, which M=Mn(Ⅱ)、Fe(Ⅱ)、 Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ). The characteristic absorption peaks changing of the infrared absorption spectrum, fluorescence quenching phenomenon of the fluorescence spectroscopy and larger changes for major element binding energy of photoelectron spectroscopy show the presence of strong chemical bonds in the composites.
     4. The photocatalytic properties of phthalocyanines-TiO2were tested by the degradation effects of thiophene under the UV and visible light irradiation conditions. Studied the main factors of the photocatalytic degradation, the best condition for the photocatalytic degradation is as follows:catalysts are0.10g·100L-1and air flow rate of100mL·min-1. The results indicate that the catalysts are effective for the degradation ofthiophene in the fuel under the conditions of the drum air.
     5. The photocatalytic properties of phthalocyanines-SnO2were tested under the same condition. The results showed that the photocatalytic properties of TiO2to be significantly higher than that of SnO2. After UV irradiation180min, photocatalytic effect of phthalocyanine sensitized semiconductor composite are higher than that of pure semiconductor catalyst. The carboxyl substituted phthalocyanine complexes sensitized semiconductor composite have better photocatalytic effect at300w tungsten lamp irradiation90min regardless of the semiconductor TiO2or of SnO2. The kinetic equation was simulated in term of the analysis of experimental results. The process of all photocatalytic reaction conformed to the kinetics of first order reaction. The dynamic equation is In (Co/Ct)=Kt+A.
引文
[1]Nocca J. L., Cosyns J., Debuisschert Q., et al.The Domino Interaction of Refinery Processes for Gasoline Quality Attainment, Texas [J]. NPRRA Annual Meeting, Texas,2000, AM-00-61
    [2]GB-17930-1999,车用无铅汽油中华人民共和国国家标准[S].北京:中国标准出版社,1999
    [3]Matsuzawa S., Tanaka J., Sato S., et al. Photocatalytic Oxidation of Dibenzothiophenes in MeCN Using TiO2:Effect of Hydrogen Peroxide and Ultrasound Irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry,2002, V149(1-3):183-189
    [4]赵地顺,刘翠微,马四国.FCC汽油模型化合物光催化氧化脱硫的研究[J].高等学校化学学报,2006,27(4):692-696
    [5]唐晓东,崔盈贤,于志鹏等.直馏柴油选择催化氧化脱硫催化剂的制备与评价[J].石油化工,2005,34(10):15-19
    [6]陈兰菊,郭绍辉,赵地顺.车用燃料汕氧化脱硫技术进展[J].燃料化学学报,2005,33(2):247-251
    [7]王云芳,尹风利,史德清等.车用燃料油吸附法深度脱硫技术进展[J].石油化工,2006,35(1):94-99
    [8]Luo M. F., Xing J. M., Gou Z. X., et al. Desulfurization of Dibenzothiophene by Lyophilized Cells of Pseudomonas Delafieldii R-8 in the Presence of Dodecane [J]. Biochemical Engineering Journal,2003,13(1):1-6.
    [9]Bobinger S., Andersson J. T. Degradation of the Petroleum Components Monomethly benzothiophenes on Exposure to Light [J]. Chemosphere,1998, 36(12):2569-2579.
    [10]Shiraishi Y., Hirai T, Komasawa I. A Novel Demetalation Process for Vanadyl and Nickelporphyrins from Petroleum Residue by Photochemical Reaction and Liquid-Liquid Extraction [J]. Industrial&Engineering Chemistry Research,2000, 39(5):1345-1355
    [11]Bobinger S., Andersson J. T. Degradation of the Petroleum Components Monomethlybenzothiophenes on Exposure to Light [J], Chemosphere,1998, 36(12)2569-2579
    [12]Ma X., Sakanishi K., Isoda T.,et al. Determination of Sulfur Compounds in Non-Polar Fraction of Vacuum Gas Oil [J]. Fuel,1997,76(4)329-339.
    [13]Lai W. Chun., SongC. S. Temperature-programm Retention Indices for GC.and GC-MS Analysis Coal and Petroleum-derived Liquid Fuels [J]. Fuel,1995, 74(10):l 436-1451.
    [14]Ma X., Sakanishi K., Mochida I. Hydrodesulfurization Reactivities of Various Sulfur Compounds in Diesel Fuel [J]. Ind England Chemical Research,1994, 33(2)218-222.
    [15]Ma X., Sun L., Song C. ANew Approach to Deep Desulfurization of Gasoline, Diesel Fuel and Jet Fuel Selective Adsorption for Ultra-Clean Fuels and for Fuel Cell Applications [J]. Catalysis Today,2002,77(1-2):107-116.
    [16]Song C, Ma X. New Design Approaches to Ultra-Clean Diesel Fuels by Deep Desulfurization and Deep Dearomatization [J]. Applied Catalysis B,2003, 41(1-2)207-23
    [17]Landau M. V. Deep Hydrotreating of Middle Distillates from Crude and Shale Oils [J]. Catalysis Today,1997,36(4):393-429.
    [18]Robert J. Angelici [M].1996,81-585.
    [19]Song C. S. An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel [J]. Catalysis Today,2003,86(1-4): 211-263
    [20]Otsuki S., Nonaka T, Takashima N., et al.Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction [J]. Energy & Fuels, 2000,14:1232-1239.
    [21]Hulea V, Fajula F., Bousquet J. Mild Oxidation with H2O2 over Ti-containing Molecular Sieves:A very Efficie Method for Removing Aromatic Sulfur Compounds from Fuel [J].Journal of Catalysis,2001,198:179-186.
    [22]Fairbridge C., Ring Z. Oxidation Reactivities Dibenzothiophenes in Polyoxometalate-H202 and Formic aci-H2O2 Systems [J]. Appllied Catalysis A: General,2001,219:267-280.
    [23]Song C. An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel [J]. Catalysis Today 2003,86, 211-263.
    [24]Gates B. C., Topsoe. H. Reactivities in Deep Catalytic Hydrodesulfurization: Challenges, Opportunities, and the Importance of 4-Methyldibenzothiophene and 4,6-Dimethyl-Dibenzothiophene [J]. Polyhedron,1997,16:3213.
    [25]Lecrenay E., Sakanishi K.., Mochida 1. Catalytic Hydrodesulfurization of Gas Oil and Model Sulfur Compounds over Commercial and Laboratory-Made CoMo and NiMo Catalysts:Activity and Reaction Scheme [J]. Catalysis Today,1997,39, 13-20.
    [26]Koseoglu O. R., Duee D., Billon A. Distillate Hydrotreating Routes:From Deep HDS to Cetane Number Improvement. Upgrading Heavy Ends with IFP, Conference held for the 30th anniversary of IFP's CEDI Industrial Development Center [C]. Institute Francais Du Petrole,1999:21-23
    [27]Kilanowski D. R., Teeuwen H. De Beer. V. H. J., et a I. Hydrodesulfurization of TllioPhene, BenzothioPhene, Dibenzothiophene, and Related Compounds Catalyzedby Sulfided CoO-MoO3-γ-Al2O3:Low-Pressure Reactivity Studies [J]. Journal of Catalysis,1978,55(2):129-137
    [28]Houalla M, Broderiek D. H., Sapre A. V., et al. Hydrodesuifurization of Methyl-Substituted Dibenzothiophene Catalyzed by Sulfided CoO-MoO3-γ-Al2O3 [J]. Journal of Catalysis,1980,61(2):523-527
    [29]Girgis M J, Gates B C. Reactivities, Reaction Networks, and Kinetics in High-Pressure Catalytic Hydroprocessing [J]. Ind England Chemistry,1991, 30(9)2021-2058
    [30]Auster S.J, Fung S C. Strong Metal-Support Interaction:Occurrence among the Binary Oxides of Groups IIA-VB [J]. Journal of Catalysis,1978,55:29-35.
    [31]Tauster S.J., Murrell L.L., Fung S.C. Supported Metal Interaction:US,4,149, 998 [P].1979
    [32]Ratnasamy P., Mehrotra R. P., Ramaswamy A. V. Interaction between the Active Components and Support in Cobalt-Molybdenum-Alumina Systems [J]. Journal of Catalysis,1974,32:63.
    [33]Egedus L. L. Catalyst Design, Progress and Perspectives [R]. Willey-Interscience Pub,1987.
    [34]Khare K., Gyanesh P. Desulfurization Process and Novel Bimetallic Sorbents Systems for Same [P]. U.S.patent:6274533,2001-08-14
    [35]Otsuki S., Nonaka T., Takashima N., et al.Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction [J]. Energy Fuels, 2000,14:1232-1239
    [36]李灿,田福平,蒋宗轩,等.深度脱除硫化物的分子筛吸附剂及制法和应用[P].中国专利:CN02160814.8,2004-07-14
    [37]秦如意,张晓静,刘金龙.FCC汽油吸附脱硫工艺的研究[J].石油炼制与化工,2003,34(3):24-28
    [38]Forte P. Process for the Removal of Sulfur from Petroleum Fraction [P]. U.S.patent:5582714,1996-12-10
    [39]Zhou D. H., Wang Y. Q., He N., et al. The 7t-complexation Mechanisms of Cu(Ⅰ), Ag(Ⅰ)-zeolites for Desulfurization [J]. Acta Physico-Chimica Sinica,2006,22(5): 542-547(.in Chinese)
    [40]Ralph T. Y, Akira T., Frances H. Y. New Sorbents for Desulfurization of Lliquid Fuels by Ti-complexation [J]. Industrial and Engineering Chemistry Research, 2001,40:6236-6239.
    [41]Akira T., Frances H. Y, Ralph T. Y. New Sorbents for Desulfurization by Ti-complexation:Thiophene-benzene Adsorption [J]. Industrial and Engineering Chemistry Research,2002,41(10):2487-2496.
    [42]Velu S., Ma X. L, SongC. S. Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-based Adsorbents [J]. Industrial and Engineering Chemistry Research,2003,42(21):5293-5304.
    [43]Liu D., Gui J. Z., Sun Z. L., Adsorption Structures of Heterocyclic Nitrogen Compounds over Cu(I)Y Zeolite:Arst Principle Study on Mechanism of the Denitrogenation and the Effect of Nitrogen Compounds on Adsorptive Desulfurization[J]. Journal of Molecular Catalysis A:Chemical,2008,291:17-21.
    [44]Zha Q, F., Gao N. X., Li Z. F., et al. Adsorption Desulfurization by Activated Carbon from Petroleum Coke [J]. Journal of Fuel Chemistry and Technology, 2007,35(2):192-197
    [45]Dong Q., Wang D. Q., Zhang G. Y., et al. Advances in Solid Adsorbents of Deep Adsorptive Desulfurization of FCC Gasoline [J]. Chemical Industry and Engineering Progress,2008,27(5):654-659
    [46]Zeng Y. P., Feng H., Ju S. G. Study of Adsorptive Desulfurization Performance of 5A Molecular Sieve Loaded with Zn2+in Model Gasoline[J]. Modern Chenical Industry,2005,25:207-212
    [47]Sun J, Ju S. G. Adsorption Properties of Benzothiophene in Gasoline by Ag+-13X Zeolite[J]. Science and Technology in Chemical Industry,2008,16(5):5-8
    [48]Thomas J. K., Gunda K., Rehbein P., et al. Flow Calorimetry and Adsorption Study of Dibenzothiophen, Quinoline and Naphthalene over Modified Y Zeolites [J]. Applied Catalysis B:Environmental,2010,94: 225-233.
    [49]Shan J.H., Liu X. Q., Sun L. B., et al. Cu-Ce bimetal Ion-exchanged Y Zeolites for Selective Adsorption of Thiophenic Sulfur [J]. Energy and Fuels,2008, 22(6):3955-3959.
    [50]Asma T. S., Baoshan Li., Zaki E. A.Direct Synthesis of Cu-SBA-16 by Internal pH-modification Method and its Performance for Adsorption of Dibenzothiophene [J]. Microporous and Mesoporous Materials,2010,130: 248-254.
    [51]Meng C. M., Fang Y. Y., Jin L. J., et al. Deep Desulfurization of Model Gasoline by Selective Adsorption on Ag+-Al-MSU-S [J]. Catalysis Today,2010,149: 138-142.
    [52]Seiji K., Hirotaka I., Yasuhiro T.Influence of Solvent Type on Dibenzothiophene Adsorption onto Activated Carbon Fiber and Granular Coconut-shell Activated Carbon[J]. Fuel,2010,89:365-371.
    [53]Hisham S. B. Single and Binary Sulfur Removal Components from Model Diesel Fuel using Granular Activated Carbon from Dates, Stones Activated by ZnCl2 [J]. Appllied Catalysis A:General,2009,365:153-158.
    [54]Alhamed Y. A., Bamufleh H. S. Sulfur Removal from Model Diesel Fuel Using Granular Activated Carbon from Dates, Stones Activated by ZnCl2 [J]. Fuel,2009, 28(1):87-94.
    [55]Xie F. Z., Hu H.R., Qiao M. H., et al. XPS Study on Adsorptive Desulfurization of Thiophene over Rapidly Quenched Skeletal Ni [J]. Chemical Journal of Chinese Universities,2006,27(9):1729-1732
    [56]Ankur S., Vimal C. S. Adsorptive Desulfurization by Activated Alumina [J]. Journal of Hazardous Materials,2009,170:1133-1140.
    [57]Huang L. C., Wang G. F., Qin Z. F., et al. A Sulfur K-edge XANES Study on the Transfer of Sulfur Species in the Reactive Adsorption Desulfurization of Diesel Oilover Ni-ZnO [J].Catalysis Communications,2010,11:592-596..
    [58]Baeza P., Aguila G., Gracia F. Desulfurization by Adsorption with Copper Supported on Zirconia [J]. Catalysis Communications,2008,9:751-755.
    [59]Bu X. L, Liu S. Z., Zhang H. X., et al. FCC Gasoline and its Application [J]. Chinese Journal of Applied Chemistry,2008,25(6):706-709.
    [60]Jiao Q. L., Liu Q. S., Fan J. F., et al. Adsorption of Thiophene on Multiwalled Carbon Nanotubes(MWNTs)[J]. Nanoscience and Technology,2008,5(5):11-14
    [61]Qi X., LiC., Liu T., et al. Desulfurization of Diesel oil by Adsorption over H3PO4 Modified Lignite Semicokes[J]. Chemical Engineering,2008,36(11):1-4
    [62]刘爱华,达建文.低硫、低芳烃柴油生产技术[J].石化技术,2000,7(1):59-62
    [63]邹明旭,石洪波,廖克俭.清洁燃料的非加氢脱硫技术进展[J].化学工业与T程技术,2005,26(3):33-37
    [64]Forte P. The Pritchard Corporation Process for Desulfurization Gasoline and Hydrocarbon Feedstock [P]. US patent:5730860.1998.
    [65]Irvine R. L., Benson B. A., Varraveto D. M.1RVAD Process Low Cost Breakthrough for Low Sulfur Gasoline [R]. San Antonio, AM-99-42,1999.
    [66]Oil&Gas Journal Editral Department. Phillips petroleumhas stared up a new 6, 000B-D unit at its burger, TEX, refinery[J]. Oil and Gas Journal,2001,99(18):9.
    [67]Khare G P. Process for the Production of a Sulfur Sorbent[R].US,6184176.2001.
    [68]Johnson B. G., Slater P., Kidd D., et al. Application of Phillips's Zorb Process to Distillates-Meeting the Challenge[C]. New Orleans,2001, AM-01-14.
    [69]工军民,房少华,廖启玲,等.催化裂化汽油溶剂萃取脱硫工艺的研究[J].炼油设计,2000,30(10):32-34
    [70]项小燕,林金清.离子液体萃取燃料汕脱硫技术的研究进展[J].化工进展,2007,26(12):1681-1685
    [71]刘冉,赵地顺,王建龙,等.硫酸酯类离子液体对FCC汽油萃取脱硫性能的研究[J].石油与天然气化工,36(5):377-382
    [72]王建龙,赵地顺,周二鹏,等.吡啶类离子液体在汽油萃取脱硫中的应用研究[J].燃料化学学报,2007,35(3):293-296
    [73]秦如意,张晓静,刘金龙.FCC汽油吸附脱硫工艺的研究[J].石油炼制与化工,2003,34(3):24-28
    [74]吕志凤, 战风涛,李林,等.用H202-有机酸氧化脱除催化裂化柴油中的硫化物[J].石汕大学学报:自然科学版,2001,25(3):26-31.
    [75]余国贤,陈辉,陆善祥,等.柴油催化氧化深度脱硫研究[J].高校化学工程学报,2006,20(4):616-621.
    [76]Zannikos F., Lois E., Stournas S. Desulfurization of Petroleum Fractions by Oxidation and Solvent Extractfon[J]. Fuel Processing Technology,1995,42(1): 35-45.
    [77]Etemadi O., Yen T F. Selective Adsorption in Ultrasound Assisted Oxidative Desulfurization Process for Fuel Cell Reformer Applications [J]. Energy & Fuels, 2007,21:2250-2257.
    [78]唐晓东,崔盈贤,于志鹏,等.直馏柴由的选择性催化氧化脱硫[J].石油学报:石油加工,2006,22(1):90-94.
    [79]税蕾蕾,唐晓东,刘亮,等.柴油空气催化氧化脱硫的探索研究[J].工业催化,2003,11(9):1-4.
    [80]杨金荣,侯影飞,孔瑛,等.柴油臭氧氧化脱硫研究[J].石油大学学报:自然科学版,2002,26(4):84-90.
    [81]Garc A., Rrez J. L., Fuentes G. A., et al. Ultra-deep Oxidative Desulfurization of Diesel Fuel by the Mo-Al2O3-H2O2 System:The Effect of System Parameters on Catalytic Activity [J]. Appllied Catalysis A:General,2008,334-366-373.
    [82]Amos A., Mark C. Sulphco-Desulfurization via Selective Oxidation-pilot Plant Results and Commercialization Plans:AM-055,2001 NPRA Annual Meeting [C]. New Orleans, Louisiana,2001.
    [83]Yang L., Li J., Yuan X., et al. One Step Nonhydrodesulfurization of Fuel Oil: Catalyzed Oxidation Adsorption Desulfurization over HPWA-SBA-15 [J]. Journal of Molecular Catalysis A:Chemical,2007,262:114-118.
    [84]Song C. S. An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel [J]. CatalysisToday,2003,86(1-4): 211-263
    [85]Li C., Jiang Z. X., Gao J. B. Ultra-deep Desulfurization of Diesel:Oxidation with a Recoverable Catalyst Assembled in Emulsion [J]. Journal of European Chemistry,2004,10:2277-2280.
    [86]Sampanthar J. T., Xiao H., Dou J., et al. A Novel Oxidative Desulfurization Process to Remove Refractory Sulfur Compounds from Diesel Fuel [J]. Applied Catalysis B:Environmental,2006,63(1):85-93
    [87]程时富,刘月明,高金宝,等Ti-MWW催化氧化脱除轻油中苯并嚷吩和二苯并噻吩[J].催化学报,2006,27(7):547-549
    [88]Y G. X., L S. X., Ch F., et al. Oxidative Desulfurization of Diesel Fuels with Hydrogen Peroxide in the Presence of Activated Carbon and Formic Acid [J]. Energy Fuel,2005,19(2):447-452
    [89]Zannikos F., Lois E., Stournas S. Desulfurization of Petroleum Fractions by Oxidation and Solvent Extraction [J]. Fuel Progress Technology,1995,4235-45
    [90]Yazu K., Makino M., Ukegawa K. Oxidative Desulfurization of Diesel Oil with Hydrogen Peroxide in the Presence of Acid Catalyst in Diesel Oil-acetic Acid Biphasic System [J]. Chemistry Letters,2004,33(10):1306-1307
    [91]Yazu K., Furuya T., Miki K., et al. Tungstophosphoric Acid-catalyzed Oxidative Desulfurization of Light Oil with Hydrogen Peroxide in a Light Oil-Acetic Acid Biphasic System [J]. Chemistry Letters,2003,32(10)520-921
    [92]Yazu K., Furuya T., Miki K. Immobilized Tungstophosphoric Ac id-catalyzed Oxidative Desulfurization of Diesel Oil with Hydrogen Peroxide [J]. Journal of Japan Pretroleum Insititute,2003,46(6):379-382
    [93]Mure T., Craig F., Zbigniew R. Oxidation Reactivities of Dibenzothiophenes in Polyoxometalate-H2O2 and Formic acid-H2O2 Systems [J]. Applied Catalysis A: General,2001,219(1-2)267-280
    [94]Komintarachat C., Trakarnpruk W. Oxidative Desullurization Using Polyoxometalates [J]. Ind. England Chemical Research,2006,45:1853-1856
    [95]Fujishima A., Honda K. Eleetrochenical Photolysis of Water at a Semieonductor Electrode [J]. Natuer,1972,238:37-38
    [96]王红娟,李忠.半导体多相光催化氧化技术[J].现代化工,2002,22(2):56-60
    [97]韩世同,习海玲,史瑞雪,等.半导体光催化研究进展与展望[J].化学物理学报,2003,16(5):339-349
    [98]史载锋.光催化陶瓷膜反应器的实验研究与数学模拟[D].南京:南京化工大学,1999。
    [99]何建波,张鑫,魏凤玉等.TiO2薄膜晶相组成对苯胺光催化降解的影响[J].应用化学,1999,165(s)57-60。
    [100]Lindner M., Kato K. Solar Water Detoxification:Novel TiO2 Powders as Highly Active Photocatalysts[J]. Jourmal of Solar Energy Engineering,1997, 119(3):120。
    [101]Okamoto K. J., Yamamoto Y., Tanaka H., et al. Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder [J]. Bulletin of Chemical Society of Japan,1985,58(7)-.2015-2022
    [102]Carraway E. R., Hoffman A. J., Hoffmann M. R.,et al. Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids [J]. Environmental Science&Technology,1994,28(5):786-793
    [103]Richard C. Regioselectivity of Oxidation by Positive Holes(h+) in Photocatalytic Aqueous Transformations [J]. Journal of Photochemistry and Photobiology A:Chemistry,1993,72(7):179-182
    [104]Gerischer H., Heller A. Photocatalytic Oxidation of Organic Molecules at TiO2 Particles by Sunlight in Aerated Water [J]. Journal of the Electrochemical Society, 1992,139(1):113-118
    [105]唐玉朝,胡春,工怡中.TiO2光催化反应机理及动力学研究进展[J].化学进展,2002,14(3):192-199
    [106]Goslich R., Dillert R., Detlef B. Solar Water Treatment:Principles and Reactors [J]. Water Science and Technology,1997,35(4):137-148
    [107]Litter M. I. Heterogeneous Photocatalysis:Transition Metal Ions in Photocatalytic Systems [J]. Applied Catalysis B:Environmental,1999,23(2-3): 89-114
    [108]Minero C., Pelizzetti E., Malato S., et al. Large Solar Plant Photocatalytic Water Decontamination:Effect of Operational Parameters [J]. Solar Energy,1996,56(5): 421-428
    [109]Lindner M., Kato K. Solar Water Detoxification:Novel TiO2 Powders as Highlyactive Photocatalysts [J]. Journal of Solar Energy Engineering, 1997.119(3):120。
    [110]姚晓斌,马颖,姚建年.贵金属对TiO2悬浮液光照过程中H2O2形成的促进作用[J].感光科学与光化学,1999,17(2):159-63。
    [111]刘正保,姚清照.光催化氧化技术及其发展[J].工业水处理,1997,17(6):7-8。
    [112]岳林海,徐铸德.半导体的表面修饰与其光电化学应用[J].化学通报,1998,9:28-31。
    [113]唐阳清,周馨我.纳米TiO2的制备方法[J].材料导报,1995,(3):20-23。
    [114]Sato S., Nakamura R., Abe S. Visible-light Sensitization of TiO2 Photoeatalysts by Wet-method N Doping [J]. Applied Catalysis.A:General,2005,284:131-137
    [115]R.Ashai, Morikawa. T., Ohwal I., et al. Visible-light Photoeatalysisin Nitrogen-doped titanium Oxides[J]. Science,2001,293:269-271
    [116]Irie H., Watanabe Y, Hashimoto K. Nitorgen-concentartion Dependence on Photocatalytic Activity of TiO2-xNx Powders [J]. Journal of Physical Chemistry B, 2003,107:5483-5486
    [117]Nagaoka S., Hamasaki Y., Ihara H. Preparation of Carbon-TiO2 Microsphere Composites from Cellulose-TiO2 Microsphere Composites and their Evaluation [J]. Journal Molecular Catlysis A:Chemistry,2002,177:255-263
    [118]Sakatani Y, Ando H., Okuskao K., et al. Metal Ion and N Codoped TiO2 as a Visible-lihgt Photocatalyst [J]. Journal Material Research,2004,19(7): 2100-2108
    [119]石建稳,郑经堂.纳米Ti02光催化剂可见光化的研究进展[J].化工进展,2005,24(8):841-844
    [120]张松,李琪,乔庆东.半导体复合Ti02纳米光催化剂[J].化学通报,2004.295-299
    [121]Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2 Surafces:Principles, Mechanisms and Selected Results. Chemical Review,1995,95(3):735-755.
    [122]Wu L., Yu J., Fu X. Characteriazation and Photocatalytic Mechanism of Nanosiezd CdS Coupled TiO2 Nanocrystals under Visible Light Irradiation [J]. Journal Molecular Catalysis A:Chemistry,2006,244:25-32
    [123]李芳柏,古国榜,李新军,等.纳米复合Sb203-TiO2的光催化性能研究[J].无机化学学报,2001,17(1):37-42
    [124]Yang H. M., Shi R. R., Zhang K., et al. Synthesis of WO3-TiO2 Nanocomposites via Sol-Gel Method [J]. Journal of Alloys and Compounds,2005,398(1-2): 200-202
    [125]Fujii R, Ohtaki M., Eguchi K., et al. Photocatalytic Activities of CdS Crystallites Embedded in TiO2 Gel as a Stable Semiconducting Matrix [J]. Journal of Materials Science Letters,1997,16(13):1086-1088
    [126]董润安,邱勇,宋心琦.卟啉类化合物对生物分子的光敏化氧化[J].化学进展,1998,10:45-54
    [127]Hwang H. M., SlaughterL F., Cook S. M., et al. Photochemical and Microbial Degradation of 2,4,6-trinitrotoluene in a Freshwater Environment [J]. Bullitin Environment Contam Tox,2000,65:228-235
    [128]Cooper W. J. Photochemistry of Environmental Aquatic Systems (ACS Symposium Series 327) [J]. American Chemical Society,1987,174-190
    [129]Zhang X. H., Hu X. K., Hu H. M. Effects of Riboflavin on the Phototransformation of Benzo[a]pyrene[J]. Chemosphere,2006,63 (7): 1116-1123
    [130]Bingozzi C.A., Agrazzi R., Kleverlaan C.J. Molecular and Supramolecular Sensitization of Nanocrystalline Wide Band-gap Semiconductors with Mononuclear and Polynuclear Metal Complexes [J]. Chemistry Soecial Review, 2000,29(2):87-96.
    [131]沈永嘉.酞菁的合成与应用[M].北京:化学工业出版社,2000:62
    [132]Ozil M., Agar E., Sxasxmaz S., et al. Microwave-assisted Synthesis and Characterization of the Monomeric Phthalocyanines Containing Naphthalene-amide Group Moieties and the Polymeric Phthalocyanines Containing oxa-aza Bridge[J]. Dyes and Pigments,2007,75:732-740
    [133]Yarasir M. N., Kandaz M., Senkal B. F., et al. Metal-ion Sensing and Aggregation Studies on Reactive Phthalocyanines Bearing Soft-metal Receptor Moieties Synthesis, Spectroscopy and Electrochemistry[J]. Polyhedron,2007,26: 5235-5242
    [134]Sharman W. M., Liervan J. E. A New Procedure for the Synthesis of Water-soluble trie Ationic and Anionic Phthalocyanines[J]. Journal Porphyrins Phthalocyanines,2005,9:651-658
    [135]Mack J., Stillman M. J. Assignment of the Optical Spectrum of Metal Phthalocyanines through Spectruml Band Deconvolution Analysis and ZINDO Calculations [J]. Coordination Chemistry Review,2001,219-221:993-1032
    [136]余远斌,杨锦宗.酞菁类催化剂的研究进展[J].北京工业大学学报,1998,24(2):115-120
    [137]Ander R. H., Detlef W. B., Miehael R. Cobalt(Ⅱ) tetrassulof Phthalocyanine on Titanium Dioxide:A new Effieient Eletron Relay for the Photocatalytic Formation and Depletion of Hydrogen Peorxide in aqueous Suspensions[J]. Journal Physical Chemistry,1987,91:2109-2117
    [138]Rnajit K.T., Willner I., Bossmann S., et al. Iron(Ⅲ) Phthaloeynaine-modified Titanium DioxiderA novel Photoeatalyst for the Enhanced Photodegradation of organic Pollutants[J]. Journal Physical Chemistry B,1998,102:9397-9403
    [139]Vlliev D., Tomova L., Bilyarska L., et al. Phthaloeyanine Modified TiO2 or WO3 Catalysts f or Photooxidation of Sulfide and Thiosulafte bns upon Iarrdiation with Visible Light [J]. Journal Photochemistry Photobiology A: Chemistry,2003,159:281-287
    [140]Vlliev D. Phthaloeyanine-modified Titania-catalyst for Photooxidation of Phenolsby Iarrdiation with Visible Light [J]. Journal Photochemistry Photobiology A:Chemistry,2002,151:195-199
    [141]Vlliev A. Photooxidation of Sodium Sulfide and Sodium Thiosulatfe under Irradiation with Visible Light Catalyzed by Water Soluble Polynuclear Phthalocyanine Complexes [J]. Journal Photochemistry Photobiology A: Chemistry,2002,14923-30
    [142]Vliev V, Tomova D. Photocatalytic Oxidation of Sulfide Ion Catalyzed by Phthalocynaine Modified Titania [J]. Catalysis Communication,2002,3:287-292
    [143]Vlliev V, Mihaylova A., Bilyarska L. Photooxidation of Phenols in Aqueous Solution, Catalyzed by Mononuclear and Polynuclear Metal Phthaloeyanine Complexes [J]. Journal Molecular Catalysis A:Chemistry,2002,184:121-130
    [144]Chen F., Deng Z., Li X., et al. Visible Light Detoxification by 2,9,16, 23-tetarcarboxyl Phthaloeyanine Copper Modified Amorphous Titnaia[J]. Chemical Physical Letter,2005,415:85-88.
    [145]Zhang L., Gao E., Yang M., et al. Photoelectrochemical Properties of the Nanoporous Film Sensitized by Cyanine Dye [J]. Acta Physico-Chimica Sinica, 1999,15(4):293-298
    [146]张莉,杨迈之,乔学斌.双染料复合敏化Sn02纳米多孔膜光电极的研究[J].应用化学,1999,16(4):1-5
    [147]Fungo F., Otero L., Durantini E. N., et aL Photosensitization of Thin Nanocrystalline Semiconductor Film Electrodes with Metalloid Porphyrin [J]. Journal of Physical Chemistry,2000,104:7644-7651
    [148]Kay A., Gratzel M. Dye-sensitized Core-shell nanocrystals:Improved Efficiency of Mesoporous tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide [J]. Chemical Materials,2002,14:2930-2935.
    [149]鲁宇浩,吴益华,郭丽.聚合物电解质燃料电池中的酞箐催化剂[J].化学电源,2003,27(3):333-338
    [150]王灶生,许宜铭.磺化酞菁铁的合成与光催化降解染料废水的研究[J].上海环境科学,2001,10:480-483
    [1]Jawad A., Phillipe J.C., Nathan W. An Efficient two-step Synthesis of Metal-free Phthalocyanines Using a Zn (Ⅱ) Template [J]. Chemical Communication,2009, 1970-1971.
    [2]David M. D., Clifford C. I., The Synthesis of 1,11,15,25-tetrasubstituted Phthaloeyanines as Single Isomers Using Bisphthalonitriles [J]. Synlett,1994, 623-624.
    [3]Kudrevich S., Brasseur N., Madeleine C., et al. Synthese and Photodynamie Active of Novel Trisulfonated Zine Phthaloeyanine Derivatives [J]. Journal of Medical Chemistry,1997,40(24)3897-3904.
    [4]Chio C. F., Tsangp.T., Huang J.D., et al. Synthesis and in Vitro Photodynamie Activity of new Hexadeca-earboxy Phthaloeyanines [J]. Chemical Communication,2004,19:2236-2237
    [5]Svetlana V. K., Sandra G., van Lier J. E. Synthesis of Trisulfonated Phthaloeyanines and their Derivatives using Boron(Ⅲ) Subphthalocyanines as Intermediates [J]. Journal of Organic Chemistry,1996,61 (17):5706-5707.
    [6]Nagao K., Ryuji H., Tatsuya T. Phthaloeyanines Containing Silicons in their Peripheral Substituent Groups [J]. Bullitin Chemistry Society Japan,1997,70: 2693-2698
    [7]Martin O., Toshiki I., Subramanian L. R., et al.2,3-tetrakis-[4-(N-2-naphthyl-N-phenylamino)phenoxy]-substitutedmetal-free and Metal Phthaloeyanines as a novel class of Amorphous Molecular Materials [J]. Chemistry Letters,2001, 788-789
    [8]Clillbrd C. L., Polina I. S., Ben K., et al. Syntheses of Monometalated and Unsymmetrieally Substituted Binuclear Phthaloeyanines and a Pentanuelear Phthaloeyanine by Solution and Polymer Support Methods [J]. Journal of Organic Chemistry,1991,56(1):82-90
    [9]Yunqi L., Daoben Z. Synthesis and Charaeterization of a novel Unsymmetrieal Metal-free Phthaloeyanine with Donor-acceptor Substituents [J]. Journal of Heteroeyelie Chemistry,1994,31:1017-1020
    [10]Yoshiaki A., Nagao K. The first Synthesis of a Gable Bis-phthaloeyanine [J]. Tetrahedron Letters,2004,45:9577-9580.
    [11]Chen p., Wang X., Tang D., et al. Synthesis and Spectral Properties of new Soluble Naphthaloeyaninatometal Derivatives [J]. Dyes and Pigments,2001, 48:85-92
    [12]Meryem C., Ali R.O., Mustafa B. Novel Phthaloeyanines Bearing four 4-Phenyloxyacetic Acid Functionalities[J]. Polyhedron,2007,26:2638-2646
    [13]Esin H., Sebnur M., Zehra A.B. Synthesis of Phthalocyanines with Tridentate Branehed Bulky and Alkylthio Groups [J]. Dyes and Pigments,2003,59263-268
    [14]Liu H. W., Chen C. F., Ai M., et al. Synthesis of Optieally Active 1, 1'-binaphthyl-phthaloeyanines Linked via a Crown ether Unit [J]. Tetrahedron: Asymmetry,2000,11:4915-922
    [15]Ahrnet B., Beytullah E., Yasar G.. Synthesis and Characterization of new Metal-free and Metallophthalocyanines Containing Spherieal or Cylindrieal Maerotricyclic Moieties [J]. Polyhedron,2005,24:1117-1124
    [16) Pekbeigin K.H.R., Ahmet G. I., Makbule B.K. Synthesis and Charaeterization of a new Tetraeationic Phthalocyanine [J]. Dyes and pigments,2008.76:231-235
    [17]Joe O., Nazar H., Pereira R., et al. Synthesis, Spectral and Eleetrochemical Properties ofaNiekeland Zinc new Family of Pyrrole Substituted Cobalt, Iron, Manganese, Phthalocyanine Complexes [J]. Journal of Porphyrins Phthaloeyanines,2003,7:508-520
    [18]Cihan K., Nesuhi A., Erbil A., et al. Mierowave-assisted Synthesis and Charaeterization of differently Substituted Phthalocyanines Containing 3,5-dimethoxyphenol and Octanethiol Moieties [J]. Dyes and pigments,2008,76: 7-12
    [19]Wesley M.S., Johan E.van L. Synthesis and Photodynamic Activity of novel Asymmetrically Substituted Fluorinated Phthaloeyanines [J]. Bioeonjugate Chemistry,2005,16:1166-1175
    [20]Wesley M.S., Johan E., Van L. A new Procedure for the Synthesis of Water-soluble Tricationic and Anionic Phthalocyanines [J]. Journal of Porphyrins Phthalocyanines,2005,9:508-520
    [21]Lwznoff C. C., Mougang H., Kieran J. M. N. The Synthesis of Phthalocyanines at room Temperature [J].Chemical Communication,1996,(10),1245-1246.
    [22]Wing-K.M., Dennis K. P. Ng. Preparation, Solution Behaviour and Electrical Properties of Octasubstituted Phthalocyaninato and 2,3-naphthalocyaninato Oxotitanium(Ⅳ) Complexes [J]. Journal of Materials Chemistry,1997,7(10), 2063-2067
    [23]Xu Z. W., Synthesis and Catalytic Effect of Metal Phthalocyanine Complex to the Lithium-thionyl Chloride battery. Northwest University,2007.
    [24]Cynthia M. A., Wesley M. S., Johan E. V. L. Current Status of Phthalocyanines in Photodynamic Therapy of Cancer [J]. Journal of Porphyrin Phthalocyanine, 2001,5:161
    [25]Huang J. L. Some Spectrum Methods on the Structures of Metal Phthalocyanine [J]. Spectroscopy and Spectral Analysis,2001,121(11):1.
    [1]Yan J. K., Gan G. Y., Du J. H., et al. Formation Mechanism of Secondary Phase in (La, Nb) Codoped TiO2 Ceramics Varistor [J]. Procedia Engineering,2012,27: 1271-1238.
    [2]Fernando F., David T., Juan M. C, et al. Photocatalytic Degradation of Toluene over Doped and Coupled (Ti, M)O2(M=Sn or Zr) Nanocrystalline Oxides: Influence of the Heteroatom Distribution on Deactivation [J]. Applied Catalysis B: Environmental,2008,84:598-606
    [3]Nahar S., Hasegawa K., Kagaya S. Photocatalytic Degradation of Phenol by Visible Light-responsive Iron-doped TiO2 and Spontaneous Sedimentation of the TiO2 Particles [J]. Chemosphere,2006,65:1976-1982.
    [4]Zhang X.W., Lei L.C. One step Preparation of Visible-light Responsive Fe-TiO2 Coating Photocatalysts by MOCVD [J]. Materials Letters,2008,62:895-897.
    [5]Kim D.H., Lee K.S., Kim Y.S., et al. Photocatalytic Activity of Ni 8 wt% -doped TiO2 Photocatalyst Synthesized by Mechanical Alloying under Visible Light[J]. Journal of the American Ceramic Society,2006,89:515-518.
    [6]Niishiro R., Kato H., Kudo A. Nickel and either Tantalum or Niobiumcodoped TiO2 and SrTiO3 Photocatalysts with Visible-light Response for H2 or O2 Evolution from Aqueous Solutions [J]. Physical Chemistry Chemical Physics, 2005,7:2241-2245.
    [7]Klosek S., Raftery D., Visible Light Driven V-doped TiO2 Photocatalyst and its Photooxidationof Ethanol [J]. The Journal of Physical Chemistry B,2001,105: 2815-2819.
    [8]Wu J. C. S., Chen C.H. A Visible-light Response Vanadium-doped Titania Nanocatalyst by sol-gel Method[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163:509-515.
    [9]Biswas S.K., Pathak A., Pramanik N.K., et al. Codoped Cr and W Rutile Nanosized Powders Obtained by Pyrolysis of Triethanolamine Complexes [J]. Ceramic International,2008,34:1875-1883.
    [10]Pan C.C., Wu J.C.S., Visible-light Response Cr-doped TiO2-xNx Photocatalysts [J]. Materials Chemistry and Physics,2006,100:102-107.
    [11]Gole J.L., Stout J.D., Burda C, et al. Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and their Transformation at the Nanoscale [J]. Journal of Physical Chemistry B,2004,108:1230-1240.
    [12]Mrowetz M., Balcerski W., Colussi A.J., et al. Oxidative Power of Nitrogen-doped TiO2 Photocatalysts under Visible Illumination [J]. The Journal of Physical Chemistry B,2004,108:17269-17273.
    [13]Liu Y.M., Liu J.Z., Lin Y.L., et al. Simple Fabrication and Photocatalytic Activity of S-doped TiO2 under Low Power LED Visible Light Irradiation [J]. Ceramic International,2009,35:3061-3065.
    [14]Wang Y., Meng Y., Ding H., et al. A highly Efficient Visible-light-activated Photocatalyst based on Bismuth-and Sulfur-codoped TiO2 [J]. The Journal of Physical Chemistry C,2008,112:6620-6626.
    [15]Tachikawa T., Tojo S., Kawai K., et al. Photocatalytic Oxidation Reactivity of Holes in the Sulfur-and Carbon-doped TiO2 Powders Studied by Timeresolved Diffuse Reflectance Spectroscopy [J]. The Journal of Physical Chemistry B,2004, 108:19299-19306.
    [16]Yang X., Cao C., Hohn K., et al. Highly Visible-light Active C-and V-doped TiO2 for Degradation of Acetaldehyde [J]. Journal of Catalysis,2007,252: 296-302.
    [17]DeRosa M.C., Crutchley R. Coord. The Chemistry of Krypton [J]. Chemical Review,2002,35:233-244.
    [18]Hu M., Xu Y., Zhao J. Efficient Photosensitized Degradation of 4-Chlorophenol over Immobilized Aluminum Tetrasulfophthalocyanine in the Presence of Hydrogen Peroxide [J]. Langmuir,2004,20:6302.
    [19]Hong A. P., Bahnemann D. W., Hoffmann M. R. Cobalt(II) tetrasulfophthalocyanine on titanium dioxide:A new Efficient Electron Relay for the Photo catalytic Formation and Depletion of Hydrogen Peroxide in Aqueous Suspensions[J]. Journal of Physical Chemistry,1987,91:2109.
    [20]Ranjit K. T., Willner I., Bossmann S., Braun A. Iron(Ⅲ) Phthalocyanine-Modified Titanium Dioxide:A Novel Photocatalyst for the Enhanced Photodegradation of Organic Pollutants[J]. Journal of Physical Chemistry B,1998,102:9397.
    [21]Mele G., Sole R.D., Vasapollo G., et al. Photocatalytic Degradation of 4-nitrophenol in Aqueous Suspension by using Polycrystalline TiC>2 Impregnated with Functionalized Cu(Ⅱ)-porphyrin or Cu(Ⅱ)-phthalocyanine [J]. Journal of Catalysis,2003,217:334.
    [22]Hodak J.. Quinteros C., Litter M.I., et al. Sensitization of TiO2 with Phthalocyanines. Part 1.-Photo-oxidations using Hydroxoaluminium Tricarboxymonoamidephthalocyanine Adsorbed on TiO2 [J]. Journal of Chemistry Social Faraday Transaction,1996,92:5081.
    [23]Palomares E., Marti' nez-Di' az M. V., Haque S. A., et al. State Selective Electron Injection in Non-aggregated Titanium Phthalocyanine Sensitized Nanocrystalline TiO2 Films[J]. Chemical Communication,2004,2112-2113.
    [24]Reddy P. Y., Giribabu L., Lyness C., et al. Efficient Sensitization of Nanocrystalline TiO2 Films by a Near-IR-Absorbing Unsymmerical Zinc Phthalocyanine [J]. Angewandte Chemie International Edition,2007,46:373-376.
    [25]Morandeira A., Lopez-Duarte I., Martinez-Diaz M. V., et al. Slow Electron Injection on Ru-Phthalocyanine Sensitized TiO2 [J]. Journal of American Chemistry Society,2007,129:9250-9251.
    [26]Kim D. S., Kwak S. Y. The Hydrothermal Synthesis of Mesoporous TiO2 with high Crystallinity, Thermal Stability, large Surface Area, and Enhanced Photocatalytic Activity [J]. Applied Catalysis A:General,2007,323:110-118.
    [27]Yan H., Zhang X. H., Wu J. M., et al. The Use of CTAB to Improve the Crystallinity and Dispersibility of Ultrafine Magnesium Hydroxide by Hydrothermal Route [J]. Powder Technology,2008,188:128-132.
    [28]周震,阎杰,王先友.纳米材料的特性及其在电催化中的应用[J].化学通报,1998,4:23-26
    [29]Wang Y., Suna A., Mahler W., et al. PbS in Polymers from Molecules to Bulk Solids [J]. Journal of Chemical Physical,1987,87(12):7315-7322.
    [30]唐阳清,周馨我.纳米TiO2的制备方法[J].材料导报,1995,(3):20-23。
    [31]朱明刚,孔令宜,乌仔鸿彦.制备HAP粉末新工艺影响因素的模糊判断[J].河北科技大学学报,2000,21(1):17-18。
    [32]Wang Z. Y., Chen H. F., Tang P. S., et al. Hydrothermal in situ Preparation of the Copper Phthalocyanine Tetrasulfonate Modified Titanium Dioxide photocatalyst[J]. Colloids and Surfaces A:Physicochem,2006,289:207-211.
    [33]Zheng Y. Q., Shi E. W., Yuan R. L., et al. Hydrothermal Preparation and form Mechanism of TiO2 Crystallites [J]. Science in China (Series E),1999,29(3):206 213.
    [34]Kamat P. V. Photoelectrochemistry in Particulate Systems 9. Photosensitized Reduction in a Colloidal TiO2 System using Anthracene-9-carboxylic Acid as the Sensitizer [J]. Journal of Physical Chemistry,1989,93:859-864.
    [I]Zhang J. R., Gao L. Nanocrystalline SnO2 Powders Synthesis [J]. Journal of Inorganic Chemistry,.2003,6:641-644
    [2]Wei Q., Guo G. S., Wang Z. H., et al. Preparation and Characterization of Nanometer Tin Oxide Particles [J]. Modern Scientific Instruments,2003,3:18-20
    [3]Shiomi H., Akakimoto C, Nakahir A. A., et al. Preparation of SnO2 Monolithic Gel by sol-gel Method [J]. Journal of Sol-Gel Science and Technology,2000,19: 759-763
    [4]Pan Q. Y, Xu J. Q., Liu H. M., et al. Synthesis, Structure and Gas Sensitive Properties of Microemulsion Method nano SnO2 Materials [J]. Inorganic Materials,1999,14(1):83-90
    [5]Shi J., Wu S. H., Wang S. R. Preparation of SnO2 Nano-powders from the Different Oxidation States of Tin Salt [J]. Inorganic Chemistry,2004,20(2): 199-201
    [6]He Z., Li X., Wu X., et al. Preparation and Electrochemical Properties of Nanosized Tin Dioxide Electrode Material by Sol-gel Process [J]. Transaction Nonferrous Metal Society China,2003,13(4):998-1002
    [7]Yu X. B., Wang H. L. Inorganic-organic Hybrid Material Progress [J]. Materials Science,1997,11 (2):49-52.
    [8]Hong A. P., Bahnemann D. W., Hoffmann M. R. Cobalt (Ⅱ) Tetrasuifophthalocyanine on Titanium Dioxide:A new Efficient Electron Relay for the Photocatalytic Formation and Depletion of Hydrogen Peroxide in Aqueous Suspensions [J]. Physical Chemistry,1987,91(8):2109.
    [9]Shen Y. J. Sythesis and Application of Phthalocyanine [M]. Beijing:Beijing Chemical Industry Press,2000,9-36.
    [10]Huang J., Jiang D. S., Guan J. G., et al. Mechanism and Structure Model of the Composite Particle of Phthalocyanine Nickel with Fe3O4 Nanoparticle [J]. Materials Science,2001,18(2):81-846.
    [11]Wang F. Preparation and Characterization of SnO2-based Phthalocyanine Sensitized Nanomaterials Used as Photocatalyst [J]. Fuzhou University,2006.
    [12]Mele G., et al. TRMC, XPS, and EPR Characterization of Polycrystalline TiO2 Porphyrin Impregnated Powders and their Catalytic Activity for 4-Nitrophenol Photodegradation in Aqueous [J]. Journal of Physical Chemistry B,2005,109: 12347-12352.
    [13]Kamat P. V. Photoelectrochemistry in Particulate Systems.9:Photosensitized Reduction in a Colloidal TiO2 System using Anthracene-9-carboxylie Acid as the Sensitizer [J]. Journal of Physical Chemistry,1989,93:859-864.
    [14]Lu Y. Q., Deng Z. H. Analysis of FT-IRSpectropy [M]. Beijing:Beijing Chemical Industry Press,1989.
    [15]Morrison S. R., Zhao Y. B., Liu Y. Z. Surface of Chemical Physics [M]. Beijing: Peking University Press,1984,19-29.
    [1]Otsuki S., et a I. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction [J]. Energy & Fuels,2000,14(6):1232-1239
    [2]Canela M. C., et al. Destruction of Malodorous Compounds using Heterogeneous Photocatalysis [J]. Environmental Science & Technology,1999, 33(16):2788-2792
    [3]Kong L. Y., Li G., Wang X. S. TS-1-over Hydrogen Peroxide Catalytic System in the Selective Oxidation of Organic Sulfides [J]. Journal of Catalysis,2004, 25(10):775-778.
    [4]Li M. L. Quick Reference of the Chemical Data [M]. Beijing:Chemical Industry Press,2003.197,152.
    [5]Chen X. B. Synthesis and Investigation of novel Nanomaterials for Improved Photocatalysis [D]. American:Case Western Reserve University,2005
    [6]Huang Z. L, Deng H., Pan H. Q. Fabric load TiO2:Preparation of the Photocatalyst and its Reactive Red Light Catalytic Kinetics [J]. Industrial Water Treatment,2010,10:36-39
    [7]Taehikawa T., Fujitsuka M., Majima T. Mechanistic Insight into the TiO2: Photocatalytic Reactions:Design of New Photocatalystst [J]. Journal of the American Chemical Society,2007,14:5259-5273
    [8]Cherian S., Wamser C. Adsorption and Photoactivity of Tetra(4-carboxyPhenyl) Porphyrin(TCPP)on Nano Particulate TiO2 [J]. Journal of Physical Chemistry B, 2000,104:3624-3629.
    [1]Burch R, Crabb E. M. Homogeneous and Hetero-geneous Contribution to the Catalytic Oxidation Dehydrogenation of Ethane [J]. Appllied Catalysis A: General,1993,97(1):49-65.
    [2]Zhang L., Yang M. Z., Qiao X. B. Dual-dye Compound Sensitized SnO2 nano Porous Film Photovoltaic Research [J]. Applied Chemistry,1999,16(4):1.
    [3]Li F. S, Yang Y. Nanometer-micron Technology [M]. Beijing:National Defence Industry Press,2002.
    [4]Turchi C. S., Ollis D. F. Photocatalytic Degradation of Organic Water Contaminants:Mechanisms Involving Hydroxyl Radical Attack [J]. Journal of Catalysis,1990,122(5):178-192.
    [5]Sun L., Bolton J. R. Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions [J]. Journal of Physical Chemistry,1996,100(10):4127-4134.
    [6]Schwarz P. F., Turro N. J., Bossmann S. H., et al. A New Method to Determine the Generation of Hydroxyl Radicals in Illuminated TiO2 Suspensions [J]. Journal of Physical Chemistry B,1997,101(36):7127-7134.
    [7]Zhao J., Wang T., Wang K., et al. Photoassisted Degradation of Dye Pollutants.3. Degradation of the Cationic dye Rhodamine B in Aqueous Anionic Surfactant-TiO2 Dispersions under Visible Light Irradiation:Evidence for the need of Substrate Adsorption on TiO2 Particles [J]. Environment Science Technology, 1998,32:2394-2400.
    [8]Zhao J. C., Chen C. C., Ma W. H. Photocatalytic Degradation of Organic Pollutants under Visible Light Irradiation [J]. Topic of Catalysis,2005,35(3-4): 269-278
    [9]Mele G., Sole R. D., Vasapollo G., et al. Photocatalytic Degradation of 4-nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Functionalized Cu(Ⅱ)-porphyrin or Cu(Ⅱ)-phthalocyanine [J]. Journal of Catalysis,2003,217 (2):334-342
    [10]Mele G., Sole R. D., Vasapollo G., et al.4-Nitrophenol Photodegradation TRMC, XPS, and EPR Characterizations of Polycrystalline TiO2 Porphyrin Impregnated Powders and their Catalytic Activity for 4-Nntrophenol Photodegradation in Aqueous Suspension [J]. Journal of Physical Chemistry B,2005,109 (25): 12347-12352
    [11]Couselo N., Einschlag G., Fernando S., et al. Tungsten-Doped TiO2 vs Pure TiO2 Photocatalysts:Effects on Photobleaching Kinetics and Mechanism [J]. Journal of Physical Chemistry C,2008,112(4):1094-1100
    [12]Karapire C., Zafer C., Siddik L. Studies on Photophysical and Electrochemical Properties of Synthesized Hydroxy Perylenediimides in Nanostructured Titania thin Films[J]. Synthetic of Metal,2004,145(1):51-60.
    [13]Nazeeruddin M. K., Zakeeruddin S. M., Lagref J. J., et al. Stepwise assembly of Amphiphilic Ruthenium Sensitizers and their Applications in Dye-sensitized Solar Cell [J]. Coordination Chemical Review,2004,248(13-14):1317-1328.
    [14]O'Regan B., Graetzel M. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal Titanium Dioxide Films [J]. Nature (London, United Kingdom),1991,353(6346):737-740
    [15]Nazeeruddin M. K., Kay A., Rodicio I., et al. Conversion of Light to Electricity by Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) Charge-transfer Sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes [J]. Journal of American Chemistry Society,1993,115(14):6382-90.
    [16]Villarreal T. L., Bogdanoff P., Salvador P., et aL Photocatalytic Oxidation on Nanostructured Chalcogenide Modified Titanium Dioxide [J]. Solar Energy Materials and Solar Cells,2004,83(4):347-362
    [17]Iesce M. R., Graziano M. L., Cermola F., et al. Effects of Sensitizers on the Photodegradation of the Systemic Fungicide Triadimenol [J]. Chemosphere,2003, 51(2):163-166
    [18]Harbour J. R., Dletelbach B., Duff J. Phthalocyanization of Cadmium Sulfide and Zinc Oxide:Effect on the Photochemistry in Aqueous Dispersion. Journal of Physical Chemistry,1983,87:5456-5460.
    [19]Kamat P. V, Barazzouk S., Thomas K. G., et al. Electrodeposition of C60 Cluster Aggregates on Nanostructured SnO2 Films for Enhanced Photocurrent Generation[J]. Journal of Physical Chemistry B,2005,4:510-516
    [20]Iliev V. Phthalocyanine-modified Titania-catalyst for Photooxidation of Phenols by Irradiation with Visible Light[J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,151:195-199.
    [21]Mele G., Sole R. D., Vasapollo G., et al. Photocatalytic Degradation of 4-nkrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Functionalized Cu(II)-porphyrin or Cu(Ⅱ)-phthalocyanine [J]. Journal of Catalysis,2003,217 (2):334-342
    [22]Mele G, Garca-Lpez E., Palmisano L., et al. Hotocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Lanthanide Double-Decker Phthalocyanine Complexes [J]. Journal of Physical Chemistry C,2007,111 (17):6581-6588.
    [23]McCarthy J. R., Weissleder R. Model Systems for Fluorescence and Singlet Oxygen Quenching by Metalloporphyrins [J]. Meddical Chemistry,2007,2(3): 360-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700