用户名: 密码: 验证码:
粉纹夜蛾中肠氨肽酶N(APN)亚型的基因克隆、组织定位及表达量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫中肠氨肽酶在昆虫食物蛋白消化方面具有非常重要的功能。对食物中蛋白的消化是昆虫中肠氨肽酶的重要生理功能,中肠氨肽酶活性的抑制会导致幼虫的生长和发育的停止,最终导致其死亡。近二十年来转基因作物的大规模种植,使得害虫长期处于转基因作物Bt蛋白的高压选择下,害虫对Bt作物抗性问题凸显。鳞翅目APNs的基因克隆及其鉴定已经在昆虫与Bt毒素的关系方面证明中肠APNs与Bt毒素的发病机制相关。为进一步明确粉纹夜蛾中肠氨肽酶N基因的种类及其各亚型的分子特征以及粉纹夜蛾氨肽酶N对BT毒素的抗性机制,论文对粉纹夜蛾中肠氨肽酶N进行系统的研究,在成功构建粉纹夜蛾中肠cDNA文库的基础上,运用自身连接反向PCR法分别克隆了纹夜蛾中肠氨肽酶N5(APN5)和中肠氨肽酶N6(APN6),并结合已经获得的氨肽酶N亚型TnAPN1、 TnAPN2、TnAPN3和TnAPN4,分析了6个粉纹夜蛾的氨肽酶N序列特征,明确了粉纹夜蛾氨肽酶N活性特点、采用荧光定量PCR分析了不同营养饲料对粉纹夜蛾中肠氨肽酶N基因表达的影响、同时探讨了粉纹夜蛾氨肽酶N对Cry1Ac的抗性机制,明确了粉纹夜蛾中肠氨肽酶N对Bt毒素抗性的生化和分子机理在粉纹夜蛾Bt抗性治理中所具意义。本研究主要结果如下:
     1.成功构建了高质量的粉纹夜蛾中肠cDNA表达文库;原始文库滴度为4.22×l09pfu/mL,蓝白斑测定重组率为98.8%,平均插入片段约为2.0kb。
     2.克隆获得了氨肽酶N APN5和APN6两个基因核苷酸序列全长分别为3012bp和2900bp。推导的APN5和APN6基因氨基酸序列合成的前体蛋白分子量分别为112和118kDa。粉纹夜蛾氨肽酶亚型的序列特征包括N端的信号肽C端蛋白前体区的GPI锚定信号位点,锌指基元HEX2X18E(X代表任意氨基酸)、苏氨酸富集区、GAMEN基元和糖基化位点。
     3.用RT-PCR法对分离的6个氨肽酶N基因在粉纹夜蛾不同组织的表达进行了定位,结果显示:TnAPN1、TnAPN3、TnAPN4、TnAPN5基因主要存在于中肠、马氏管、唾腺、脂肪体上;TnAPN6存在于中肠;而TnAPN2在中肠、马氏管、唾腺、脂肪体等组织中检测微弱。不同的组织酶活性测定表明,氨肽酶N的生物活性主要位于中肠;如果不计食物中的蛋白和氨基酸成分,每克中肠组织蛋白质的氨肽酶N活性是恒定的。明确了不同来源营养食物资源对粉纹夜蛾幼虫中肠氨肽酶N活性的影响。
     4.采用real time PCR法分析不同食物营养源对粉纹夜蛾幼虫6种中肠氨肽酶N亚型活性表达的影响。qRT-PCR分析表明,不同的组织酶活性测定表明氨肽酶N的生物活性主要位于中肠,6个粉纹夜蛾APN基因在抗性品系幼虫体内转录水平变化不同。APN1基因的转录水平在抗性株明显较低,APN1基因的转录水平抗性株是敏感株的0.026倍;与此相反,APN6基因的转录水平抗性株是敏感株的39倍。APN2、APN3、APN4和APN5基因的转录水平抗性株和敏感株幼虫没有明显的区别。
     克隆和鉴定具有消化功能的粉纹夜蛾氨肽酶N基因有助于理解粉纹夜蛾与BT毒素之间的关系,以及氨肽酶N基因在粉纹夜蛾对BT抗性方面所发挥的作用。随研究的进一步深入,新的Cry毒素受体将陆续被发现,新受体基因的功能及其与Bt抗性的关系将成为未来昆虫Bt抗性机制研究的重要内容。这些研究将为害虫的抗性监测和实施预防性的抗性治理策略提供科学依据,将对我国Bt作物的可持续应用具有重要意义。
APN plays an important role in the digestion of insect food. The digestion of protein ininsect food is a major physiological function APN has. The refraining of midgut APN activityresults in damage to larve’s growth and halt of development, finally death. Due to thegrowing of transgenetic plants on large scale in recent years, insects are exposed to theenvironment with high level of Bt and are gradually becoming resistant to Bt. The resistantmechanism of insects to Bt is complex and various. One of the major mechanisms is thechange of binding spot of midgut. Cabbage looper, T.ni is one of the insects which areresistant to Bt. The isolation and identification of Cry1Ac binding protein indicate that APNis one of the receptor of Cry1Ac toxin.
     This thesis aimed to clarify the types of midgut APN genes of T.ni, the molecularfeatures of the subtypes, and T.ni resistant mechanism of APN to Cry1Ac. On the basis ofcreating midgut cDNA library, the study cloned APN5and APN6of T.ni by self-ligaton ofinverse PCR. In combination with obtained TnAPN1, TnAPN2, TnAPN3, and TnAPN4, allsubtypes of APN, the sequence features of the six APNs’ genes were analyzed. The activityfeatures of T.ni APN and the effect of different diet on the genetic expression of T.ni APNwere revealed. The study also explored the resistant mechanism of T.ni to Cry1Ac. Thesignificance of physiochemical and molecular mechanism of resistance of T.ni APN toCry1Ac toxin in management and control of Bt resistance of T.ni. The major findings are asfollows:
     1. By using cDNA synthesis kits from Stratagene, the midgut cDNA library of T.ni wascreated. The original titer of the library, the combination of blue-white selection and theaverage insertion fragment were4.22×109pfu/Ml,98.8%and2.0kb respectively.
     2. After the removal of the signal peptide and the C-terminal prepeptide, the predictedmolecular weights of TnAPN5and TnAPN6wer112and118kDa, respectively. Twosequence features of APNs included the presence of a signal peptide at their N-termini and aprepeptide at the C-termini for the GPI anchor, the zinc binding/gluzincin motifHEX2HX18E, the gluzincin aminopeptidase motif GAMENWG and the presence ofglycosylation sites.
     3. By RT-PCR, the expression of genes from the isolated six APNs in different tissueswere localized. The findings showed that the genes of TnAPN1, TnAPN3, TnAPN4, andTnAPN5were mainly in midgut, malpighian tuble,salivary gland and fat body, TnAPN6inmidgut. TnAPN2was weak in malpighian tuble,salivary gland and fat body. Enzymaticactivity assays of various larval tissues showed that aminopeptidase activities were mainlylocalized in the midgut and the specific enzyme activity per mg of midgut tissue proteins wasconstant in T. ni larvae regardless of the composition of dietary proteins and amino acids.
     4. By using real-time PCR, the effect of different diet on the activity expression of sixAPN subtypes T.ni larve was analyzed. The enzymatic activity assays indicated the activity ofAPN was mainly in midgut. Six APN subtypes differed in the vivo transcription level ofresistant larve. According to qRT-PCR anaysis, the transcription level of APN1gene was lowin resistant strain, and the level was0.026times as high as that of sensitive strain. Thetranscription level of APN6gene in resistant strain was39times as that of sensitive strain.There was no distinct difference between resistant strain and sensitive strain concerning thetranscription level of APN2, APN4, and TnAPN5genes.
     Cloning and identification aminopeptidase N gene with the digestive function helps tounderstand the relationship between the cabbage looper and BT toxin,and the role whichaminopeptidase N genes play in BT resistance.
引文
常洪雷,梁革梅,王桂荣,于宏坤,吴孔明,郭予元.2008.棉铃虫中肠Cry1A受体蛋白氨肽酶N1在Tn细胞系的表达.中国农业科学,41(6):1667~1672.
    常洪雷,梁革梅,于宏坤,王桂荣,吴孔明,郭予元.2007.棉铃虫Bt毒素受体蛋白—氨肽酶N与抗性的关系.植物保护,33(1):1~5.
    郭芳,梁革梅,曹广春,陈豪,吴孔明,高希武,郭予元.2009.昆虫对Bt抗性的适合度代价及其与抗性治理策略的关系.环境昆虫学报,31(2):162-167.
    梁革梅,王桂荣,徐广,吴孔明,郭予元.2003.昆虫Bt毒素受体蛋白的研究进展.昆虫学,46(3):390~396.
    梁革梅,徐广,王桂荣.2005.棉铃虫中肠Bt毒素受体蛋白(APN)的分离与纯化.农业生物技术学报,13(1):102~107.
    梁革梅.2002.棉铃虫Bt毒素受体蛋白生化特性、基因克隆及其与抗性的关系.[博士学位论文]北京:中国农业科学院..
    苗素丽,张少平,程红梅.2008.氨肽酶N(APN)与鳞翅目昆虫对Bt抗性的关系.中国农业科技导报,10(S1):12~17.
    王桂荣,梁革梅,吴孔明,郭予元.2003.棉铃虫中肠氨肽酶N基因的克隆与序列分析.中国农业科学,36(11):1293~1300.
    王桂荣,吴孔明,梁革梅,郭予元.2004.棉铃虫中肠钙粘蛋白基因的克隆、表达及Cry1A结合区定位.中国科学C辑生命科学,34(6):537~546.
    赵建周,吴世昌,顾言真.1996.小菜蛾抗药性治理对策研究.中国农业科学,29(1):8~14.
    赵建周.1994.小菜蛾的抗药性及其治理.植保技术与推广,14(5):20~21.
    Adang, M.J.2004. Insect aminopeptidase N. In: Barret, A.J.,Rawlings, N.D., Woessner, J.F.(Eds.), Handbook ofProteolytic Enzymes, Vol.1. Elsevier Academic Press, New York,296~299.
    Banks D J, Jurat-fuentes J L,Dean D H,et al.2001.Bacillus thuringiensis Cry1Ac and Cry1Fa δ-endotoxin binding toa novel110kDa aminopeptidase in Heliothis virescens in not N-acetylgalactosamine mediated.Insect BiochemMol Biol,2001,31:909~918.
    Banks D.J, Hua G, Adang M.J.2003. Cloning of a Heliothis virescens110kDa aminopeptidase Nand expression inDrosophila S2cells. Insect Biochem. Mol. Biol.33:499~508.
    Baxter SW, et al.2005. Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella.Insect Mol Biol14:327~334.
    Baxter SW, Zhao JZ, Shelton AM, Vogel H, Heckel DG.2008.Genetic mapping of Bttoxin bindingproteins in a Cry1A toxin-resistant strain of diamondback k moth Plutella xylostella. Insect BiochemMol Biol38:125~135.
    Bown D.P, Wilkinson H.S, Gatehouse, J.A.1997. Differentially regulated inhibitor-sensitive and insensitive proteasegenes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families.Insect Biochem. Mol. Biol.27:625~638.
    Bozic N, Vujcic Z, Nenadovic V, Ivanovic, J.2003. Partial purification and characterization of midgut leucylaminopeptidase of Morimus funereus (Coleoptera: Cerambycidae) larvae. Comp.23:139~153.
    Bravo A,Hendrickx S, Jansens S, et al.1992. Immunocytochemical analysis of specific binding of Bacillusthuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes.J InvertebrPathol,60:247~254.
    Bravo A, Likitvivatanavong S, Gill SS, Soberón M.2011.Bacillus thuringiensis: A story of a successfulbioinsecticide. Insect Biochem Mol Biol,41:423~431.
    Bravo A, Miranda R, Gómez I, Soberón M.2002.Pore formation activity of Cry1Abtoxin from Bacillusthuringiensis in an improved membrane vesicle preparation from Manduca sexta midgut cellmicrovilli. Biochim Biophys Acta,1562:63~69.
    Broadway R.M.1996. Dietary proteinase inhibitors alter complement of midgut proteases. Arch. Insect Biochem.Physiol,32:39~53.
    David G. Heckel.2012. Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensisprovide clues to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology, In Press, AcceptedManuscript, Available online30May.
    Denolf P,Hendrickxk,Van Damme J,et al.1997.Cloning and characterization of Manduca sexta and Plutellaxylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins.Eur JBiochem,248:748~761.
    Emmerling M., Chandler D, Sandeman M.2001.Molecular cloning of three cDNAs encoding aminopeptidases fromthe midgut of Helicoverpa punctigera, the Australian native budworm. Insect Biochem. Mol. Biol,31:899~907.
    Ferré J, Van Rie J.2002.Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu RevEntomol,47:501~533.
    Flannagan RD, et al.2005.Identification, cloning and expression of a Cry1Ab cadherin receptor fromEuropean corn borer, Ostrinia nubilalis (Hubner)(Lepidoptera:Crambidae). Insect Biochem Mol Biol,35:33~40.
    Gahan LJ, Gould F, Heckel DG.2001.Identification of a gene associated with Bt resistance in Heliothisvirescens. Science Science,293:857~860.
    Gahan LJ, Pauchet Y, Vogel H, Heckel DG.2010. An ABC transporter mutation is correlated with insectresistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet,6:1001~1248.
    Gang Hua, Kikuo Tsukamotoa, Hiroh Ikezawa.1998. Cloning and sequence analysis of the aminopeptidase Nisozyme (APN2) from Bombyx mori midgut. Comparative Biochemistry and Physiology Part B: Biochemistryand Molecular Biology,121:(2)231~222.
    Gang Ma, Mahbub M. Rahman, Warwick Grant, Otto Schmidt, Sassan Asgari.2012.Insect tolerance to the crystaltoxins Cry1Ac and Cry2Ab is mediated by the binding of monomeric toxin to lipophorin glycolipids causingoligomerization and sequestration reactions.Developmental&Comparative Immunology,37(1):184~192.
    Gill S S,Cowles E A,Francis V.1995.Identification,isolation,and cloning of a Bacillus thuringiensis Cry1Actoxin-binding protein from the midgut of the lepidopteran insect Heliothisvirescens.J Biol Chem,270:27277~27282.
    Gill M, Ellar D.2002. Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxinCry1Ac1. Insect Mol. Biol,11:619~625.
    Gilliland A, Chambers C.E, Bone, E.J, Ellar, D.J.2002. Role of Bacillus thuringiensis Cry1delta endotoxin binding indetermining potency during lepidopteran larval development. Appl. Environ.Microbiol,68:1509~1515.
    Grajagopal R,Agrawal N,Selvapandiyan A,et al.2003.Recombinantly expressed isoenzymic aminopeptidases fromHelicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely relatedBacillus thuringiensis insecticidal proteins. Biochem J,70:971~978.
    H Fmann C,Vanderbruggen H,Fte H,et al.1988. Specificity of Bacillus thuringiensis δ-endotoxin is correlated withthe presence of high-affinity binding sites in the brush border membrane of target insect midguts.Proc Natl AcadSci, USA.85:7844~7848.
    Heckel DG, et al.2007. The diversity of Bt resistance genes in species of Lepidoptera. J Invertebr Pathol,95:192~197.
    Herrero S,Gechev T,Bakker P L,et al.2005.A Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacksexpression of one of four aminopeptidase N genes.BMC Genomics,1(6):96.
    Hua G,Jurat-Fuentes JL,Adang MJ.2004.Bt-R1a extracellular cadherin repeat12mediates Bacillusthuringiensis Cry1Ab binding and cytotoxicity. J Biol Chem,3:28051~28056.
    Hua G, Tsukamoto K, Rasilo M.L, Ikezawa, H.1998.Molecular cloning of a GPI-anchored aminopeptidase NfromBombyx mori midgut: a putative receptor for Bacillus thuringiensis CryIA toxin.Gene,214:177~185.
    Ishihama Y,et al.2005. Exponentially modified protein abundance index (emPAI) for estimation of absoluteprotein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics,4:1265~1272.
    Jongsma M.A, Bolter C.1997. The adaptation of insects to plant protease inhibitors. J. Insect Physiol.43:885~895.
    Jurat-Fuentes JL,Adang MJ.2004.Characterization of a Cry1Ac receptor alkaline phosphatase in susceptibleand resistant Heliothis virescens larvae. Eur J Biochem,271:3127~3135.
    Jurat-Fuentes JL, Adang MJ.2006. Cry toxin mode of action in susceptible and resistant Heliothis virescenslarvae. J Invertebr Pathol,92:166~171.
    Kain WC,et al.2004.Inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in agreenhouse-derived strain of cabbage looper(Lepidoptera:Noctuidae). J Econ Entomol,97:2073~2078.
    Kasorn Tiewsiri,Ping Wang.2011.Differential alteration of two aminopeptidases N associated withresistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper.PNAS,108(34):14037~14042
    Kaur R,Agrawal N,Bhatnagar R.2007. Purification and characterization of aminopeptidase N from Spodoptera lituraexpressed in Sf21insect cells.Protein Expres Purif,54:267~274.
    Kikkert JR, et al.2006. Detection of Contarinia nasturtii (Diptera: Cecidomyiidae) in New York, a new pestof cruciferous plants in the United States. J Econ Entomol,99:1310~1315.
    Knight P J,Carroll J,Ellar D J.2004. Analysis of glycan structures on the120kDa aminopeptidase N of Manduca sextaand their interactions with Bacillus thuringiensis Cry1Ac toxin.Insect Biochem Mol Biol,34:101~112.
    Knight P J,Knowles B H,Ellar D J.1994. The receptor for Bacillus thuringiensis CrylA (c) delta-endotoxin in thebrush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol,11(3):429~436.
    Knight P J,Knowles B H,Ellar D J.1995. Molecular cloning of an insect aminopeptidase N that serves as a receptorfor Bacillus thuringiensis CryIA (c) toxin.J Biol Chem,270:17765~17770.
    Laustsen P G, Vang S, Kristensen T.2001.Mutational analysis of the active site of human insulin-regulatedaminopeptidase. Eur J Biochem,268:98~104.
    Lee M K Milen R E, Ge A Z, et al.1992. Location of a Bombyx mori receptor binding region on a Bacillusthuringiensis deltaendotoxin. J Biol Chem,267:3115~3121.
    Lee M K,You T H,Young B A.1996. Aminopeptidase N purified from gypsy moth brush border membrane vesiclesis a specific receptor for Bacillus thuringiensis CryIAc toxin. Appl Environ Microbiol,62:2845~2849.
    Lorence A, Darszon A, Bravo A.1997. Aminopeptidase dependent pore formation of Bacillus thuringiensis Cry1Actoxin on Trichoplusia ni membranes.FEBS Lett,414:303~307.
    Luo K, Lu Y J, Adang M J.1996. A106-kDa form of aminopeptidase is a receptor for Bacillus thuringiensis Cry1C δ-endotoxin in the brush border membrane of Manduca sexta.Insect Biochem Mol Biol,26:783~791.
    Luo K,Sangadala S,Masson L,et al.1997.The Heliothis virescens170kDa aminopeptidase functions as " receptor A "bymediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation.Insect BiochemMol Biol,1997,27:735~743.
    Mario Soberón, Claudia Rodriguez-Almazán, Carlos Mu óz-Garay, Liliana Pardo-López, Helena Porta, AlejandraBravo.2012.Bacillus thuringiensis Cry and Cyt mutants useful to counter toxin action in specific environmentsand to overcome insect resistance in the field. Pesticide Biochemistry and Physiology, In Press, AcceptedManuscript, Available online30May.
    Masson L,Lu Y J,Mazza A,et al.1995. The Cry1Ac receptor purified from Manduca sexta displays multiplespecificities.J Biol Chem,270:20309~20315.
    Morin S, et al.2003.Three cadherin alleles associated with resistance to Bacillus thuringiensis in pinkbollworm. Proc Natl Acad Sci USA,100:5004~5009.
    Nakanishi K,Yaoi K,Nagino Y,et al.2002. Aminopeptidase N isoforms from the midgut of Bombyx mori andPlutella-their classification and the factors that determine their binding specificity of Bacillus thuringiensisCry1Ac toxin.FEBS Lett,519:215~220.
    Nakanishi K, Yaoi K, Nagino Y, Hara H., Kitami M, Atsumi S,Muira N, Sato R.2009. Aminopeptidase N isoformsfrom the midgut of Bombyx mori and Plutella xylostella—their classification and the factors that determine theirbinding specificity of Bacillus thuringiensis Cry1Ac toxin. FEBS Lett.,519:215~220.
    Oltean Di, Pullikuth AK, Lee HK,et al.1999. Partial purification and characterization of Bacillus thuringiensisCry1A toxin receptor A from Heliothis virescens and cloning of the corresponding cDNA.Appl EnvironMicrobiol,65:4760~4766.
    Oltean Di, Lee HK,et al.2010. Three cadherin alleles associated with resistance to Bacillus thuringiensis inpink bollworm. Appl Environ Microbiol,65:4760~4766.
    Pacheco S, et al.2009. Domain II loop3of Bacillus thuringiensis Cry1Ab toxin is involved in a“ping-pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J BiolChem,284:32750~32757.
    Pigott C R,Ellar D J.2007. Role of receptors in Bacillus thuringiensis Crystal toxin activity.Microbiol Mol Biol R,71(2):255~281.
    Pigott CR, Ellar DJ.2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol MolBiol Rev,71:255~281.
    Ping Wang, Xin Zhang, Jie Zhang.2005. Molecular characterization of four midgut aminopeptidase N isozymes fromthe cabbage looper, Trichoplusia ni. Insect Biochem. Mol.. Biol,35(6):611~620.
    Rawlings N D,Barrett A J.1995. Evolutionary families of metallopeptidases.Methods Enzymol,248:183~228.
    Rajagopal et al.2003. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol MolBiol Rev,71:255~281.
    Redding AM, Mukhopadhyay A, Joyner DC,Hazen TC, Keasling JD.2006. Study of nitrate stress inDesulfovibrio vulgaris Hildenborough using iTRAQ proteomics. Brief Funct Genomics Proteomics,5:133~143.
    Reed B.J, Chandler D.S, Sandeman R.M.1999. Aminopeptidases as potential targets for the control of the Australiansheep blowfly,Lucilia cuprina. Int. J. Parasitol,29:839~850.
    Sangadala S,Walters F S,English L H,et al.1994. A mixture of Manduca sexta aminopeptidase and phosphataseenhances Bacillus thuringiensis insecticidal CryIA (c) toxin binding and86Rb(+)-K(+) efflux in vitro.J BiolChem,269:10088~10092.
    Schnepf E, et al.1998.Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev,62:775~806.
    Schnepf E,Crickmore N,Van rie J,et al.1998. Bacillus thuringiensis and its pesticidal crystal proteins.Microbiol MolRev,62:775~806.
    Sunita Tajne, Ramadevi Sanam, Rambabu Gundla, Neha S. Gandhi, Ricardo L. Mancera, Dayakar Boddupally,Dashavantha Reddy Vudem, Venkateswara Rao Khareedu.2012.Molecular modeling of Bt Cry1Ac(DI–DII)–ASAL (Allium sativum lectin)–fusion protein and its interaction with (APN) receptor of Manducasexta.Journal of Molecular Graphics and Modelling,33:61~76.
    Tabashnik BE, Cushing NL, Finson N, Johnson MW.1990. Field development of resistance to Bacillusthuringiensis in diamondback moth (Lepidoptera: Plutellidae).J Econ Entomol,83:1671~1676.
    Tabashnik BE, et al.2003.nsect resistance to transgenic Bt crops: Lessons from the laboratory and field. JEcon Entomol,6:1031~1038.
    Tabashnik BE, et al.1998.Insect resistance to Bacillus thuringiensis: Uniform or diverse? Philos Trans RSoc Lond B. Biol Sci,53:1751~1756.
    Tabashnik BE,Van Rensburg JB,Carrière Y.2009. Field-evolved insect resistance to Bt crops: Definition,theory, and data. J Econ Entomol,102:2011~2025.
    Terra, W.R., Ferreira, C.1994.Insect digestive enzymes:properties, compartmentalization and function. Comp.Biochem. Physiol,109B:1~62.
    Vincent Vachon,Raynald Laprade,Jean-Louis Schwartz.2012.Journal of Invertebrate Pathology, In Press, UncorrectedProof, Available online19May.
    Wang P,et al.2005.Molecular Chanracrtarion of four aminopeptidase N of the cabbage looper, Trichoplusiani. Appl Environ Microbiol,73:1199~1207.
    Wang P,et al.2007.Mechanism of resistance to Bacillus thuringiensis toxi Cry1Ac in a greenhousepopulation of the cabbage looper, Trichoplusia ni. Appl Environ Microbiol,73:1199~1207.
    Wang P, Li G, Kain W.2004. Characterization and cDNA cloning of midgut carboxypeptidases from Trichoplusia ni.Insect Biochem. Mol. Biol,4:831~843.
    Wolfersberger M, et al.1987.Preparation and partial characterization of amino acid-transporting brushborder membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). CompBiochem Physiol,A:301~308.
    Xu X,Yu L,Wu Y.2005. Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin ofBacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol,71:948~954.
    Yang Y,et al.2010.Molecular characterization and RNA interference of three midgut aminopeptidase Nisozymes from Bacillus thuringiensis-susceptible and–resistant strains of sugarcane borer, Diatraeasaccharalis. Insect Biochem Mol Biol,40:592~603.
    Yaoi K, Kadotani T, Kuwana H, et al.1997. Aminopeptidase N from Bombyx mori as a candidate for the receptor ofBacillus thuringiensis Cry1Aa toxin.Eur J Biochem,246:652~657.
    Yaoi K, Nakanishi K, Kadotani T, et al.1999. cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxinbinding120-kDa aminopeptidase N from Bombyx mori. Biochim Biophys Acta,1444:131~137.
    Zhang X, Candas M, Griko NB, Taussig R, Bulla LA Jr.2006. A mechanism of cell death involving anadenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis.Proc Natl Acad Sci USA,103:9897~9902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700