用户名: 密码: 验证码:
茵陈蒿群落分布格局对坡面侵蚀及坡面流水动力学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀现已成为全球性环境问题,在我国黄土高原地区尤为突出。而植被作为控制土壤侵蚀的有效措施,一直受到学者们的普遍关注。本论文通过室内模拟降雨试验,并结合地统计学方法,研究了茵陈蒿不同分布格局对坡面侵蚀及坡面流水动力学特性的影响,初步阐明了植被减蚀作用机理及坡面侵蚀的空间变异特征,为该区植被措施的优化配置及深入认识坡面侵蚀过程和侵蚀动力机制提供理论依据和数据支持。主要结论如下:
     茵陈蒿不同分布格局能有效控制坡面土壤侵蚀,与裸地相比,不同茵陈蒿格局小区产流率降低了7~25%,产沙率降低了50~92%,其减沙作用强于减流作用,且带状格局(BP)、小斑块格局(SP)控制侵蚀作用优于长条状格局(LP)。茵陈蒿地上部分减流贡献率较大,在53~66%之间;地下部分减沙贡献率较大,在51~71%之间。回归分析表明,坡面产流率与地上生物量(SD)、植株高度(SH)、株数(SN)分别呈线性关系(p<0.05),坡面产沙率与根生物量密度(RD)、根表面积密度(RSAD)、根长密度(RLD)及根面积比(RAR)分别呈极显著指数函数关系(p<0.01),而与根直径无明显函数关系。通径分析表明,根长密度和植株数量是影响坡面产流速率的主要因素,根表面积密度和根生物量密度是影响侵蚀率的主要因素,因此,要控制坡面土壤侵蚀,可适当提高播种密度以增加植株株数,通过影响根系指标对土壤侵蚀造成影响。
     经典统计分析表明不同格局坡面侵蚀高差值满足正态分布,且表现为强变异性;地统计分析表明坡面侵蚀变异函数可用球状模型或指数模型描述,且表现出中等或较强的空间依赖性;克里格插值图直观反映侵蚀面积大小及侵蚀空间分布格局,裸地坡面分布大面积的侵蚀斑块(△h>0),与侵蚀产沙结果一致,格局BP、SP侵蚀斑块面积小于格局LP,剪除地上部分后,格局小区侵蚀斑块面积增大,斑块间连续性较好;交叉验证结果表明克里格插值平均预测误差接近于0,均方根标准预测误差接近于1,插值可靠。
     格局和雨强对坡面流流速均具有显著影响,流速随雨强的增大而增大,不同格局坡面流表层流速变化关系为格局SP、BP<格局LP<裸地CK;坡面下部流速大于坡面上部,有草断面小于无草断面;剪除地上部分后,坡面流速显著增大。不同雨强下,茵陈蒿冠层和根系延缓坡面流流速贡献率不同,在60和90mm/h雨强下,冠层贡献率较大,在53~99.8%之间;在120和150mm/h雨强下,根系贡献率较大,变化于51~80%之间。坡面流平均水深随雨强的增大而增大;剪除地上部分后,水深略有降低。流速和水深的时间变化过程相似,均呈现出先增加然后趋于稳定的趋势。不同格局坡面流雷诺数Re在25~80之间,处于层流范畴,且Re随雨强增大而显著增加,剪除地上部分前后Re无显著差异。裸地坡面流弗劳德数Fr大于等于1,属于临界流或急流状态;植被格局坡面流Fr均小于1,属于缓流;坡面下部弗劳德数大于坡面上部。达西-维斯巴赫阻力系数f和曼宁糙率系数n均能反映坡面流阻力特征,且变化规律相似,都表现为裸地CK<格局LP<格局BP、SP,有草断面高于无草断面,坡面上部高于坡面下部,剪除地上部分后,阻力系数f和糙率系数n降低。坡面土壤侵蚀速率与平均流速、水流阻力均呈幂函数关系,但与水深无明显关系;与水流雷诺数相比,水流弗劳德数与土壤侵蚀率关系更加密切。综合考虑各水力学参数的实测和预测效果,用平均流速对土壤侵蚀率进行模拟和估算较为理想。
     坡面水蚀动力因子随降雨强度的增大而增大,而植被格局对侵蚀动力因子无显著影响。对侵蚀产沙率与水蚀动力因子的灰色关联分析表明,单位水流功率P对坡面侵蚀率的关联度最大(0.767),水流功率ω和过水断面单位能量E次之,分别为0.697和0.659,水流剪切力τ对侵蚀率的关联度最小,为0.618。由此可知,功率是与坡面侵蚀产沙率发展趋势较接近的因素,对坡面侵蚀影响较大,回归分析表明侵蚀产沙率与水流功率和单位水流功率均呈线性关系。
Soil erosion is now a global environmental problem and it is particularly so on LoessPlateau of China. Vegetation has long been an effective measure to control soil erosion, whichhas aroused universal concern of numerous scholars. In this study, indoor simulated rainfallexperiments were conducted to explore the effects of vegetation (Artemisia capillaris)patterns on soil erosion and hydrodynamic characteristics of slope flow. Runoff and sedimentreduction benefit of both above-and under-ground parts of Artemisia capillaris, as well as therelationships between vegetation parameters and runoff and sediment rate were furtheranalyzed to reveal the mechanism of vegetation reducing erosion. In addition, we studied thespatial variability of slope erosion coupled with geostatistics method. Our findings canprovide theoretical and data basis for optimal allocation of vegetation measures and thoroughunderstanding of the soil erosion processes and dynamic mechanism of slope flow in LoessPlateau. The main results are as follows:
     The patterning of Artemisia capillaris could effectively control soil erosion. Comparedwith the bare plot (CK), runoff and sediment rate in patterned plots were reduced by7~25%and50~92%, respectively, indicting that patterned Artemisia capillaris had stronger effect onreducing sediment than reducing runoff. The aboveground parts of Artemisia capillariscontributed more on runoff reduction, ranging from53%to66%, while the underground partshad more contributions on sediment reduction, about51%~71%. Regression analysis showedthat runoff rate linearly (p<0.05) correlated with the aboveground biomass (SD), stem height(SH), and stem number (SN), respectively. The erosion rate had very significantly exponentialrelationships (p<0.01) with root density (RD), root surface area density (RSAD), root lengthdensity (RLD), and root area ratio (RAR), respectively. However, no relationship wasdetected between erosion rate and root diameter. Path analysis demonstrated that RLD and SNwere the main factors affecting runoff rate, and RSAD and RD were responsible for erosionrate changing. Therefore, increasing sowing density properly in order to increase the plantnumbers and influence the root indices, ultimately conserving soil and water. The findingsshowed that pattern BP and SP were more appropriate in soil and water conservation.
     The classical statistical analysis found that the variability of slope erosion was strong. The geostatistical analysis revealed that the spatial variability of slope erosion was fitted wellby spherical or exponential models and it showed an intermediate or strong spatialdependence. Kriging interpolation directly reflected the erosion or deposition area and theirspatial distribution. Bare plot was mainly distributed by erosion plaque (△h>0) and thedeposition plaque (△h<0) only occupied a small part. Erosion area of patterns BP and SPwere smaller than pattern LP, which was in accordance with the runoff and sediment yieldingresults. After the aboveground parts were removed at soil surface, erosion area increased andthe plaques presented more continuous distribution for different patterned plots.Cross-validation showed that kriged mean prediction errors were close to0androot-mean-square standardized prediction errors were close to1, thus indicating the kriginginterpolation were reliable.
     Both vegetation patterns and rainfall intensities had significant effects on flow velocity.Mean surface flow velocity increased with the increase of rainfall intensity and elevated in theorder of SP (BP)     Artemisia capillaris patterns had no significant effects on hydrodynamic factors, yetvalues of the hydrodynamic parameters increased with increasing rainfall intensity. Graycorrelation analysis showed that the correlation degree between unit stream power (P) andsoil erosion rate was the highest (0.767), stream power (ω) and unit flow energy (E) rankedsecond,0.697and0.659, respectively. The correlation degree between flow shear stress andsoil erosion rate was the lowest (0.618). The results suggested that stream power is closer tothe growing trend of soil erosion rate, and it might have more influence on soil erosion.Regression analysis also showed linear relationships between the erosion rate and (unit)stream power.
引文
陈浩,梁广林,周金星,蔡强国,陆中臣,黄建国.2005.黄河中游植被恢复对流域侵蚀产沙的影响与治理前景.中国科学(D辑地球科学),35(5):452–463
    陈廉杰.1991.吴江中下游低效林水土保持效益分析.水土保持通报,11(6):17–22
    陈奇伯.1996.森林枯落物及苔藓阻延径流速度研究﹒北京林业大学学报,18(1):1–5
    陈云浩,李晓兵,史培军,宫阿都,窦闻.2004.地表覆被格局优化对流域土壤侵蚀影响的模拟试验.自然科学进展,14(11):1244–1249
    丁军,王兆骞,陈欣,张如良.2002.红壤丘陵区林地根系对土壤抗冲增强效应的研究.水土保持学报,16(4):9–12
    丁文峰,李占斌,崔灵周.2001.黄土坡面径流冲刷侵蚀试验研究.水土保持学报,15(2):99–101
    丁文峰,李占斌,鲁克新,丁登山.2003.坡面细沟发生临界水动力条件初探.土壤学报,40(6):822–828
    杜峰,程积民.1999.植被与水土流失.四川草原,2:6–11
    傅伯杰.1995﹒黄土区农业景观空间格局分析.生态学报,15(2):113–120
    甘卓亭,叶佳,周旗,周正朝,上官周平.2010.模拟降雨下草地植被调控坡面土壤侵蚀过程.生态学报,30(9):2387–2396
    高如泰.2005.黄淮海平原农田土壤水氮行为模拟与管理分析.[博士学位论文].北京:中国农业大学
    耿晓东.2010.主要水蚀区坡面土壤侵蚀过程与机理对比研究.[博士学位论文].杨凌:中国科学院教育部水土保持与生态环境研究中心
    郭明航.中国科学院水利部水土保持研究所黄土高原水土保持数据库[DB/OL].http://www.loess.csdb.cn/
    郭雨华,赵廷宁,孙保平,丁国栋,成晨,胡封兵.2006.草地坡面水动力学特性及其阻延地表径流机制研究.水土保持研究,13(4):264–257
    韩冰,吴钦孝,刘向东,江有科,赵鸿雁.1994a.油松林枯落物层防止溅蚀的研究.水土保持研究,1(3):14–18
    韩冰,吴钦孝,刘向东,汪有科,赵鸿雁.1994b.山杨林地枯落物层对溅蚀的影响.植物资源与环境学报,3(4):5–9
    韩学坤,吴伯志,安瞳昕,贺佳.2010.溅蚀研究进展,17(4):46–51
    郝帅,张毓涛,刘端,张洪亮,李翔.2009.不同郁闭度天山云杉林林冠截留量及穿透雨量特征研究.干旱区地理,32(6):917–923
    何常清,于澎涛,管伟,王彦辉,袁玉欣,郭明春,杜阿朋,董晓红.2006.华北落叶松枯落物覆盖对地表径流的拦阻效应.林业科学研究,19(5):595–599
    黄志霖,李建新,王玉.2000.太行山侧柏人工林林冠降雨截留及地表径流的研究.河南林业科技,20(2):1–6
    胡世雄,靳长兴.1998.坡面流与坡面侵蚀动力过程研究的最新进展.地理研究,17(3):326–335
    胡世雄,靳长兴.1999.坡面动力侵蚀过程的实验研究进展.地理科学进展,18(2):103–110
    蒋定生,范兴科,李新华,赵合理.1995.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究.水土保持学报,9(2):1–8
    敬向锋,吕宏兴,张宽地.2007.不同糙率坡面水力学特征的试验研究.水土保持通报,27(2):33–38
    李哈滨,王政权,王庆成.1992.空间异质性定量研究理论与方法.应用生态学报,9(6):651–657
    李鹏,李占斌,郑良勇.2006.黄土坡面径流侵蚀产沙动力过程模拟与研究.水科学进展,17(4):444–449
    李雯.2006.坡面径流侵蚀过程试验研究.[硕士学位论文].西安:西安理工大学
    李温雯.2010.重庆四面山不同森林植物群落土壤抗剪性质研究.[硕士学位论文].北京:北京林业大学
    李小军,汪君,高永平.2011.荒漠化草原植被斑块分布对地表径流、侵蚀及养分流失的影响.中国沙漠,31(5):1112–1118
    李勇,吴钦孝.1990.黄土高原植被根系提高土壤抗虫性能研究.I.油松人工林根系对土壤抗冲性能的增加效应.水土保持学报,4(1):1–5
    李勇,武淑霞,夏侯国风.1998.紫色土区刺槐林根系对土壤结构的稳定作用.水土保持学报,4(2):1–7
    李勇,朱显谟.1991.黄土高原植物根系提高土壤抗冲性的有效性.科学通报,36:935–938
    李占斌.1991.黄土地区坡地系统暴雨侵蚀试验及小流域产沙模型研究.[博士学位论文].西安:西安理工大学
    李志斌.2010.基于地统计学方法和Scorpan模型的土壤有机质空间模拟研究—以吉林省舒兰市为例.[博士学位论文].北京:中国农业科学院
    刘纯义,张耀先.2001.水力学[M].北京:中国水利水电出版社
    刘光崧.1996.土壤理化分析与剖面描述.北京:中国标准出版社.266p
    刘旻霞.2004.青海云杉林林冠截留与大气降水的关系.甘肃农业大学学报,39(3):341–344
    刘国彬,杨勤科,陈云明,张文辉,许明祥.2005.水土保持生态修复的若干科学问题.水土保持学报,19(6):126–130
    刘建军.1998.林木根系生态研究综述.西北林学院学报,13(3):74–78
    刘世荣,孙鹏森,王金锡,陈林.2001.长江上游森林植被水文功能研究.自然资源学报,16(5):451–456
    刘向东,吴钦孝,赵鸿雁.1994.植被截留与水土保持.水土保持学报,3:13–18
    刘洋.2007.岷江源头区植被景观与流域土壤侵蚀的动态相关性.[博士学位论文].成都:中国科学院研究生院成都生物研究所
    柳玉梅,张光辉,李丽娟,韩艳峰.2009.坡面流水动力学参数对土壤分离能力的定量影响.农业工程学报,25(6):96–99
    罗榕婷,张光辉,曹颖.2009.坡面含沙水流水动力学特性研究进展.地理科学进展,28(4):567–574
    罗勇,陈家宙,林丽蓉.2009.基于土地利用和微地形红壤丘岗区土壤水分时空变异性.农业工程学报,25(2):36–41
    吕粉桃,韩泽,张伟华,周心澄.2005.青海大通县山地退耕还林土壤抗冲性研究.华北农学报,20(专辑):85–90
    孟宝,杨龙,张勃.2009.土壤特性的空间变异性与绿洲生态稳定性研究—以张掖绿洲为例.水土保持研究,16(2):117–121
    潘成忠.2007.坡面流水力学特性及其对草地拦沙的响应机制.[博士学位论文].陕西杨凌:中国科学院教育部水土保持与生态环境研究中心
    潘成忠,上官周平.2005.牧草对坡面侵蚀动力参数的影响.水力学报,36(3):371–377
    潘成忠,上官周平.2007.不同坡度草地含沙水流水力学特性及其拦沙机理.水科学进展,18(4):490–495
    庞重光,杨作升,张军.2001.黄河汛期泥沙分布特征及其对水流结构的影响.泥沙研究,(4):47–52
    沙际德,白清俊.2001.粘性土坡面细沟流的水力特性试验研究.泥沙研究,6:39–44
    沙际德,蒋允静.1995.试论初生态侵蚀性坡面薄层水流的基本动力特性.水土保持学报,9(4):29–35
    沈中原.2006.坡面植被格局对水土流失影响的实验研究.[硕士学位论文].西安:西安理工大学
    史立新,彭培好,慕长龙.1997.长江防护林(四川段)初期水土保持效益研究.水土保持通报,17(6):14–22
    饶良懿,朱金兆,毕华兴.2005.重庆四面山森林枯落物和土壤水文效应.北京林业大学学报,27(1):33–37
    田超,杨新兵,李军,鲁绍伟,刘阳,毕可姣.2011.冀北山地不同海拔蒙古栎林枯落物和土壤水文效应.水土保持学报.25(4):221–226
    王晗生,刘国彬,王青宁.2000.流域植被整体防蚀作用及景观结构剖析.水土保持学报,14(5):73–77
    王军,傅伯杰,2000.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响.地理学报,55(1):84—91
    王库.2001.植物根系对土壤抗侵蚀能力的影响.土壤与环境,10(3):250–252
    王琳.2007.浙江省三个主要农业地貌区土壤与稻谷微量元素空间变异规律研究.[博士学位论文].杭州:浙江大学
    王盛萍,张志强,武军, Klaghofer E,战伟庆,肖金强.2007.坡面林地土壤水分特征函数空间变异性初探.环境科学研究,20(2):28–35
    王士永,余新晓,贾国栋,宋思铭,徐娟,李庆云.2011.北京山区主要人工林枯落物水文效应.中国水土保持科学,9(5):42–47
    王文龙,雷阿林,李占斌.2003.黄土区不同地貌部位径流泥沙空间分布试验研究.农业工程学报,19(4):40–43
    王新中.2009.GIS支持下豫中典型烟田土壤养分空间变异及精准管理.[博士学位论文].河南郑州:河南农业大学
    王育红,姚宇卿,吕军杰.2002.残茬和秸秆覆盖对黄土坡耕地水土流失的影响.干旱地区农业研究,20(4):109–111
    王玉霞.2010.茵陈蒿群落分布格局对坡面产流产沙、养分流失及微地表变化的影响.[硕士学位论文].杨凌:西北农林科技大学
    王政权.1999.地统计学及在生态学中的应用.科学出版社.206p
    吴长文,王礼先.1993.水土保持林中枯落物的作用[M].中国水土保持,8(1):28–33
    吴长文,王礼先.1995.林地坡面的水动力学特性及其阻延地表径流的研究.水土保持学报,9(2):32–38
    吴发启,赵晓光,刘秉正.2000.缓坡耕地侵蚀环境及动力机制分析[M].西安:陕西科学技术出版社
    吴普特.1997.动力水蚀实验研究[M].西安:陕西科学技术出版社
    吴普特.1998.黄土坡地径流冲刷与土壤抗冲动态响应过程研究.土壤侵蚀与水土保持学报,4(2):92–93
    吴钦孝,赵鸿雁.2001.植被保持水土的基本规律和总结.水土保持学报,15(4):13–15
    吴淑芳.2007.标准坡面人工草地减流减沙效应及其坡面流水力学机理研究.北京林业大学学报,29(3):99–104
    夏大庆.2006.坡面泥石流发生中的植被因素分析.[硕士学位论文].重庆:西南大学
    夏卫生,雷廷武,赵军.2003.坡面侵蚀动力学及其相关参数的探讨.中国水土保持科学,1(4):16–19
    夏卫生,雷廷武,赵军,张晴雯,潘英华,刘纪根.2002.示踪法测定水流流速的研究.水土保持学报,16(1):84–86
    向华,刘青泉,李家春.2004.地表条件对坡面产流的影响.水动力学研究与进展A辑,19(6):774–782
    谢春华,关文彬,吴建安.2002.贡嘎山暗针叶林生态系统林冠截留特征研究.北京林业大学学报,24(4):68–71
    解明曙.1990.林木根系固坡力学机理研究.水土保持学报,4(3):7–14
    熊燕梅,夏汉平,李志安,蔡锡安.2007.植物根系固坡抗蚀的效应与机理研究进展.应用生态学报,18(4):895–904
    徐宪立,马克明,傅伯杰,刘宪春,黄勇,祁建.2006.植被与水土流失关系研究进展.生态学报,26(9):3137–3143
    杨新民.1988.林草水土保持效益分析.陕西水土保持,5:372–373
    杨玉梅,郑子成,李廷轩.2010.不同土地利用方式下土壤抗冲性动态变化特征及其影响因素.水土保持学报,24(4):64–69
    杨志达.2000.泥沙输送理论与实践.北京:中国水利水电出版社
    姚文艺.1996.坡面流阻力规律试验研究.泥沙研究,(1):74–81
    姚文艺,汤立群.2001.水力侵蚀产沙过程及模拟[M].郑州:黄河水利出版社
    游珍,李占斌,蒋庆丰.2005.坡面植被分布对降雨侵蚀的影响研究.泥沙研究,12(6):40–43
    游珍,李占斌,蒋庆丰.2006.植被在坡面的不同位置对降雨产沙量影响.水土保持通报,26(6):28–31
    余新晓,毕华兴,朱金兆,吴斌.1997.黄土地区森林植物水土保持作用研究.植物生态学报,21(5):433–440
    张光辉.2000.国外坡面径流分离土壤过程水动力学研究进展.水土保持学报,14(3):112–115
    张光辉.2002.坡面薄层流水动力学特性的实验研究.水科学进展,13(2):159–165
    张光辉,刘宝元,何小武.2005.黄土区原状土壤分离过程的水动力学机理研究.水土保持学报,19(4):48–52
    张建香,张勃,张华,张多勇,戴声佩,马中华.2011.黄土高原的景观格局变化与水土流失研究—以黄土高原马莲河流域为例.自然资源学报,26(9):1513–1525
    张金池,臧廷亮,曾锋.2001.岩质海岸防护林树木根系对土壤抗冲性的强化效应.南京林业大学学报,25(1):9–12
    张科利.1999.黄土坡面发育的细沟水动力学特征的研究.泥沙研究,1:56–61
    张庆,牛建明,Alexander B,韩芳,董建军,张艳楠,康萨如拉,杨艳.2011.不同坡位植被分异及土壤效应—以内蒙古短花针茅草原为例.植物生态学报,35(11):1167–1181
    张维诗,金靖博,唐亚森.2007.森林枯落物的水文功能.林业勘查设计,4:35–36
    张新和.2007.黄土坡面片蚀-细沟侵蚀-切沟侵蚀演变与侵蚀产沙过程研究.[博士学位论文].杨凌:西北农林科技大学
    张远东,刘世荣,马姜明,史作民,刘兴良.2005.川西亚高山桦木林的林地水文效应.生态学报,25(11):2939–2946
    张远东,刘世荣,马姜明.2006.川西高山和亚高山灌丛的地被物及土壤持水性能.生态学报,26(9):2775–2782
    张振明,余新晓,牛健植,鲁绍伟,宋维峰,刘秀萍,张颖.2005.不同林分枯落物层的水文生态功能.水土保持学报,19(3):139–143
    赵鸿雁,吴钦孝.1996.黄土高原沙棘水土保持功能研究.沙棘,9(2):29–33
    赵鸿雁,吴钦孝.2001.黄土高原人工油松林小流域产流产沙研究.自然科学进展,11(8):829–834
    郑良勇,李占斌,李鹏.2002.坡面径流的水动力学特性研究进展.水土保持报,16(1):76-80
    郑良勇,李占斌,李鹏.2004.黄土区陡坡径流水动力学特性试验研究.水利学报,5:46–51
    中国科学院黄土高原综合考察队.1990.黄土高原地区土壤侵蚀区域特征及其治理途径[M].中国科学出版社:27
    周正朝.2007.黄土区植物根系与冠层对土壤侵蚀的调控作用及其对变化环境的响应.[博士学位论文].杨凌:中国科学院教育部水土保持与生态环境研究中心
    邹源.2006.不同地貌土壤属性空间变异性研究.[硕士学位论文].扬州:扬州大学
    朱金兆,刘建军,朱清科,吴钦孝.2002.森林凋落物层水文生态功能研究.北京林业大学学报,Z1(5):30–34
    朱显谟.1960.黄土高原植被因素对于水土流失的影响.土壤学报,8(2):110–120
    Abrahams A D, Li G.1998. Effect of saltating sediment on flow resistance and bed roughness inoverland flow. Earth Surface Processes and Landforms,23(10):953–960
    Abrahams A, Li G, Krishnan C, Atkinson J.2001. A sediment transport equation for interrill overlandflow on rough surfaces. Earth Surface Processes and Landforms.26(13):1443–1459
    Abrahams A D, Parsons A J, Luk S H.1986. Field measurement of the velocity of overland flow usingdye tracing. Earth Surface Processes and Landforms,11:653–657
    Abrahams A D, Li G, Parsons A J.1996. Rill hydraulics on a semiarid hillslope, southern Arizona.Earth Surface Processes and Landforms,21:35–47
    Abrahams A D, Parsons A J, Wainwright J.1994. Resistance to overland flow on semiarid grasslandand shrubland hillslopes, Walnut Gulch, southern Arizona. Journal of Hydrology,156:431–446
    Abrahams A D, Parsons A J, Hirsch P J.1992. Field and laboratory studies of resistance to interrilloverland flow on semi-arid hillslopes, southern Arizona [A]. Parsons A J, Abrahams A D (eds), OverlandFlow: Hydraulics and Erosion Mechanics [M], London: UCL Press,1–23
    Basic F, Kisic I, Nestroy O, Mesic M, Butorac A.2002. Particle size distribution (texture) of erodedsoil material. Journal of Agronomy and Crop Science,188:311–322
    Baets S De, Poesen J, Gyssels G, and Knapen A.2006. Effects of grass roots on the erodibility oftopsoil during concentrated flow. Geomorphology.54–67
    Bagnold R A.1966. An approach to the sediment transport problem for general physics.In:GeologicalSurvey Professional Paper (U.S.),442–Ⅰ
    Bautista S, Mayor A G., Bourakhouadar J, Bellot J.2007. Plant Spatial Pattern Predicts HillslopeRunoff and Erosion in a Semiarid Mediterranean Landscape. Ecosystems,10:987–998
    Beard J S.1967. A study of patterns in some Western Australian heath and mallee communities.Australian Journal of Botany.15:131–139
    Benito E, Santiago J L, De Blas E, Varela M E.2003. Deforestation of water-repellent soils in Galicia(NW Spain): effects on surface runoff and erosion under simulated rainfall. Earth Surface Processes andLandforms,28:145–155
    Blanco-Canquia H, Gantzerb C J, Andersonb S H, Albertsc E E, Thompsond A L.2004a. GrassBarrier and Vegetative Filter Strip Effectiveness in Reducing Runoff, Sediment, Nitrogen, and PhosphorusLoss. Soil Science Society of America Journal,68:1670–1678
    Blanco-Canqui H, Gantzer C J, Anderson S H, Alberts E E.2004b. Grass barriers for reducedconcentrated flow induced soil and nutrient loss. Soil Sci Soc Am J,68:1962–1972
    Bochet E, Rubio J L, Poesen J.1999. Modified topsoil islands within patchy Mediterranean vegetationin SE Spain. Catena,38:23–44
    Braud I, Vich A I J, Zuluaga J, Fornero L, Pedrani A.2001. Vegetation influence on runoff andsediment yield in the Andes region: observation and modeling. Journal of Hydrology,254:124–144
    Bryan R B, Govers G, Poesen J.1989. The concept of soil erodibility and some problems ofassessment and application. Catena,16:393–412
    Bui E N, Box J R.1992. Stemflow,rain through fall, and erosion under canopies of corn and sorghum.Soil Sci Soc A J,56:242–247
    Cambardella C A, Moorman T B, Novak J M, Parkin T B, Karlen D L, Turco R F, Konopka A E.1994.Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J,58:1501–1511
    Carpenter S R, Caraco N F, Correll D L, Howarth R W, Sharpley A N, Smith V H.1998. Nonpointpollution of surface waters with phosphorus and nitrogen. Ecological Applications,8:559–568
    Casermeiro M A, Molina J A, De la Cruz Caravaca M T, Hernando Costa J, Hernando Massanet M I,Moreno P S.2004. Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate.Catena,57:91–107
    Cerdà A.1997. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journalof Arid Environments.36:37–51
    Chen L D, Messing I, Zhang S R, Fu B J, Ledin S.2003. Land use evaluation and scenario analysistoward to sustainable planning on the Loess Plateau in China-case study in small catchments. Catena,54(1-2):303–316
    Chirino E, Bonet A, Bellot J, Sanchez J R.2006. Effects of30-year-old Allepo pine plantations onrunoff, soil erosion, and plant diversity in a Semi-arid landscape in south eastern Spine. Catena,65:19–29
    Correll D L, Jordan T E, Weller D E.1999. Precipitation effects on sediment and associated nutrientdis-charges form Rhode River Watersheds. J Environ Qual,28:1897–1907
    Daniels R B, Gilliam J W.1996. Sediment and chemical load reduction by grass and riparian filters.Soil Sci Soc A J,60:246–251
    David M.1977. Geostatistical ore reserve estimation. Amsterdam: Elsevier Scientific Pub. Co.
    Dunkerly D L.2001. Estimating the mean speed of laminar overland flow using dyeinjection-uncertainty on rough surfaces. Earth Surface Processes and Landforms,26:363–374.
    Dunkerly D L, Brown K L.1995. Runoff and runon areas in a patterned chenopod shrubland, aridWestern New South Wales, Australia: characteristic and origin. Journal of Arid Environments,20:41–55
    Dunne T, Dietrich W E.1980. Experimental study of Horton overland flow on tropical hillslopes,2.Hydraulic characteristics and hillslope hydrographs. Z. Geomorphol Suppl,35:60–80
    Elliot W J, Liebnow A M, Laflen J M, Kohl K D.1989. A compendium of soil erodibility data fromWEPP cropland soil field erodibility experiments1987and1988[A]. NSERL. Rep. no.3. U. S. Gov. Print.Office. Washington, DC
    Emmett W W.1970. The hydraulics of overland flow on hillslopes[R]. United States GeologicalSurvey, Professional Paper662-A: Washington DC
    Emmett W W. Overland flow. In: Kirkby M J (ed).1978. Hillslope Hydrology. New York: John-Wielyand Sons,145–176
    Flammer G H, Tullis J P, Mason E S.1970. Free surface, velocity gradient flow past hemisphere.Journal of the Hydraulics Division, ASCE,96:1485–1502
    Flanagan D C, Nearing M A.2000. Sediment particle sorting on hillslope profiles in the WEPP model.Transaction of American Society of Agricultural Engineers,43(3):573–583
    Foster G R, Huggins L F, Meyer L D.1984. A laboratory study of rill hydraulics: I. Velocityrelationships. Transaction of the ASAE,27(3):790–796
    Fu B J, Chen L D, Ma K M, Zhou H F, Wang J.2000. The relationship between land use and soilconditions in the hilly area of the Loess Plateau in northern Shaanxi, China. Catena,39:69–78
    Gallart F, Puigdef`abregas J, Del Barrio G.1993. Computer simulation of high mountain terracettes asinteraction between vegetation growth and sediment movement. Catena,20:529–542
    Ghadiri H, Rose C W.1991. Sorbed chemical transport in overland flow. I. A nutrient and pesticideenrichment mechanism. Journal of Environmental Quality,20;628–633
    Ghidey F and Alberts E E.1997. Plant root effects on soil erodibility, splash detachment, soil strength,and aggregate stability. Transactions of the ASAE,40(1):129–135
    Gilley J E, Finker S C.1991. Hydraulic roughness coefficients as affected by random roughness.Transacctions of the ASAE,33(3):897–903
    Gilley J E, Kottwite E R, Simanton J R.1990. Hydraulic characteristics of Rills. Transactions of theASAE,33(6):1900–1906
    Girmay G, Singh B R, Nyssen J, Borrosen T.2009. Runoff and sediment-associated nutrient lossesunder different land uses in Tigray, Northern Ethiopia. Journal of Hydrology,376:70–80
    Goudie A S, Sands M J S, Livingstone I.1992. Aligned linear gilgai in West Kimberley district,Western Australia. Journal of Arid Environments,23:157–167
    Govers G, Takken I, Helming K.2000. Soil roughness and overland flow. Agronomie,20:131–146
    Greenwood J E G W1957. The development of vegetation patterns in Somaliland Protectorate.Geographical Journal.123:465–473
    Greig-Smith P.1983. Quantitative Plant Ecology. Blackwell Scientific Publications, Oxford,9th vol.,3rd ed.,359p
    Gyssels G, Poesen J.2003. The importance of plant root characteristics in controlling concentratedflow erosion rates. Earth Surface Processes and Landforms,28:371–384
    Gyssels G, Poesen J, Nachtergaele J, Govers G.2002. The impact of sowing density of small grains onrill and ephemeral gully erosion in concentrated flow zones. Soil&Tillage Research,64:189–120
    Gyssels G, Poesen J, Liu G, Van Dessel W, Knapen A, De Baets S.2006. Effects of cereal roots ondetachment rates of single-and double-drilled topsoils during concentrated flow. European Journal of SoilScience,57:381–391
    Gyssels G, Poesen J, Knapen A, Van Dessel W, Leónard J.2007. Effects of double drilling of smallgrains on soil erosion by concentrated flow and crop yield. Soil&Tillage Research,93:379–390
    Hao Y, Lal R, Cesar Izaurralde R, Ritchie J, Owens L, Hothem D.2001. Historic assessment ofagricultural impacts on soil and soil organic carbon erosion in an Ohio watershed. Soil Science,166:116–126
    He X, Li Z, Hao M, Tang K, Zheng F.2003. Down-scale analysis for water scarcity in response tosoil-water conservation on Loess Plateau of China. Agricult Ecosys Environ,94(3):355–361
    Horton R E, Leach H R, Van Vliet R.1934. Laminar sheet flow. Transactions of the AmericanGeophysical Union,15(2):393–40
    Horton R E.1945. Erosional development of streams and their drainage basins: hydro-physicalapproach to quantitative morphology. Geological Society of America Bulletin,56:275–370
    Hsieh T.1964. Resistance of cylindrical piers in open-channel flow. Journal of the HydraulicsDivision, ASCE,90(11):61–73
    Hu S X, Abrahams A D.2006. Partitioning resistance to overland flow on rough mobile beds. EarthSurface Processes and Landforms,31(10):1280–1291
    Huang C C, Bradford J M, Laflen J M.1996. Evaluation of the detachment transport coupling conceptin the WEPP rill erosion equation. Soil Sci Soc Am J,60:734–739
    Isaaks E H, Srivastava R M.1989. An Introduction to Applied Geostatistics. Oxford University Press.New York, USA
    Jacinthe P A, Lal R, Owens L B, Hothem D L.2004. Transport of labile carbon in runoff as affectedby land use and rainfall characteristics. Soil and Tillage Research,77(2):111–123
    Jin K, Cornelis W M, Gabriels D, Baert M, Wu H J, Schiettecatte W, Cai D X, De Neve S, Jin J Y,Hartmann R, Hofman G.2009. Residue cover and rainfall intensity effects on runoff soil organic carbonlosses. Catena,78:81–86
    Journel A G, Huijbregts C J.1978. Mining geostatistics. London. Academic Press. UK
    Julien P Y, Hartley D M.1986. Formation of roll waves in laminar sheet flow. J Hydraul Res,24:5-17
    Kang L L, Zhu X Y, Wang Y Z, Wu Q.1999. Research on nutrients loss from a loessial soil underdifferent rainfall intensities. Acta Pedologica Sinica,36(4):536–543
    Khan M J, Monke E J, Foster G R.1988. Mulch cover and canopy effects on soil loss. Trans ASAE,31(3):706–721
    King K W, Norton L.1992. Methods of rill flow velocity dynamics. In American Society ofAgricultural Engineering Meeting Presentation Paper,92–2542
    Kirkby M J.1978. Hillslope Hydrology [M]. John Wiley and Sons, Chichester UK
    Kleinman P J A, Srinivasan M S, Dell C J, Schmidt J P, Sharpley A N, Bryant RB.2006. Role ofRainfall Intensity and Hydrology in Nutrient Transport via Surface Runoff. Journal of EnvironmentalQuality,35(1):12481259
    Li G, Abrahams A D.1997. Effect of saltating sediment load on the determination of the mean velocityof overland flow. Water Resources Research,33:341–347
    Li H and Reynolds J F.1995. On definition and quantification of heterogeneity. Oikos.73(2):280–284
    Lu J Y, Chen J Y, Chang F H, Lu T F.1998. Characteristics of shallow rain-impacted flow over smoothbed. Journal of Hydraulic Engineering,9:1242–1252
    Ludwig J A, Tongway D J, Marsden S G.1999. Strips, strands or stipples: modeling the influence ofthree landscape banding patterns on resource capture and productivity in a semi-arid woodlands, Australia.Catena,37(1-2):257–273
    Ludwig J A, Wilcox B P, Breshears D D, Tongway D J, Imeson A C.2005. Vegetation Patches andRunoff–Erosion As Interacting Ecohydrological Processes in Semiarid Landscapes. Ecology,86(2):288–297
    Luk S H, Merz W.1992. Use of the salt tracing technique to determine the velocity of overland flow.Soil Technology,5:289-301
    Li G, Abrahams A D.1996. Correction factors in the determination of mean velocity of overland flow.Earth Surface Process and Landforms,21:509–515
    Mabbutt J A, Fanning P C.1987. Vegetation banding in arid Western Australia. Journal of AridEnvironments,12:41–59
    Macfadyen W A.1950b. Vegetation patterns in the semi-desert plains of British Somaliland.Geographical Journal,116:199–211
    Mamo M, Bubenzer G D.2001a. Detachment rate, soil erodibility and soil strength as influenced byplant roots. Part1: Laboratory study. Trans. ASAE,44:1167–1174
    Mamo M, Bubenzer G D.2001b. Detachment rate, soil erodibility and soil strength as influenced byplant roots. Part2. Field study. Trans. ASAE,44:1175–1181
    María J M, Ramón B, Luis J, Raquel P R.2007. Effect of vegetal cover on runoff and soil erosionunder light intensity events. Rainfall simulation over USLE plots. Science of the Total Environment,378:161–165
    Matheron G.1963. Principles of geostatistics. Economic geology,58:1246–1266
    Merritt W S, Letcherb RA, Jakemanb A J.2003. A review of erosion and sediment transport models.Environ Model Softw,18(8–9):761–799
    Mohammad A G, Adam M A.2010. The impact of vegetative cover type on runoff and soil erosionunder different land uses. Catena,81(2):97-103
    Moir W H, Ludwig J A, Scholes R T.2000. Soil erosion and vegetation in grasslands of the Peloncillomountains, New Mexico. Soil Sci Soc Am J,64:1055–1067
    Moor I P, Burch G I.1986. Sediment transport capacity of sheet and rill flow: Application of unitstream power theory. Water Resource Research,22(8):1350–1360
    Morgan R P C.1985. Effect of corn and soybean canopy on soil detachment by rainfall. Transaction ofASAE,28(4):1135–1140
    Mytton I R, Cresswell A, Colbourn P.1993. Improvement in soil structure associated with white clover.Crass and Forage Science,48:84–90
    Nearing M A, Lane L J, Albert E E, Laflen J M.1990. Prediction technology for soil erosion by water:Status and research needs.Soil Sci Soc Am J,54(6):1702–1711
    Nearing M. A probabilistic model of soil detachment sheet flow.1991. Transaction of AmericanSociety of Agricultural Engineering,34:81–85
    Nearing M A, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes J P, Renschler C S, Souchere V, Van Oost K.2005. Modeling response of soil erosion and runoffto changes in precipitation and cover. Catena,61:23
    Olson K R, Gennadiyev A N, Jones R L, Chernyanskii S.2002. Erosion patterns on cultivated andreforested hillslopes in Moscow region, Russia. Soil Sci Soc Am J,66:193–201
    Pan C Z, Shangguan Z P.2006. Runoff hydraulic characteristics and sediment generation in slopedgrassplots under simulated rainfall conditions. Journal of Hydrology,331:178–185
    Patty L, Rheal B, Gril J J.1997. The use of grassed buffer strips to remove pesticides, nitrate andsoluble phosphorus compounds from runoff water. Pesticides Science,49:243–251
    Panuska J C, Karthikeyan K G.2010. Phosphorus and organic matter enrichment in snowmelt andrainfall–runoff from three corn management systems. Geoderma,154:253–260
    Phelps H O.1975. Shallow laminar flows over rough granular surfaces. Journal of the Hydraulics.Division Proceedings of the American Society of Civil Engineers,101:367–384
    Pieri L, Bittelli M, Hanuskova M, Ventura F, Vicari A, Pisa P R.2009. Characteristics of erodedsediments from soil under wheat and maize in the North Italian Apennines. Geoderma,154:20–29
    Poudel D D, Midmore D J, West L T.1999. Erosion and productivity of vegetable systems on slopingvolcanic ash–derived Philippine soils. Soil Sci Soc Am J,63:1366–1376
    Puigdefábregas J.2005. The role of vegetation patterns in structuring runoff and sediment fluxes indrylands. Earth Surface Processes and Landforms,30:133–147
    Puigdefábregas J, Sànchez G.1996. Geomorphological implications of vegetation patchiness insemi-arid slopes. In Advances in Hillslope Processes, Anderson M, Brooks S (eds). John Wiley&Sons:Chichester;1027–1060
    Quinton J N, Catt J A, Hess T M.2001. The Selective Removal of Phosphorus from Soil: Is EventSize Important? Journal of Environmental Quality,30(2):538–54
    Rebeca V M, Eusebio V R, Klaudia O, Luis H S, Parrotc J F, Nearing M A.2010. Soil erosion andrunoff in different vegetation patches from semiarid Central Mexico. Catena,80(3):162–169
    Reid K D, Wilcox B P, Breshears D D, MacDonald L.1999. Runoff and erosion in a pinon-juniperwoodland: Influence of vegetation patches. Soil Sci Soc Am J,63(6):1869–1879
    Rhoton F E, Smeck N E, Wilding L P.1979. Preferential clay mineral erosion from watersheds in theMaumee River Basin. Journal of Environmental Quality,8:547–550
    Rice C T, Wilson B N, Appleman M, Brown J W.1988. Image processing system for measuringsurface velocities. Applied Engineering in Agriculture,4332–337
    Robinson C A, Ghaffarzadeh M, Cruse R M.1996. Vegetative Filter Strip Effects on SedimentConservation in Cropland Runoff. Journal of Soil and Water Conservation,51(3):227–230
    Roels J M.1984. Flow resistance in concentrated overland flow on rough slop surface. Earth surfaceprocess and landforms,9:54–551
    Romkens M J M, Wang J Y.1986. Effect of tillage on surface roughness. Transacctions of the ASAE,29:429–433.
    Sànchez G., Puigdefábregas J.1994. Interactions of plant growth and sediment movement on slopes ina semi-arid environment. Geomorphology,9:243–260
    Savat J.1980. Resistance to flow in rough supercritical sheet flow. Earth Surface Processes andLandforms,5(2):103–122
    Savat J, Poesen J.1981. Detachment and transport of loose sediments by raindrop splash. Part I. Thecalculation of absolute data on detachability and transportability. Catena,8:1–17
    Schlesinger W H.1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology,77:364–374
    Schlesinger W H, Ward T J, Anderson J.2000. Nutrient losses in runoff grassland and shrublandhabitats in Southern New Mexico: II. Field plots. Biochemistry,49:69–86
    Sharmasarkar F C, Sharmasarkar S, Zhang R, George F, Vance and Stephen D.1999. Micro-spatialvariability of soil Following Nitrogen Fertilization and Drip Irrigation. Water, Air and soil Pollution,116(3/4):605–619
    Sharply A, Kleinman P.2004. Effect of Rainfall Simulator and Plot Scale on Overland Flow andPhosphorus Transport. Journal of Environmental Quality,32(6):2172–2179
    Shen H W, Li R M.1973. Rainfall effects on sheet flow over smooth surface. J Hydraul Div, ASCE,99(5):771–792
    Shigaki F, Sharply A, Prochnow L I.2007. Rainfall intensity and phosphorus source effects onphosphorus transport in surface runoff from soil trays. Science of the Total Environment,373(1):334–343
    Sidorchuk A,Schmidt J,Cooper G.2008. Variability of shallow overland flow velocity and soilaggregate transport observed with digital videography. Hydrological Processes,22(20):4035–4048
    Smith M W, Cox N J, Bracken L J.2007. Applying flow resistance equations to overland flowsProgress in Physical Geography,31(4):363–387
    Smith D R, Owens P R, Leytem A B, Warnemuende E A.2007. Nutrient losses from manure andfertilizer applications as impacted by time to first runoff event. Environmental Pollution,147:131–137
    Rey F.2003. Influence of vegetation distribution on sediment yield in forested marly gullies. Catena,50:549–562
    Rostagno C M, Del Valle H F, Videla L.1991. The influence of shrubs on some chemical and physicalproperties of an aridic soil in north-eastern Patagonia, Argentina. Journal of Arid Environments,20:179–188
    Stone P M, Walling D E.1996. The particle-size selectivity of sediment mobilization fromDevonhillslopes. In: Anderson,M.G., Brooks, S.M.(Eds.), Advances in Hillslope Processes, vol.1. John Wileyand Sons Ltd., pp.507–527
    UNEP.1992. Status of desertification and implementation of the United Nations plan of action tocombat desertification[R]
    Van Dijk P M, Kwaad F J P M, Klapwijk M.1996. Retention of water and sediment by grass strips.Hydrological Processes,10:1069–1080
    Wang W Z, Jiao J Y.1996. Statistic Analysis on Variation of Rainfall and Runoff-sediment YeildProcess on Slope Surface in Loess Plateau Region. Bulletin of soil and water conservation,16(5):21–28
    Weltz M A, Awadis A B, Lane L J.1992. Hydraulic roughness coefficients for native rangelands. JIrrig Drain Engr, ASCE,118(5):776–790
    Woolhiser D A, Hanson C L, Kuhlman A R.1970. Overland flow on rangeland watersheds. Journal ofHydrology (N.Z.),9(2):336–356
    Woolhiser DA, Liggett J A.1967. Unsteady one-dimensional flow over a plane: The rising hydrograph.Water Resource Research,3(3):753–771
    Worrall G A.1959. The Butana grass patterns. Journal of Soil Science,10:34–53.
    Wu X Y, Zhang L P, Zhang M X.2007. Research on characteristics of nitrogen loss in sloping landunder different rainfall intensities. Acta ecologica sinica,27(11):4576–4582
    Xu X L, Ma K M, Fu B J, Song C J, Liu W.2008. Influence of three plant species with differentmorphologies on water runoff and soil loss in a dry-warm river valley, SW China. Forest Ecology andManagement,256:656–663
    Yoon Y N, Wenzel H G.1971. Mechanics of Sheet Flow under Simulated Rainfall. J Hyd Div, ASCE,97(HY9):1367–1386
    Zeng S C, Su Z Y, Chen B G, Wu Q T, Ouyang Y.2008. Nitrogen and Phosphorus Runoff Losses fromOrchard Soils in South China as Affected by Fertilization Depths and Rates. Pedosphere,18(1):45–53
    Zhang G H, Liu G B, Wang G L.2010. Effects of Caragana Korshinskii Kom. cover on runoff,sediment yield and nitrogen loss. International Journal of Sediment Research,25:245–257
    Zhang G H, Luo R T, Cao Y, Shen R C, Zhang X C.2010. Correction factor to dye-measured flowvelocity under varying water and sediment discharges. Journal of Hydrology,389:205–213
    Zhang H X.1983. The characteristics of hard rian and its distribution over the Loess Plateau. ActaGeographica Sinica,38(4):416–425
    Zhang X C, Liu G B, Fu H F.2000. Soil nitrogen losses of catchment by water erosion as affected byvegetation coverage. Environmental Science,6:16–19
    Zhang Y L, Zhang X C, Shao M A, Li S Q.2004. Impact of rainfall intensity on soil mineral nitrogenloss by runoff on loess slope. Transactions of the CSAE,20(3):55–58
    Zheng F L, He X B, Gao X T, Zhang C E, Tang K L.2005. Effects of erosion patterns on nutrient lossfollowing deforestation on the Loess Plateau of China. Agricult Ecosys Environ,108:85–97
    Zhou Z C, Shangguan Z P.2005. Soil Anti-Scouribility Enhanced by Plant Roots. Journal ofIntegrative Plant Biology,47(6):676682
    Zhou Z C, Shangguan Z P.2007. The effect of ryegrass roots and shoots on loess erosion undersimulated rainfall. Catena,70:350–355
    Zhou Z C, Shangguan Z P.2008. Effect of ryegrasses on soil runoff and sediment control. Pedosphere18(1):131–136
    Ziegler A D, Giambelluca T W.1998. Influence of revegetation efforts on hydrologic response anderosion, Kaho’olawe island, Hawai’i. Land Degradation and Development,9:189–206
    Zobisch M A, Richter C, Heiligtag B, Schlott R.1995. Nutrient losses from cropland in centralhighlands of Kenya due to surface runoff and soil erosion. Soil and Tillage Research,33(2):109–116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700