用户名: 密码: 验证码:
不同倍性鲫鲤蛋白质代谢相关基因的克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室在世界上首次制备了两性可育的异源四倍体鲫鲤,该四倍体鲫鲤与二倍体红鲫杂交获得的三倍体湘云鲫具有明显生长优势,分析认为主要与其不育有关。众所周知,鱼类生长主要通过机体蛋白质的合成来完成,蛋白质代谢直接影响鱼类生长作用,外源蛋白在鱼体内首先降解生成肽类物质和游离氨基酸,肽类物质在肽酶的作用下,进一步降解生成小肽和游离氨基酸,肠道转运载体负责小肽和氨基酸的吸收,氨基酸在肠道或进入体内在肝脏发生代谢作用。因此,本研究克隆了影响不同倍性鲫鲤蛋白质代谢的3个关键基因,并探讨了其基因的表达特征,内容总结如下:
     1.氨肽酶N(aminopeptidase N, APN)是一种从N末端酶切肽链的蛋白质消化酶,在蛋白质消化中发挥十分重要的作用。本研究克隆红鲫、三倍体湘云鲫和异源四倍体鲫鲤APN的部分cDNA序列,结果表明不同倍性鲫鲤APN序列相对保守,系统进化树显示红鲫、三倍体湘云鲫和异源四倍体鲫鲤亲缘关系最近。实时定量PCR技术分析发现三倍体湘云鲫APN在肠道组织分布最多,不同倍性鲫鲤APN基因具有母性遗传特性,参与了早期胚胎发育各时期卵黄囊蛋白的消化,但三倍体湘云鲫APN在早期胚胎发育的多个时期均有较高的表达水平,说明在早期胚胎发育阶段,三倍体湘云鲫对蛋白质的消化效率高于红鲫,揭示了它对蛋白质代谢具有消化优势。
     2.小肽转运载体(oligopeptide transporter, PepT1)是依赖质子的寡肽转运载体(oligopeptide transporter, POT)家族成员之一,肠道上皮细胞PepT1对蛋白质消化产物中的小肽吸收起关键性作用。本研究利用同源克隆和RACE方法克隆了红鲫、三倍体湘云鲫和异源四倍体鲫鲤PepT1全长cDNA序列,结果表明三种倍性鲫鲤PepT1序列相对保守,氨基酸序列相似率在88.8~93.8之间,在第564个氨基酸位点,三倍体湘云鲫缺失一个氨基酸。利用实时定量PCR技术对湘云鲫组织表达检测,结果表明三倍体湘云鲫PepT1主要分布在肠道前段,并沿肠道纵向表达量逐渐降低,说明了三倍体湘云鲫肠道前段是蛋白质代谢产物中小肽的主要吸收场所。同样,利用实时定量PCR技术对不同倍性鲫鲤早期胚胎发育不同时期进行分析,结果发现,PepT1在不同倍性鲫鲤具有母性遗传特性,三倍体湘云鲫PepT1在早期胚胎发育的多个时期有较高水平的表达,说明在早期胚胎发育阶段,三倍体湘云鲫对蛋白质的吸收效率高于红鲫,揭示了它对蛋白质代谢具有吸收优势。
     3.谷氨酸脱氢酶(glutamate dehydrogenase)是氨基酸代谢和糖代谢的重要街接点之一,对氨基酸代谢有十分重要的作用。本研究克隆红鲫、三倍体湘云鲫和异源四倍体鲫鲤GDH全长cDNA序列,结果表明三种鱼GDH氨基酸序列高度保守。实时定量PCR分析发现不同倍性鲫鲤GDH广泛分布在所有组织,在繁殖和非繁殖季节,三倍体湘云鲫肝脏组织GDH mRNA表达量均高于红鲫。早期胚胎发育阶段,GDH mRNA在三倍体湘云鲫表达量最高,说明在早期胚胎发育阶段,三倍体湘云鲫对氨基酸的代谢效率高于红鲫,揭示它具有氨基酸代谢优势。
     4.研究了二倍体红鲫、三倍体湘云鲫和异源四倍体鲫鲤生长、血清生化指标和蛋白质代谢相关基因表达的变化。每种倍性的鱼设1个处理,每个处理三重复,投喂初始平均体重59.0g左右的同龄鱼30天。结果表明三倍体湘云鲫增重率是二倍体红鲫的2.13倍。湘云鲫相对红鲫血清尿素氮、甲状腺激素(T3、T4)浓度降低,谷草转氨酶和谷丙转氨酶浓度升高,成体肠道APN、PepT1和肝脏GDH基因的表达量明显升高,说明了在成体发育阶段,湘云鲫具有明显蛋白质代谢优势。
     5.研究了蛋白质水平和种类对湘云鲫APN、PepT1、GDH基因表达的影响。配制了5种蛋白水平和2种蛋白种类的半精制饲料,每种饲料设1个处理,每个处理三重复,饲喂初始体重50g左右的同一批孵化湘云鲫40天,结果表明饲料蛋白水平和种类均能显著影响湘云鲫肠道APN、GDH、PepT1基因的表达,湘云鲫APN基因的表达与肠道部位和蛋白浓度有相关性;蛋白水平主要影响湘云鲫中肠GDH基因的表达,其表达量随蛋白水平增加显著上调(P<0.05);低蛋白和高蛋白均能提高湘云鲫肠道PepTl基因的表达。鱼粉相对豆粕而言,它能显著提高湘云鲫肠道APN、GDH、PepT1基因的表达。
     6.研究了丁酸钠对湘云鲫生长性能、血清生化指标及肠道APN、GDH、PepT1基因的表达的影响。在湘云鲫基础饲料中添加5种不同剂量丁酸钠,投喂49天,实验结束时,测定其生长性能、血清生化指标和肠道APN、GDH、PepT1基因的表达丰度,结果表明随丁酸钠添加剂量的增加,不同处理组对湘云鲫特定生长率先增大后减少,0.25g/kg丁酸钠组湘云鲫特定生长率最高(21.12%),饵料系数最低(2.03),0.50g/kg丁酸钠处理组湘云鲫的血清总蛋白(TP)最高,是对照组的2.47倍。谷草转氨酶(AST)和谷丙转氨酶(ALT)活性高于对照组,尿素氮(UN)浓度实验组与对照组间差异不显著(P>0.05)。添加剂丁酸钠显著提高湘云鲫肠道组织PepT1mRNA的表达,并呈剂量依赖效应。丁酸钠调节湘云鲫肠道组织APN表达特征是先下调后上调,调节GDH表达丰度特征是先上调后下调。
     7.研究了微生态制剂对湘云鲫生产性能和肠道GDH、APN和PepT1基因表达的影响,在湘云鲫基础饲料中添加O.0g/kg、0.1g/kg、和0.2g/kg,投喂56天,实验结束时,测定其生长性能和肠道APN、GDH、PepT1基因的表达丰度。结果表明0.1g/kg组湘云鲫增重率和特定生长率最高,极显著高于对组照(p<0.01),是对照组的1.47和1.22倍。最高剂量0.2g/kg湘云鲫组增重率和特定生长率反而出现下降趋势,是对照组的1.41和1.18倍。微生态制剂显著调节湘云鲫肠道GDH、APN和PepT1基因的表达,3个基因的表达丰度均与肠道部位和剂量相关,这些研究成果将为解析饲料添加剂丁酸钠和微生态制剂多乐宝对湘云鲫的作用机理,以及湘云鲫饲料配方的优化提供理论参考。
It is for the first time in the world to obtain a bisexual fertile population of allotetraploid crucian carps, which have been used to produce triploid crucian carps with obvious advantages in growth rate. The fast growth rate of the triploids was considered to be related to their sterility. It is known that the growth of fish is achieved by protein synthesis of the organism. The protein metabolism directly influences fish growth. The extrinsic protein in the fish body first degraded into peptides and dissociated amino acids. Under the effect of peptidase, the peptides would further degrade into di/tripeptides and dissociated amino acids. The transport carrier in fish intestinal canal is responsible for the absorption of di/tripeptides and amino acids. The metabolism of amino acid happens in the intestine canal or liver. In this study, three key genes that are involved in the protein metabolism of different ploidy cyprinids were studied with their expression patterns being discussed. The major results in this paper were presented as follows:
     1.Aminopeptidase N (aminopeptidase N, APN) is a protein digestive enzymes, and it plays an important role in protein digestion.We cloned a part-length cDNA of APN in the red crucian carp, triploid and allotetraploid.The results showed that the different ploidy cyprinids APN sequence is relatively conserved, and the phylogenetic tree showed that the red crucian carp, triploid and allotetraploid were closest relationship. By real-time quantitative PCR, we found that the intestinal distribution of APN is most abundant in triploid.The APN gene has a maternal genetic trait and can digest protein of the yolk sac in early embryonic development of different ploidy cyprinids.However, the expression of triploid APN is higher in the most stages of early embryonic development, which indicates the efficiency of protein digestion is higher than that of red crucian carp, and therefore triploid has apparent protein digestion advantage of the protein metabolism.
     2. Peptide transporter1(PepTl) localized at the brush-border membranes of intestinal epithelial cells plays plays a key role in the absorption of di/tripeptides from the diet,and it belongs to the proton-dependent oligopeptide transporter (POT) family.We cloned a full-length cDNA of PepTl in the red crucian carp, triploid and allotetraploid.The results showed that the different ploidy cyprinids PepTl sequence is relatively conserved, and the phylogenetic tree showed that the red crucian carp, triploid and allotetraploid were closest relationship.By real-time quantitative PCR, we found that the distribution of the fore-intestinal PepTl is most abundant in triploid, and its expression gradually reduced along the longitudinal intestinal,which shows that small peptides are mainly absorbed by the intestinal.The PepTl gene has a maternal genetic trait, and that can transport di/tripeptides of protein digestion of the yolk sac in early embryonic development of different ploidy cyprinids.However, the expression of triploid PepTl is higher in the most stages of early embryonic development, which indicates the efficiency of the absorption of di/tripeptides is higher than that of red crucian carp, and therefore triploid has apparent advantage of the absorption of protein.
     3. Glutamate dehydrogenase (GDH) is an important branch-point enzyme between carbon and nitrogen metabolism, and it plays a very important role in the amino acid metabolism. We cloned a full-length cDNA of GDH in the red crucian carp, triploid and allotetraploid.The results showed that the different ploidy cyprinid GDH sequence is relatively conserved, and the phylogenetic tree showed that the red crucian carp, triploid and allotetraploid were closest relationship. By real-time quantitative PCR, we found that the GDH widely distributed in all tissues,and the expression of the GDH mRNA in triploid liver tissue was higher than that of red crucian carp during the breeding and non-breeding season.The GDH gene has a maternal genetic trait.However, the expression of triploid GDH is higher in the most stages of early embryonic development, which indicates the efficiency of the amino acid metabolism is higher than that of red crucian carp, and therefore triploid has apparent advantage of the amino acid metabolism.
     4. This chapter studied the growth performance, Serum biochemical parameters, and protein metabolism-related gene expression changes in different ploidy cyprinids. Each ploidy fish was a treatment,and each treatment was three replicates.All fishs were about59.0g and fed30days.The results of growth experiment showed that weight gain rate of triploid is2.13times that of the red crucian carp,which provides the reference data of the triploid growth advantage.The concentration of serum urea nitrogen and thyroid hormone (T3, T4) in the triploid is lower that of the red crucian carp,and the concentration of serum aspartate and aminotransferase are higher that of the red crucian carp.Triploid adult intestinal APN, PepTl and liver GDH gene expression was significantly increased.Therefor,the triploid has a protein metabolic advantage.
     5. Effect of protein levels and sorts on triploid crucian carp APN, PepTl, and GDH gene expression were studied. Preparation of semi-purified diets of the five kinds of protein levels, and two kinds of protein sorts, each feed of a deal with each treatment repeated fed the same number of initial weight of about50g incubator crucian carp for feeding40days.The results of growth experiment showed that the protein level and type significantly effected on the triploid intestinal APN、GDH、 PepTl gene expression. There is a correlation between the expression of triploid APN gene and intestinal location and protein concentration. Protein levels effects mainly on expression of the GDH in the triploidy crucian carp intestinal, and its expression was significantly upregulated with protein leve increased.Lower protein and higher protein could increase the expression of the triploid intestinal PepTl.Fish meal compared with soybean meal, it could increase the expression of the triploid intestinalGDH、PepT1and APN.
     6. The effect of sodium butyrate to the growth characteristics, the serum biochemical parameters and the expression of APN, GDH, and PepTl genes in the intestinal canal of triploid crucian carps were studied. Sodium butyrate with five different dosages were added into the basal diet of triploid crucian carps for feeding49days. After that the growth characteristics, the serum biochemical parameters and the expression abundant of APN, GDH, and PepTl genes in the intestine canal were detected. It was reveled that with the increasing in the dosage of sodium butyrate, the certain growth rate of triploid crucian carps in different test groups first increased and then decreased. The test group of triploid crucian carps with0.25g/kg sodium butyrate in the basal diet possessed the highest growth rate of21.12%and the lowest feed coefficient of2.03. The test group with0.50g/kg sodium butyrate had the most serum total protein, which was2.47times to that of the control group. The activities of the glutamic oxaloacetic transaminase (AST) and the glutamic pyruvic transaminase (ALT) were higher than that of the control. However, the difference in the ureanitrogen concentration between the test and control groups was not significant (P>0.05). The additive of sodium butyrate could significantly improve the expression of PepTl mRNA in the intestine of triploid crucian carps with dose dependent manner. The regulation effect of sodium butyrate to the intestinal APN expression was first down regulation then up regulation, the different that to the expression abundant of GDH.
     7.The effect of microbial ecological agent to the growth characteristics and the expression of APN, GDH, and PepTl genes in the intestine of triploid crucian carps were studied. The dosages of microbial ecological agent in the basal diet of triploid crucian carps were0.0g/kg, 0.1g/kg and0.2g/kg, respectively. After56days of feeding, the growth rate and expression abundant of APN, GDH, and PepTl genes in the intestinal canal of triploid crucian carps were detected. It was proved that the triploid crucian carps of0.1g/kg group possessed the highest weight rate and the growth rate, which was1.47and1.22times to that of the control and was extra significantly higher (p<0.01). However, the test group of triploid crucian carps with the largest dosage0.2g/kg possessed1.41and1.18times of add-on rate and the certain growth rate to that of the control with a decreasing trend. The probiotics could significantly regulate the expression of the triploid intestina GDAPN and PepTl. There is a correlation between the expression of these genes and intestinal location and protein concentration.The results of these studies may clarify the mechanism of action of the feed additive probiotics, and which can provide a theoretical reference for improving the feed formulations in triploid.
引文
[1]Liu S J, Liu Y, Zhou G J, et al. The formation of tetraploid stocks of red crucian carpxcommon carp hybrids as an effect of interspecific hybridization. Aquaculture,2001,192:171-186.
    [2]刘筠等.红鲫(早)×湘江野鲤(♂)杂交一代生殖腺的细胞学研究.水生生物学报,1986,10(2):101-111.
    [3]刘少军,曹运长,何晓晓,李建中,刘筠.异源四倍体鲫鲤群体的形成及四倍体化在脊椎动物中的作用.中国工程科学,2001,3(12):33-41.
    [4]孙远东,刘少军,张纯,等.异源四倍体鲫鲤F9-F11染色体和性腺观察.遗传学报,2003,30(5):37-41.
    [5]刘筠等.多倍体鲫鲤.中国农业科技导报,2003,5(6):3-6.
    [6]刘少军等.异源四倍体鲫鲤成熟性腺和红细胞超微结构观察.自然科学进展,2003,13(2):194-197
    [7]刘少军等.异源四倍体鱼早期胚胎发育观察.湖南师范大学自然科学学报,2001,24(1):55-57.
    [8]李建中,张轩杰,刘少军,等.异源四倍体鲫鲤的形态特征.湖南师范大学自然科学学报,2001,24:64-66.
    [9]李建中等.异源四倍体鲫鲤的性腺发育研究.水生生物学报,2002,26(2):116-122.
    [10]李建中等.异源四倍体鲫鲤及其原始亲本遗传变异的RAPD分析.水产学报,2003,27(5):403-408.
    [11]刘季芳等.异源四倍体鲫鲤的Sox9a基因保守区序列的克隆及内含子剪接位点分析.自然科学进展,2004,14(6):641-645.
    [12]刘少军,胡芳等.三倍体湘云鲫繁殖季节的性腺结构观察.水生生物学报,2000,24(4):301-306.
    [13]刘少军等.三倍体湘云鲫性腺指数分析.水产学报,2002,26(2):111-114.
    [14]刘飞等.湘云鲫肌肉生化成分和氨基酸组成分析.内陆水产,2000,187(7):8-9.
    [15]刘飞等.湘云鲫、湘云鲤消化道的组织学研究.2001,8(3):24-27.
    [16]Zhang C, He X X, Liu S J, et al. The Chromosome pairing in meiosis I in allotetraploid hybrids and allotriploid crucian carp.Acta Zoologica Sinica,2005, 51(1):89-94.
    [17]刘少军,赵如榕,刘锦辉,等.不同倍性鱼的血细胞和精子DNA含量比较.动物学报,2005,51(2):360-364.
    [18]Yan J P, Liu S J, Sun Y D, et al. RAPD and microsatellite analysisof diploid gynogens from allotetraploid hybrids of red crucian carp(Carassius auratus) × common carp (Cyprinus carpio). Aquaculture,2005,243:49-60.
    [19]Guo X H, Liu S J, Liu Y. Evidence for recombination of mitochondrial DNA in triploid crucian carp. Genetics,2006,172:1475-1479.
    [20]Guo X H, Liu S J, Zhang C, et al. Comparative and evolutionary analysis of the cytochrome bsequences in cyprinids with different ploidy levels derived from crosses. Genetica,2004,121:295-301.
    [21]Guo X H, Liu S J, Liu Y. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level.Aquaculture,2003,24(1-4): 25-38.
    [22]Long Yu, Liu Shaojun, Huang Weiren, ZHANG Jian, SUN Yuandong, ZHANG Chun, CHEN Song, LIU Jinghui & LIU Yun. Comparative studies on histological and ultra-structure of the pituitary of different ploidy level fishes. Science in China Series C:Life Sciences,2006,49(5):446-453.
    [23]Liu S J, Sun Y D, Zhang C, et al. Production of gynogenetic progeny from allotetraploid hybrids of red crucian carp×common carp.Aquaculture,2004,236: 193-200.
    [24]张纯,孙远东,刘少军等.二倍体雌核发育鱼产生二倍体卵子的证据.遗传学报,2005,32(2):136-144.
    [25]LIU ShaoJun, DUAN Wei, TAO Min, ZHANG Chun, SUN YuanDong, SHEN JiaMin, WANG Jing, LUO KaiKun & LIU Yun. Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp× common carp. Science in China Series C:Life Sciences,2007,50(2):186-193.
    [26]刘巧,王跃群,刘少军,郭新红,罗凯坤,张纯,刘筠.不同倍性鲫鲤鱼血液 细胞比较研究.自然科学进展,2004,14(10):1111-1117.
    [27]Shen Jiamin, Liu Shaojun, Sun Yuandong, Zhang Chun, Luo Kaikun, Tao Min, Zeng Chen, Liu Yun. A new type of triploid crucian crap-red crucian carp (♀)× allotetraploid (♂). Progress in Natural Science,2006,16(12):1348-1352.
    [28]刘季芳,李伟,刘少军,陶敏,龙昱,刘筠.异源四倍体鲫鲤Sox4基因部分序列及其5'端调控区启动子片段的克隆与分析.自然科学进展,2007,17(9):1174-1180.
    [29]龙昱,刘少军,申佳珉,陶敏,肖俊,刘筠.双头鱼的显微结构观察.自然科学进展,2007,17(7):968-972.
    [30]Kilcawley N, Wilkinson G, Fox F.Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources[J]. Enzyme and Microbial Technology,2002,31(3):310-320.
    [31]Antczak C, De Meester I, Bauvois B. Ectopeptidases in pathophysiolog-y[J].Bioessays,2001,23(3):251-260.
    [32]Rawlings N D, Barrett AJ.MEROPS:The peptidase database[J]. Nucleic Acids Res,1999,27(1):325-331.
    [33]Tadanobu N.Seiichi N,Nobuyshi I. Purification and properties of leucine aminopeptidase I from Aspergillus oryzae[J].Agriculture and Biology Chemistry,1973,37(4):757-765.
    [34]Hua G, Tsukamoto K, Ikezawa H. Cloning and sequence analysis of the amino-opeptidase N isozyme(APN2) from Bombys mori midgut[J]. Camp Biochem Physiol, 1998,121:213-222.
    [35]Pfleiderer G, Celliers P G. Isolation of an aminopepridase from Kidney particles[J]. Biochem Z,1963,339:186-189.
    [36]李月廷,祝学光,许漫山等.氨肽酶N在兔肝脏的表达及胆汁中活性的研究[J].中华实验外科杂志,2001,18(6):594.
    [37]明晓波,尹鑫,张颖等.氨肽酶N mRNA在雏鸡不同组织中的表达情况[J].中国兽医科学,2009,39(12):1089-1093.
    [38]刘京国,赵晓萌,杨爱珍等.棉铃虫氨肽酶N基因片段克隆、表达和内源蛋白检测[J].北京农学院学报,2010,25(1):20-23.
    [39]涂向东,谢飞,吴玉水等.人氨肽酶N基因克隆和原核表达[J].医学研究生学报,2004,17(8):691-693.
    [40]赖庆安,刘树滔,卢菀华等.鸡氨肽酶H在大肠杆菌中的表达、纯化与部分酶学性质分析[J].生物工程学报,2008,24(3):381-386.
    [41]Chiou T K, Matsui T, Konosu S.Purification and properties of an aminopeptidase from Alaska pollack, Theragra chalcogramma, roe[J]. Journal of Biochemistry, 1989,105(4):505-509.
    [42]Hajjou M, Gal Y L.Purification and characterization of an aminopeptidase from tuna (Thunnus albacares) pyloric caeca[J]. Biochim Biophys Acta, 1994,1204(1):1-13.
    [43]刘冰心,曹敏杰,蔡秋凤等.草鱼肌肉亮氨酸氨肽酶的分离纯化与性质研究[J].集美大学学报:自然科学版,2008,13(1):24-29.
    [44]常洪雷.棉铃虫Bt毒素受体蛋白-氨肽酶N1基因克隆及其在昆虫细胞系的表达[D].北京:中国农业科学院,2006.
    [45]涂国刚.1,3,4-噻二唑类氨肽酶N抑制剂的设计、合成及活性研究[D].山东:山东大学,2009.
    [46]钱习军.氨肽酶N/CD13抑制剂乌苯美司增强全反式维甲酸诱导急性早幼[D].浙江:浙江大学,2006.
    [47]陈茂营.L-赖氨酸类氨肽酶N抑制剂的设计、合成与初步活性研究[D].山东:山东大学,2007.
    [48]刘英姿.肉桂酰天冬氨酸类氨肽酶N抑制剂的设计、合成及其生物活性研究[D].山东:山东大学,2009.
    [49]Rost N D, Barrett A J.MEROPS:the peptidase database[J]. Nucl Acida Res,2000, 28(1):323-325.
    [50]Ito K, Nakajima Y, Onohara Y, et al. CrystalStructure of aminopeptidase N(proteobacteria alanyl aminopeptidase) from Eschcrichia coli and confromatio-nal change of methionine 260 involved in substrate recognition[J]. Biol Chem, 2006,281 (44):33664-33676.
    [51]Hooper N M. Families of zine metallproteases[J]. FEBS Lett,1994,354(1):1-6.
    [52]Jiang W, Bond J S. Families of metalloendopeptidases and their relationship[J]. FEBS Lett,1992,312:110-114.
    [53]Firla B, Amdt M, Frank K, et al. Extracellular cystcines define ectopeptidase(APN,CD13) expression and function [J]. Free Radic Biol Med,2002,32(7):584-595.
    [54]苏建亚,周晓梅,张天翼.抗转Bt基因棉棉铃虫幼虫中肠氨肽酶N基因的克隆与序列特征.棉花学报,2004,16(1):13-200.
    [55]Nakanishi K, Yaoi K, Nagino Y, et al. Aminopeptidase N isoforms from the midgut of Bombyx mori and PluteUa xylostella-their classification and the factors that determine their binding specificity to Bacillus thuringiensis CrylA toxin[J]. FEBS Lett.2002,519:215-220.
    [56]栾业鹏.以氨肽酶N和热休克蛋白90为靶点的抗肿瘤药物的设计,合成与活性研究[D].山东:山东大学,2010.
    [57]钱习军.氨肽酶N/CD13抑制剂乌苯美司增强全反式维甲酸诱导急性早幼[D].浙江:浙江大学,2006.
    [58]Vlahovic P, Stefanovic V. Kidney ectopeptidases Structure functions and clinical significance[J].Pathol Biol(Paris),1998,46(10):779-786.
    [59]Riemarm D,Kehlen A.Langer J.CD13-Not just a marker in leukemia typing [J]. Immunol Today,1999,20(2):83-88.
    [60]Nunez L, Amigo L, Mingrone G, et al. Billiary aminopeptidase N and cholesterol crystallization defect in cholelithiasis [J].Gut,1995,37(3):422-426.
    [61]宋萍,潘映红,李国勋.棉铃虫和粘虫不同组织的氨肽酶活性及与Bt毒蛋白结合特性研究[J].河北农业大学学报,2003,26(2):46-50.
    [62]明晓波,张颖,谭睿等.不同口龄雏鸡各组织中氨肽酶N酶活性比较[A].中国畜牧兽医学会家畜传染病学分会第七届全国会员代表大会暨第十三次学术研讨会论文集,2011,1098-1101.
    [63]Sihn G, Savary K, Michaud A, et al. Aminopeptidase N during the ontogeny of the chick. Differentiation,2006,74:119-128.
    [64]陈杰.家畜生理学.中国农业出版社,2003,186-194.
    [65]叶元土,林仕梅,岁莉.饲料蛋白质的消化、吸收和利用及其影响因素分析[J].饲料广角,2002(20):10-12.
    [66]Tobey N, Alyn-Cook L E, Ulshen M H, et al. Intestinal brush border peptidases: actibities in normal and abnotmal peroral intestinal biopsy specimens. J Lab Clin Med,1986,107(3):221-227.
    [67]James P S,Smith M W,Tivey D R,et al. Epidermal growth factor selectively increases maltase and sucrase activities in neonatal piglet intestine[J].Journal of Physiology,1987,393:583-594.
    [68]Jardinaud E, Banisadr G.Noble F, et al.Ontogenic and adult whole body distribution of aminopeptidase N in rat investigated by in vitro autoradiography[J].Biochimie(Paris),2004,86:105-113.
    [69]Garber O G, Uni Z. Chicken Intestinal Aminopeptidase:Partial Sequence of the Gene,ExPression and Activity[J]. Poultry Science,2000,79(1):41-45.
    [70]Gilbert E R, Li H, Emmerson D A, et al. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers[J]. Poultry Science,2007,86(8):1739-1753.
    [71]Karmer W, Girbig F, Corsiero D, et al. Aminopeptidase N (CD13) is a molecular target of the cholesterol absorption inhibitor ezetimibe in the enterocyte brush border membrane[J] Journal of Biological Chemistry,2005,280(2):1306-1320.
    [72]叶丽萍,龚四堂.正常大鼠小肠黏膜纹状缘氨基肽酶活性的研究[J].广东医学,2008,29(5):746-747.
    [73]Uni Z, Tako E, Gal-Garber O, et al. Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo[J]. Poultry Science, 2003,82(11):1747-1754.
    [74]郭娟.肠道微生态对大鼠小肠刷状缘酶活性影响的研究[D].武汉,华中农业大学,2009.
    [75]Chen H, Wong E A, Webb E J. Tissue distribution of a peptide transporter mRNA in sheep.dairy cows, pigs, and chickens[J]. J Anim Sci.1999,77:1277-1283.
    [76]Chen H, Pan Y X.Molecular cloning and functional expression of a chicken intestinal peptide Transporter (cPepTl) in Xenopus Oocytes and Chinese hamster ovary cells [J].Nutr.2002,132:387-393.
    [77]Dabrowski K, Lee K J, Rinchard J.The smallest vertebrate, teleost fish, can utilize synthetic dipeptidebased diets[J]. J. Nutr.2003,133:4225-4229.
    [78]Matthews J C, Wong E A, Bender P K.Demonstration and characterization of dipeptide transport system activity in sheep omasal epithelium by expression of mRNA in Xenopus laevis oocytes[J]. J Anim Sci.1996,74:1720-1727.
    [79]Pan Y X, Wong E A,Bloomquist J R, at el. Poly(A)+ RNA from sheep omasal epithelium induces expression of a peptide transport protein(s) in Xenopus laevis oocytes[J]. J Anim Sci.1997,75:3323-3330.
    [80]Agar W T, Hird F J, Sidhu G S. The active absorption of amino-acids by the intestine[J]. J Physiol,1953,121(2):255-263.
    [81]Newwey H, Smyth D H. Intracellular hydrolysis of dipeptides during intestinal absorption[J].JPhysiol,1960,152:367-380.
    [82]Hara H, Funabiki R, Iwata M, et al. Portal absorption of small peptides in ratunder unrestrained conditions[J]. J. Nutr.1984,114(6):1122-1129
    [83]Fei Y J, Kanai Y, Nussberger S, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter[J].Nature,1994,368(6471):563-566.
    [84]Leibach F H, Ganapathy V. Peptide transporters in the intestine and kidney[J]. Annu Rev Nutr,1996,16:99-119.
    [85]Terova G, Cora S, Verri T. Impact of feed availability on PepTl mRNA expression levels in sea bass (Dicentrarchus labrax) [J].Aquaculture. 2009,294:288-299.
    [86]熊钢,刘臻,王晓清等.鲫鱼(Carassius auratus)slc7A8基因分子特征及表达分析[J].海洋与湖沼.2010,(6):935-940.
    [87]Verri T, Kottra G, Francesc, et al. Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter[J]. FEBS letters.2003,549:115-122.
    [88]Ronnestad I, Gavaia P J, Viegas C S, et al. Oligopeptide transporter PepTl in Atlantic cod(Gadus morhuaL.):cloning,tissue expression and comparative aspects[J].J Exp Biol,2007,210(Pt 22):3883-3896.
    [89]Meredith D C,Boyd A R.oligopeptide transport by epithelial cells[J]. membr.B 1995,(145):1-12.
    [90]Bravo S A, Nielsen C U, Amstrup J, et al.In-depth evaluation of Gly-Sar transport parameters as a function of culture time in the Caco-2 cell model.Eur J Pharm Sci.2004,21(1):77-86.
    [91]Manikkavasagar T, Shahab Z B, Xiaodong Z, et al. Hormonal regulation of oligopeptide transporter Pept-1 in a human intestinal cell line.Cell Physiology,1999,276(4):821-826.
    [92]Hunphrey B D, Stephensen C B, Calvert C C, et al. Glucose and cationic amino acid transporter expression in growing chickens(Gallus gallus domesticus).Comparative Biochemistry and Physiology Part A:Molecular& Integrative Physiology.2004,138:515-525.
    [93]Erickson R H.Gum J R,Lindstrom M M. Regional expression and dietary regulation of rat small intestinal Peptide and amino acid transporter mRNAs[J].Biochem Biophys Res Commun.1995,216:249-257.
    [94]Gilbert E R, Li H, Emmerson D A, et al.(2007) Developmental Regulation of Nutrient Transporter and Enzyme mRNA Abundance in the Small Intestine of Broilers[J].Poult.Sci.2007,86:1739-1753.
    [95]Dabrowski K, Lee K J, Rinchard J. The smallest vertebrate, teleost fish, can utilize synthetic dipeptidebased diets[J]. J. Nutr.2003,133:4225-4229.
    [96]Yaniv H, Sheenan H, Zehava U.(2009)Expression of brush border enzymes and transporters in the intestine of European sea bass (Dicentrarchus labrax) following food deprivation [J]. Aquaculture.2009,290:111-119.
    [97]Neudeck B L, Loeb J M,Faith NG. Lactobacillus casei alters hPEPT1-mediated glycylsarcosine uptake in Caco-2 cells[J].J Nutr,2004,134(5):1120-1123
    [98]Nguyen H T, Dalmasso G, Powell K R, et al. Pathogenic bacteria induce colonic Pep T1 expression:an implication in host defense response [J]. Gastroenterology. 2009,137(4):1435-1447.
    [99]Shu H J.Takeda H, Shinzawa H,et al. Effect of lipopolysaccharide on peptide transporter 1 expression in rat small intestine and its attenuation by dexamethasone[J].Digestion,2002,65(1):21-29.
    [100]Lu H, Klaassen C.Tissue distribution and thyroid hormone regulation of PepT1 and PepT2 mRNA in rodents.Peptides,2006.27(4):850-857
    [101]Naoki N, Toshiya K, Ken-ichi I. Thyroid Hormone Regulates the Expression and Function of P-glycoprotein in Caco-2 Cells.Biomedical and Life Sciences, 2008,25(5):1037-1042
    [102]BingWei S, XiaoChen Z, GuangJi W,et al.Hormonal regulation of dipeptide transporter (PepT1) in Caco-2 cells with normal and anoxia/reoxygenation management. World Journal of Gastroenterology,2003,9(4):808-812.
    [103]Ume W, Sabine K, Hannelore D.Flabonoids with Epidermal growth factor-receptor tyrosine kinase inhibitory activity stimulate PepT1-mediated cefixime uptake into human intestinal epithelial cells. Biotransporters,2001, 299(1):351-357.
    [104]Buyse M, Berlioz F,Guilmeau S,et al.PepT1-mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine[J]. J.Clin.Invest.,2001,108(10):1483-1494.
    [105]Pan X,Terada T,Irie M,et al.Diurnal rhythm of H+-peptide cotransporter in rat small intestine[J].Am.J.Physiol Gastrointest Liver Physiol.,2002,283(1):57-64.
    [106]Miller P W, Dunn W I, Schmidt R R. Alternative splicing of a precursor-mRNA encoded by the Chlorella sorokiniana NADP-specific glutamate dehydrogenase gene yields mRNAs for precursor proteins of isozyme subunits with different ammonium affinities. Plant Mol Biol,1998,37:243-263.
    [107]Cock J M, Kim K D, Miller P W, Hutson R G, Schmidt R R. A nuclear gene with many introns encoding ammonium-inducible chloroplastic NADP-specific glutamate dehydrogenase(s) in Chlorella sorokiniana. Plant Mol Biol,1991,17: 1023-1044
    [108]Schmidt R R, Miller P. Polypeptides and polynucleotides relating to the alaph and beta subunits of a glutamate dehydrogenase and methods of use. USA patent,5879941.1999-05-09.
    [109]Turano F J, Thakkar S S, Fang T, Weisemann J M. Characterization and expression of NAD (H)-dependent glutamate dehydrogenase gene in Arabidopsis. Plant Physiol,1997,113:1329-1341.
    [110]Syntichaki K M. Loulakakis K A, Roubelakis-Angelakis K A. The amino-acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene,1996,168:87-92
    [111]Willett C S, Burton R S. Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copeod Tigriopus californicus.Comp.Biochem. Physiol.B.2002,132:739-750.
    [112]Willett C S, Burton R S. Characterization of the glutamate dehydrogenase gene and its regulation in a euryhaline copeod Comp. Biochem Physiol B.2003,135: 639-649.
    [113]Li E C, Arena L, Chen L Q, at el. Characterization and tissue-specific expression of the two glutamate dehydrogenase cDNAs in pacific white shrimp, Litopenaeus vannamei, J crustacean boil.2009,29(3),379-386.
    [114]Lam H M, Coschigano K T, Oliveira I C, at el. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiol and Plant Mol Bio.1996,47:569-593
    [115]Coruzzi G, Last R. Amino acids In:Buchanan BB,Gruissem W,Jones R L eds, Biochemistry &Molecular Biology of Plants.USA:America society of Plant Physiologist,Rockville,Maryland,2000,370-371
    [116]Stewart A J, Chapman W, Jenkins G I, at el. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues.Plant Cell Environ,2002,24:1189-1197
    [117]Melo-Oliveira R, Oliverira I C, Coruzzi G M. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.Proc Nalt Acad Sci USA,1996,93:4718-4723.
    [118]Milifin B J, Hanbash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot,2002,53:979-987
    [119]Hayashi S, Kunihiro K, Itakura T. Biochemical properties of glutamate dehydrogenase purified from eel liver. Bull Jpn Soc Sci fish,1982(48):697-701.
    [120]Wilson R P. Nitrogen metabolism in channel catfish Ictalurus punctatus I. Tissue distribution of aspartate and alanine aminotransferases and glutamic dehydrogenase. Comp Biochem Physiol,1973(46B):617-624.
    [121]Tiihonen K, Nikinmaa M. Substrate utilization by carps(Cyprinus carpio) erythrocytes. J Exp Biol,1991(161):509-514.
    [122]Christopher S, Willett R S. Characterization of the glutamate dehydrogenase gene and its regulation in a euryhaline copepod. Comp Biochem Physiol A. 2003(135):639-646.
    [123]Maria J SM, Laura G R, Leticia C S. Long-term nutritional effects on the primary liver and kidney metabolism in rainbow trout, Adaptive response to starvation and a high-protein, carbohydrate-free diet on glutamate dehydrogenase and alanine aminotransferases kinetics. The International J Biochem Cell Biolo, 1998(30):55-63.
    [124]Yvonne Y M, Nicklaus L J, Yuen K I. Postprandial nitrogen metabolism and excretion in juvenile marble goby, Oxyeleotris marmorata (Bleeker,1852). Aquac, 2008(284):260-267.
    [125]Couto A P, Enes P H. Effects of water temperature and dietary starch on growth and metabolic utilization of diets in gilthead sea bream (Sparus autata) juveniles. Comp Biochem and Physiol A,2008(151):45-50.
    [126]M oyano F J, Cardenete G, Higuera M D. Nutritive and metabolic utilization of proteins with high glutamic acid cotent by the rainbow trout(Oncorhynchus mykiss). Comp Biochem Physiol A,1999(11-3):759-762.
    [127]李月廷,祝学光,许漫山,等.氨肽酶N在兔肝脏的表达及胆汁中活性的研究[J].中华实验外科杂志,2001,18(6):594.
    [128]明晓波,尹鑫,张颖,等.氨肽酶NmRNA在雏鸡不同组织中的表达情况[J].中国兽医科学.2009,39(12):1089-1093.
    [129]刘京国,赵晓萌,杨爱珍,等.棉铃虫氨肽酶N基因片段克隆、表达和内源蛋白检测[J].北京农学院学报,2010.25(1):20-23.
    [130]涂向东,谢飞,吴玉水,等.人氨肽酶N基因克隆和原核表达[J].医学研究生学报,2004,,17(8):691-693.
    [131]赖庆安.刘树滔,卢菀华,等.鸡氨肽酶H在大肠杆菌中的表达、纯化与部分酶 学性质分析[J].生物工程学报,2008,24(3):381-386.
    [132]Chiou T K, Matsui T, konosu S. Purification and properties of an aminopeptidase from Alaska pollack, Theragra chalcogramma, roe [J]. Journal of Biochemistry, 1989,105(4):505-509.
    [133]Hajjou M, Gal Y L. Purification and characterization of an aminopeptidase from tuna (Thunnus albacares) pyloric caeca[J]. Biochim Biophys Acta,1994, 1204(1):1-13.
    [134]刘冰心,曹敏杰,蔡秋凤,等.草鱼肌肉亮氨酸氨肽酶的分离纯化与性质研究[J].集美大学学报:自然科学版,2008,13(1):24-29.
    [135]Garber O G, Uni Z. Chicken Intestinal Aminopeptidase:Partial Sequence of the Gene, Expression and Activity [J]. Poultry Science,2000,79 (1):41-45.
    [136]Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method [J]. Methods,2001,25(4): 402-408.
    [137]Chillaron J, Roca R, Valencia A, et al. Heteromeric amino acid transporters: biochemistry, genetics, and physiology[J]. American Physiological Society,2001, 281(6):995-1018.
    [138]Ginzinger D G. Gene quantification using real-time quantitative PCR:an emerging technology hits the mainstream [J]. Experimental Hematology,2002, 30(6):503-512.
    [139]Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11030-11035.
    [140]Sjostrom H, Noren O, Olsen J. Aminopeptidases:structure and function[J]. Biomedical and Life Sciences,2002,477(1):25-34.
    [141]Taylor A. Aminopeptidases:towards a mechanism of action[J]. Trends Biochemical Science,1993,18(5):167-171.
    [142]Gonzales T, Baudouy J R. Bacterial aminopeptidases:properties and functions [J]. FEMS Microbiology Reviews,1996,18(4):319-344.
    [143]刘博奇,李广兴,工衡,等.猪传染性胃肠炎病毒特异性受体APN功能区的初 步鉴定[J].黑龙江畜牧兽医,2009,6:21-23.
    [144]Albiston A L, Ye S, Chai S Y. Membrane bound members of the M1 family: more than aminopeptidases [J]. Protein and Peptide Letters,2004,11(5):491-500.
    [145]Angel V M, Uribe R M, Cisneros M, et al. Thyrotropin-releasing hormone regulates the diurnal variation of pyroglutamyl aminopeptidase II activity in the male rat adenohypophysis[J]. European Journal of Endocrinology,2002, 147(3):363-369.
    [146]Jardinaud F, Banisadr G, Noble F, et al. Ontogenic and adult whole body distribution of aminopeptidase N in rat investigated by in vitro autoradiography[J]. Biochimie,2004,86(2):105-113.
    [147]Pfleiderer G, Celliers P G. Isolation of an aminopeptidase from kidney particles [J]. Biochemische Zeitschrift,1963,339(12):186-189.
    [148]Kramer W, Girbig F, Corsiero D, et al. Aminopeptidase N (CD 13) is a molecular target of the cholesterol absorption inhibitor ezetimibe in the enterocyte brush border membrane [J]. Journal of Biological Chemistry,2005,280(2):1306-1320.
    [149]Saito H, Terada T, Okuda M, et al. Molecular cloning and tissue distribution of rat peptide transporter PepT2[J]. Biochimica et Biophysica Acta,1996,1280(2): 173-177.
    [150]Dabrowski K, Lee K J,Rinchard J. The smallest vertebrate, teleost fish, can utilize synthetic dipeptidebased diets[J]. J. Nutr,2003,133:4225-4229.
    [151]Matthews J C, Wong E A, Bender P K. Demonstration and characterization of dipeptide transport system activity in sheep omasal epithelium by expression of mRNA in Xenopus laevis oocytes[J]. J Anim Sci,1996,74:1720-1727
    [152]Pan Y X, Wong E A.Bloomquist J R,et al. (1997) Poly(A)+RNA from sheep omasal epithelium induces expression of a peptide transport protein(s) in Xenopus laevis oocytes[J]. J Anim Sci.,1997,75:3323-3330
    [153]Chen H, Wong E A, Webb K. E Jr. Tissue distribution of a peptide transporter mRNA in sheep.dairy cows, pigs, and chickens[J]. J Anim Sci.1999, 77:1277-1283
    [154]Hong C, Yuanxiang Pan, Eric A.W,et al. Dietary Protein Level and Stage of Development Affect Expression of an Intestinal Peptide Transporter (cPepT1) in Chickens[J]. J.Nutr,2005,135:193-198
    [155]Gilbert E R,Li H,Emmerson DA,et al. Developmental Regulation of Nutrient Transporter and Enzyme mRNA Abundance in the Small Intestine of Broilers[J]. Poult.Sci,2007,86:1739-1753
    [156]Fei Y J. Kanal Y,Nussbe rger S. Expression cloning of a mammalian proton coupled Oligopeptide Transporter [J].Nature(Lood),1994,44:563-566
    [157]Verri T, Kottra G, Francesco, et al. Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter[J]. FEBS letters,2003, 549:115-122
    [158]Chen H, Pan Y X. Molecular cloning and functional expression of a chicken intestinal PepTl lide transporter (cPepT1)in Xenopus oocytes and Chinese hamster ovary cells[J].Nutri,2002,132:387-393
    [159]Elizabeth R G. Dietary and developmental regulation of nutrient transporter gene expression in the small intestine of two lines of broilers[J].Animal and Poultry Sciences,2008:1-328
    [160]Leibach FH, Ganapathy V. Peptide transporters in the intestine and kidney[J]. Annu Rev Nutr,1996,16:99-119
    [161]Terova G,Cord S,Verri T. Impact of feed a vailability on PepTl mRNA expression levels in sea bass (Dicentrarchus labrax) [J].Aquaculture,2009,294:2 88-299
    [162]Matthews D M. Protein absorption of peptide:development and present state of subject[M]. New York:Wiley-Liss,1991.
    [163]Anita B, Adam T. StearnsW,et al. Restricted Feeding Phase Shifts Clock Gene and Sodium Glucose Cotransporter 1 (SGLT1)Expression in Rats[J]. The Journal of Nutrition,2010,141:908-914.
    [164]Daniel, H., Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch. Eur. J. Physiol,2004, 447:610-618.
    [165]Ford D, Howard A, Hirst B. Expression of the peptide transporter hPepT1 in human colon:a potential route for colonic protein nitrogen and drug absorption. Histochem. Cell Biol,2003,119:37-43.
    [166]Knutter I, Rubio-Aliaga I., Boll M, et al. H+ -peptide cotransport in the human bile duct epithelium cell line SKChA-1. Am. J. Physiol. Gastrointest. Liver Physiol,2002,283:G222-G229.
    [167]Miyamoto K, Shiraga T, Morita K. et al. Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim. Biophys. Acta,1996,1305:34-38.
    [168]Elizabeth R G. Dietary and developmental regulation of nutrient transporter gene expression in the small intestine of two lines of broilers[J].Animal and Poultry Sciences,2008:1-328
    [169]Teresa O,Maciej K, Piotr G.The effect of peptide absorption on PepT1 gene expression and digestive system hormones in rainbow trout (Oncorhynchus mykiss).Comparative Biochemistry and Physiology.2010,155(1):107-114.
    [170]Kaushik S J, Seiliez I. Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac Res,2010,41 (3):322-332.
    [171]R(?)nnestad I, Thorsen A, Finn RN. Fish larval nutrition:a review of recent advances in the roles of amino acids. Aquaculture,1999,177(1-4):201-216.
    [172]Mommsen T, French C, Hochachka P. Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can J Zool,1980,58 (10):1785-1799
    [173]Mak. Estimation of growth potential by measurement of tissue protein synthetic rates in feeding and fasting rainbow trout, Salmo gairdnerii Richardson. J Fish Biol,1981,19 (2):213-220.
    [174]Woo NYS, Fung ACY. Studies on the biology of the red sea bream Chrysophrys major—Ⅳ. Metabolic effects of starvation at low temperature. Comp Biochem Physiol A Mol Integr Physiol,1981.69(3):461-465.
    [175]Moon T W. Metabolic reserves and enzyme activities with food deprivation in immature American eels, Anguilla rostrata (LeSueur). Can J Zool,1983,61 (4):802-811.
    [176]Cowey C, Knox D, Walton M, et al. The regulation of gluconeogenesis by diet and insulin in rainbow trout (Salmo gairdneri). Br J Nutr,1977,38:463-470
    [177]Ogata H, Arai S, Alvarez MB. Effect of Dietary Protein Levels on Free Amino Acid Contents of Juvenile European Eel Anguilla anguill. Nippon Suisan Gakkai Shi,1985,5:573-578
    [178]Cambier S, Gonzalez P, Mesmer-Dudons N, et al. Effects of dietary methylmercury on the zebrafish brain:histological, mitochondrial, and gene transcription analyses. Biometals,2012,25(1):165-180.
    [179]Pala I, Coelho MM, Schartl M. Dosage Compensation by Gene-Copy Silencing in a Triploid Hybrid Fish. Curr Biol,2008,18(17):1344-1348.
    [180]Leggatt RA, Raven PA, Mommsen TP, et al. Growth hormone transgenesis influences carbohydrate, lipid and protein metabolism capacity for energy production in coho salmon (Oncorhynchus kisutch). Comp Biochem Physiol B Biochem Mol Biol,2009,154 (1):121-133.
    [181]Allen L. Nutritional influences on linear growth:a general review. Eur J Clin Nutr,1994,48 (1):75-89
    [182]Liu SJ, Hu F, Zhou GJ, et al. Gonadal structure of triploid crucian carp produced by crossing allotetraploid hybrids of Carassius auratus red var.(♀)×Cyprinus carpio L.(♂) with Japanese crucian carp (Carassius auratus cuvieri T. et S). Acta Hydrobiol Sin,2000,24:301-306
    [183]Silverstein J T, Wolters W R, Shimizu M, et al. Bovine growth hormone treatment of channel catfish:strain and temperature effects on growth, plasma IGF-Ⅰ levels, feed intake and efficiency and body composition. Aquaculture, 2000,190(1-2):77-88.
    [184]Wolters W R. Effect of triploidy on growth and gonad development of channel catfiah. Trans Am Fish Soc,1982,111(1):102-105.
    [185]Chourrout D. Production of second generation triploid and tetraploik rainbrow trout by maxing tetraploid males and diploid females-potential of tetraploid fish. Theoretical and Applied Genetics,1986,72:193-206.
    [186]尹洪滨, 潘伟志.三倍体鲶鱼的形态学性状及生长.水产学杂志,1996,9(2): 23-26.
    [187]刘筠,刘少军,孙远东,等.多倍体鲫鲤.中国农业科技导报,2003,5(6):3-6.
    [188]中佳珉,刘少军,孙远东,张纯,罗凯坤,陶敏,曾琛,刘筠.新型三倍体鲫鱼-红鲫(♀)×四倍体鲫鲤(♂)*自然科学进展,2006,8(8):947-952
    [189]Malmlof K. Amino acid in farm animal nut ration metabolism, partition and consequences of imbalance [J].Swed J Agr Res,1988.18(4):191-193.
    [190]孙海涛,吉红.饲料蛋白水平对匙吻鲟幼鱼肌肉营养成分及消化酶活力的影响[J].水产科学,2011,30(12):721-725
    [191]孙翰昌,徐敬明,庞敏.饲料蛋白水平对瓦氏黄颡鱼消化酶活性的影响[J].水生态学杂志,2010,3(2):84-88
    [192]邵庆均,苏小凤,许梓荣.饲料蛋白水平对宝石鲈增重和胃肠道消化酶活性影响[J].浙江大学学报:农业与生命科学版,2004,30(5):553-556
    [193]吕耀平,陈建明,叶金云等.饲料蛋白质水平对刺钯幼鱼的生长、胴体营养组成及消化酶活性的影响[J].农业生物技术学报,2009,17(2):276—281
    [194]石英,冷向军,李小勤等.饲料蛋白水平对血鹦鹉幼鱼生长、体组成和肠道蛋白消化酶活性的影响[J].水生生物学报,2009,33(5):874-880
    [195]蒋广震,刘文斌,王煜衡等.饲料中蛋白脂肪比对斑点叉尾鲴幼鱼生长、消化酶活性及肌肉成分的影响[J].水产学报, 2010,34(7):1129-1135
    [196]Ronnestad, Gavaia I, Viegas PJ, et al. Oligopeptide transporter PepT1 in Atlantic cod (Gadus morhua L.):cloning, tissue expression and comparative aspects[J].The Journal of Experimental Biology,2007,210:3883-3896
    [197]Dabrowski K, Lee K J,Rinchard J. The smallest vertebrate, teleost fish, can utilize synthetic dipeptidebased diets[J]. J. Nutr,2003,133:4225-4229.
    [198]Matthews J C, Wong E A, Bender P K. Demonstration and characterization of dipeptide transport system activity in sheep omasal epithelium by expression of mRNA in Xenopus laevis oocytes[J]. J Anim Sci,1996,74:1720-1727
    [199]Pan Y X, Wong E A,Bloomquist J R,et al. Poly(A)+ RNA from sheep omasal epithelium induces expression of a peptide transport protein(s) in Xenopus laevis oocytes[J]. J Anim Sci,1997,75:3323-3330
    [200]Chen H, Wong E A, Webb K E Jr. Tissue distribution of a peptide transporter mRNA in sheep.dairy cows, pigs, and chickens[J]. J Anim Sci,1999, 77:1277-1283
    [201]Tappenden K A, Thomoson A B, Wild G E, Short chain fatty acid supplemented total parenteral nutrition enhances functional adaptional adaptation to intestinal resection in rats. Gastroenteology,1997,112-118.
    [202]Cactillo M, Martiin S M, Rock M, The response of gastrointestinal microbiota to avilamycin. Butyrate and plant extracts in earlyweaned pigs. Anim sci,2006, 2725-2734.
    [203]岳双明,赵胜.周安国等.新型饲料添加剂-丁酸钠.饲料工业,2007,43(5):6-10
    [204]Kiela P R, Kuscuoglu N, Midura A J, Molecular mechanism of rat NHE3 gene promoter reugualation by sodium butyrate. AM J Physiol,2007,:74:64-74.
    [205]Takana M, Rhoads D B, Lsselbacher K J, Sodium butyrate increases glucose transporter expression in LLCPK 1 cell. Pro Natl A cad Sci,1988,:45: 8072-8075.
    [206]Malmlof K, Amio acid in farm animal nutrition metabolism partion and consequences of inbalance.Swedish journal of Agriculture Research,1988,36: 191-193.
    [207]邹杨,杨在冰,杨维仁等.不同剂型丁酸钠与抗生素对肉仔鸡生产性能、肠道PH及挥发性脂肪酸含量的影响动物营养学报.2010,22(3):675-681.
    [208]Shimakura J, Terada T, Shimada Y, et al.The transcription factor Cdx2 regulates the intestine-specific expression of human peptide transporter 1 through functional interaction with Sp1. Biochem Pharmacol,2006,2871(11):1581-8
    [209]安东亚,王忠,于明等.酵母β-1.3/1.6-葡聚糖与丁酸钠合用对断奶仔猪生长性能和生理代谢的影响.中国畜牧杂志,2007,43(5):22-25.
    [210]Piva A, Morlacchini M. Sodium butyrate improves growth performance of weaned piglets during the first period after weaning. Ital Anim Sci.2002,32: 1826-1634
    [211]张淞琳,常建波,叶继丹等.丁酸钠对美洲鳗鲡摄食、生长性能和抗氧化能力的影响.福建农业学报,2011,26(4):549-551
    [212]郑瑞耕.丁酸钠对淡水鱼类生长性能及肠粘膜结构的影响[D];福建农林大 学;2008
    [213]Galfi D, Bokori J. Feeding trial in pigswith a diet containing sodium N-butyrate. Acta Vet Hung,1990,3-17.
    [214]曾缨.丁酸钠和维甲酸可上调肌肉特异性基因的表达,2009,35(7):125-129
    [215]邹仕庚,冯定远,陈峰等.丁酸钠对体外培养猪肠黏膜上皮细胞寡肽转运载体及钠氢交换载体mRNA表达的影响.中国兽医学报,2010,(12):345-351
    [216]Cactillo M. Martiin S M, Rock M, The response of gastrointestinal microbiota to avilamycin. Butyrate and plant extracts in early weaned pigs. Anim sci:2006. 2725-2734.
    [217]Blander J M, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptor [J]. Science,2004,1014-1018.
    [218]孙冰,韩代书.Toll样受体信号通路的负调控[J].生物化学与生物物理进展,2009,36(12):1516-1522.
    [219]Onose A, Hashimoto S, Hayashi s, et al. A n inhibitory effect of a 20 on NF-KB activation in airway epit helium upon influenza virus infection, European Journal of Pharmacology,2006,198-204.
    [220]Heyninck K, Beyaert R.The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-KB activation at the level of TRAF6. FEBS Letter,1999,. 147-150.
    [221]Klinkenberg M, Huffel S, Heyninck K. Fucctional redundancy of the zinc fingers of A20 for inhibitor of NF-KB activation and protein-protein interaction. FEBS Letter,2001,93-97.
    [222]Gatesoupe, F.J., Arakawa, T., Watanabe, T.. The effect of bacterial additives on the production rate and dietary value of rotifers as food for Japanese flounder, Paralichthys olivoceus. Aquaculture.1989,83,39-44.
    [223]Gatesoupe, F.J., The effect of three strains of lactic bacteria on the production rate of rotifers, Brachionus plicatilis, and their dietary value for larval turbot, Scophthalmus maximus. Aquaculture.1991,96,335-342.
    [224]刘小刚,周洪琪,华雪铭.微生态制剂对异育银消化酶活性的影响[[J].水产学报,2002,5(26):448-452
    [225]Shu HJ,Takeda H,Shinzawa H, et al.Effect of lipopolysaccharide on peptide transporter 1 expression in rat small intestine and its attenuation by dexamethasone.Digestion,2002,65(1):21-29
    [226]周文豪,陈孝煊,张冬晓,等.摄食不同饵料对草鱼肠道菌群影响的研究[J].华中农大学学报,1998,17(3):252-256.
    [227]杨雨辉,佟恒敏,李晓霞,等.乳酸环丙沙星对鲤鱼肠道菌群的影响[J].中国兽医杂志,2003,39(10):38-40.
    [228]王红宁,何明清,柳苹等.鲤肠道正常菌群的研究[J].水生生物学报,1994,(18):354-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700