用户名: 密码: 验证码:
扇形雾喷头磨损规律和失效预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植保机械的使用正逐步从提高作业效率、减轻劳动强度向高效、安全、精准等方向发展,喷头作为植保机械的关键部件之一,其结构的合理性决定了药液的雾化效果,而过度磨损会造成喷头结构尺寸和精度改变,导致喷头使用性能达不到要求。论文阐述了液力式扇形雾喷头的磨损对植保机械质量的影响,在分析国内外液力式雾喷头磨损研究的基础上,研究了造成扇形雾喷头磨损的因素,以及磨损对各喷雾指标的影响,利用固液两相流动理论探索了扇形雾喷头磨损特点和磨损规律,模拟仿真了扇形雾喷头内部流场和固体颗粒运动轨迹,并研制了一套液力式雾喷头磨损测试试验系统,测试了磨损对各喷雾性能指标的影响关系,验证了理论分析结果。
     论文利用固液两相流的流体动力学和颗粒运动动力学等理论分析了液力式扇形雾喷头喷洒时固液两相,尤其是农药中固体颗粒的运动过程和特点,即农药中固体颗粒的运动特性属于稀疏两相流的混合边界层流动;运动速度不仅受到液体曳力uFuv
     D、压差力uFuvug和重力Fuv
     w的作用,还应考虑Saffman力uFuv
     S的影响,建立了完整的扇形雾喷头的液固两相流边界层的数学模型,获得了农药中固体颗粒在扇形雾喷头内表面上的运动轨迹方程。
     根据扇形雾喷头球头内表面为球形曲面的几何形状特点,分析认为农药固体颗粒的攻角λ不能简单地等同于冲击角度α,针对磨损程度以及与攻角λ和冲击角度α的关系,建立了攻角λ与冲击角度α的关系式。
     根据分析,农药中固体颗粒在扇形雾喷头内表面的磨损遵循冲蚀磨损的微切削理论和变形磨损理论,建立了可通过测量扇形雾喷头球头尺寸改变,以及农药用量等参数衡量磨损程度的扇形雾喷头磨损率计算公式,依此可制定各种扇形雾喷头的最佳农药用量。
     通过FLUENT流体动力学软件对扇形雾喷头内部流场和固体颗粒运动轨迹进行了计算机仿真模拟;利用自行研制的喷头磨损测试系统对美国喷雾系统公司的TP11002VB型和德国LU110-05型以及国产SSP13型扇形雾喷头进行了磨损测试,试验数据证明:扇形雾喷头的磨损对流量的影响最为显著;理论分析获得的扇形雾喷头球头尺寸磨损率计算公式符合试验结果;最后,对试验数据进行了回归分析,确定了扇形雾喷头磨损率计算公式中的修正系数、建立了扇形雾喷头流量与磨损时间的关系式和扇形雾喷头在失效期内农药用量的计算公式,验证了可通过检测扇形雾喷头球头尺寸作为判断喷头磨损的失效标准,为预测喷头磨损失效和制定喷头定期检测制度提供基础依据。
     论文通过研究液力式扇形雾喷头的磨损过程,掌握了喷头磨损规律,可为国家制定液力式喷头失效标准、国内喷头制造企业提供技术支持和喷头使用提供磨损失效检测方法,以及对降低喷头生产、使用成本和防治环境污染均具有非常重要的意义。
The development trends are referred to high efficiency and safety and precisionon the pesticide applying machines from improving work efficiency and reducing thelabor intensity. Firstly, the influences of the wear of the hydraulic flat-fan spraynozzles on the quality of spraying facilities were discussed. Secondly, according to thestudy status of the hydraulic spray nozzles wear both at home and abroad. Factorswhich influence the flat-fan nozzles wear and the effect of the performanceparameters by wear were discussed. Finally, the wear characteristics and wearbehavior of the flat-fan spray nozzles were studied, and a set of the experimentalset-up system for measuring spray nozzles wear was developed and manufactured.
     Based on the theory of fluid dynamics and particles dynamics, the solid pesticideparticles’ properties on its motion in the solid-liquid two-Phase flow of the flat-fannozzles were analyzed. The properties on its motion is belong to mixed flow of theboundary-layer in the dilute solid-liquid two-Phase flow; The main forces that theparticles bears include liquid drag forceuFuvuuvD, pressure gradient forceFg, gravity forcewand Saffman forceuFuvSin the process of motion.
     The relationship impact angle on the spherical surface and that on the plane werediscussed according to the actual shape on the spherical-top of flat-fan nozzlesorifices. And the mathematical model of boundary-layer in the solid-liquid two-phaseflow of the flat-fan nozzles, the motion equation of the particles in the solid-liquidtwo-phase flow on the inner surface of the flat-fan nozzles.
     Based on the erosion wear theory of micro-cutting and energy dissipation, thetwo wear rate equations were established, the one was the relationship between usagetimes and the spherical-top configuration parameters of the flat-fan orifices, anotherwas the relation between wear rate and pesticides consumption.
     The kinematic velocity and Trajectory of the particles and the inner flow in theflat-fan nozzles by the computational fluid dynamics(CFD)simulation. In order toverify the theoretical analysis of the results, the test bench for measuring spraynozzles wear is to be built, the TP11002VB flat-fan nozzles of Spraying SystemsCompany U.S.A and LU110-05flat-fan nozzles of Germany were selected. The testdata verify that wear greatly influence flow of spray nozzles, it is compatible whichthe experiment data and the theoretical analysis of the results. The correctioncoefficient of the wear rate formula is determined by regression analysis, and itsapplicability was verified.
     The results of study could be application with the failure prediction and todevelop the failure standard for regular examination of the flat-fan nozzles.
引文
[1]王新春,尚振国.植保机械设计制造技术研究现状及发展趋势[J].现代农业科技.2011,(2):282-288
    [2]何雄奎.改变我国植保机械和施药技术严重落后的现状[J].农业工程学报,2004,20(1):13-15
    [3]孙文峰,王立君,陈宝昌.农药喷施技术国内外研究现状及发展[J].农机化研究.2009,(9):225-228
    [4]杨学军,严荷荣,徐赛章.植保机械的研究现状及发展趋势[J].农业机械学报.2002,33(6):129-131.
    [5]郑文钟,应霞芳.我国植保机械和施药技术现状、问题及对策[J].农机化研究.2008,(5):219-221.
    [6]戴奋奋,简述我国施药技术的发展趋势[J].植物保护,2004(4):5-8
    [7]王新春,尚振国,植保机械设计制造技术研究现状及发展趋势[J],现代农业科技,2011,2:282
    [8]束放,邵振润,我国农药市场2011年概况及2012年展望[J],中国植保导刊,2012,32(1):47-49
    [9]王荣.植保机械学[M].北京:机械工业出版社,1990:119
    [10]戴奋奋,袁会珠.植保机械与施药技术规范化[M].中国农业科学技术出版社,2002
    [11]冯益华.新型陶瓷喷砂嘴的研究开发及其冲蚀磨损机理研究[D].山东:山东大学,2003
    [12]陈亦可,王明忠.离心式喷雾干燥器耐磨喷头的研制[J].化工装备技术.1997,18(3):27-29
    [13]园寿其,朱兴业,李红.全射流喷头内部流场计算流体动力学数值模拟[J].农业机械学报.2005,36(10):46-49
    [14]李红,任志远,谢福祺.全射流喷头的磨损试验[J].农业机械学报.2006,37(12):105-108
    [15]柳平增.喷头综合性能精密测试试验台的研制及扇形雾喷头性能研究[D].南京:南京农业大学,2007
    [16]李桂彬,李红军,刘亚佳等.植保机械喷头磨损研究进展[S].第二届植保机械与施药技术国际学术研讨会论文集.北京,2010:110-114
    [17]翟恩昱,郑加强,周宏平.植保机械雾化喷头磨损规律的研究进展[J].西北林学院学报,2009,24(6):112-116
    [18]翟恩昱,郑加强.基于CFD的扇形雾喷头冲蚀磨损分析[J].林业机械与木工设备,2010,38(6):6-10
    [19]翟恩昱,郑加强,周宏平.液力式喷头磨损检测方法分析[J].广西轻工业,2009,1:55-57
    [20]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992
    [21]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社,1987
    [22] William W C,Willard H D,Fred Fishel.Calibrating field sprayers.MU Guide.UniversityExtension. University of Missouri-columbia
    [23] Spraying Systems Company. http://www.TeeJet.com/
    [24] Krishnan P,Evans T,Ballal K.Scanning electron microscopic studies of new and used fannozzles for agricultural sprayers[J]. Applied Engineering in Agriculture,2004,20(2):133-137
    [25] Ohm T R, Sener D W, Lefebvre A H. Geometrical effects on discharge coefficients forplain-orifice atomizers[J]. Atomization and Sprays1991,1(2):137-153
    [26] Reichard D L,Ozkan H E,fox R D.Nozzle wear rates and test procedure[J].Transactionof the ASAE,1991,34(6):2309-2316
    [27] Wargocki M. Estimation stability of fan flat nozzles[J]. Problems of AgriculturalEngineering,1995,(3):25-26
    [28] Zhu H,Reichard D L,Ozkan H E,et al.A Mathematical Model To Predict The Wear RateOf Nozzles With Elliptical Orifices[J]. Transactions of the ASAE,1995,37(5):1297–1303
    [29] ASAE STANDARDS2008. Procedure for Measuring Sprayer Nozzle WearRate[S]. Transactions of the ASAE S471MAR1991:1–2
    [30] Fife J P Derksen R C Ozkan H E Grewal. Using CFD Methods to Predict Damage of aBiological Pest Control Agent during Passage through a Hydraulic Nozzle[J].2003ASAEAnnual International Meeting,Las Vegas, Nevada, USA,27-30July2003
    [31] Fife J P Ozkan H E Derksen R C. Viability of a biological pest control agent throughhydraulic nozzles[J]. Transactions of the ASAE.2005,48(1):4554
    [32]邵振润,郭永旺.我国施药机械与施药技术现状及对策[J].植物保护,2006,32(2)
    [33]韩熹莱.农药概论[M].北京:北京农业大学出版社,1994
    [34]徐年凤,闻柳.有关悬浮剂稳定性的几个问题[J].世界农药.2000,22(3):42-43
    [35]路福绥.农药悬浮剂的物理稳定性[J].农药.2000,39(10):8-10
    [36]沈德隆,周瑛,唐霭淑.农药多组分悬浮体系的流变学行为研究[J].农药.1995,34(5):6-9
    [37] Wooten O B. Effects of diuron on wear of spray nozzles[J]. USDA/ARS1963,42-91
    [38] Reed T.Wear life of agricultural nozzles[J].ASAE1984,Paper No. AA84-001. St Joseph,MI ASAE
    [39]贺礼清.工程流体力学[M].北京:石油工业出版社,2004
    [40]张京,宋坚利,何雄奎等.扇形雾喷头雾化过程中雾滴运动特性[J].农业机械学报,2011,42(4):67-75
    [41]李英,张晓辉,孔庆勇等.浅析雾滴尺寸的取决因素及其对喷雾效果的影响[J].农业装备技术,2003,29(5)
    [42]王险峰,关成宏.黑龙江垦区喷杆喷雾机使用技术进展[J].第二届机械与施药技术国际学术研讨会论文集.中国农业大学出版社.2010:170-178
    [43] M.Koszel.Influence of fan flat nozzles wear degree on drop trackssize.RES.AGR.ENG.,55,2009(2):39-44.
    [44]马承伟,严荷荣,袁冬顺.液力式雾化喷头雾滴直径的分布规律[J].农业机械学报.1999,30(1):33-39
    [45] ASAE STANDARDS2001. Termnology and Definitions for Agricultural ChemicalApplication [S]. Transactions of the ASAE S327.2JAN012001:174–177
    [46]袁会珠.液力式喷头类型及靶标适应性植保技术与推广[J].
    [47] JB/T9782-1999,植保机械通用试验方法[S]
    [48] Friesen,O.H.1984.Evaluation of wear rates of flat spray nozzles.TechnicalReport,Manitoba Agriculture,Winnipeg,Manitoba,August.
    [49] H.E.Ozkan, D.L.Reichard, K.D.Ackerman. Effect of orifice wear on spray patterns formfan nozzles[J]. Transaction of the ASAE,1992,35(4)
    [50]屠豫钦,李秉礼.农药应用工艺学导论[M].北京:化学工业出版社,2006:325~326
    [51]李静海,欧阳洁,高士秋等.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社,2001,22~23
    [52] Svarovsky L. Hydrocyclones[M]. London: Holt, Rinehart and Winston,1984,1~5
    [53] Anderson J D. Computational Fluid Dynamics: The Basics withApplications. McGraw-Hill,1995. Beijing: Tsinghua University Press,2002
    [54] Reh L. Fluidized bed processing[J]. Chem. Eng. Prog,1971,67(2):58~63
    [55]张远君,王慧玉,张振鹏.两相流体动力学[M].北京:北京航空学院出版社,1987,500~514
    [56] Hancock R T. The law of motion of particles in a fluid[J]. Trans. Instn. Min. Engrs,London,1937,(94):114~121
    [57] Wilhelm R H,Kwauk M.Fluidization of solid particles[J].Chem.Eng.Prog,1948,(44):201~218
    [58] Soo S L. Particulates and continuum: Multiphase fluid dynamics[M]. New York:Hardcover, CRC Press,1989
    [59] Ding J, Lyczkowski R W, Sha W T et al. Analysis of liquid-solids suspension velocitiesand concentrations obtained by NMR imaging[J]. Powder Technology,1993,(77):301~312
    [60] Ding J, Gidaspow D. A bubbling fluidization model using kinetic theories of granularflow[J]. AICHE Journal,1990,36(4):523~538
    [61] Mstsen J M.Mechanisms of choking and entrainment[J].Powder Technology,1982,(32):21~33
    [62] Flemmer R L C,Banks C L.On the drag coefficient of a sphere[J].Powder Technology,1986,(48):217~221
    [63]刘彦.固液两相流动边界层的数学模型及流场计算[D].兰州:甘肃工业大学,2001
    [64]王志斌,陈文梅,褚良银,王升贵.水力旋流器固体颗粒运动行为的分析[J].流体机械,2005,33(11):57-60
    [65]王明波,王瑞和.磨料水射流中磨料颗粒的受力分析[J].中国石油大学学报.2006,30(4):47-49
    [66]黄社华,李炜,程良骏.任意流场中稀疏颗粒运动方程及其性质[J].应用数学和力学,2000,21(3):265-276
    [67](美)约翰D.安得森著.计算流体力学基础及其应用[M].北京:机械工业出版社,2007
    [68]闫云飞,张力,高振宇.低压旋流雾化喷嘴内液固两相流动的数值研究[J].中国电机工程学报,2009,29(26):63-67
    [69]周泽宣,Tan SoonKeat,林建忠.含悬浮固粒射流界面稳定性研究[J].应用数学和力学.2000,21(7):669-674
    [70]李丹勋.悬移质颗粒运动特性的研究[D].北京:清华大学,1999
    [71]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1994
    [72] I.Finnie A, Levy D H. Mc Fadden[J]. ASTMSTP-664,1979:36
    [73] Bitter J G A. Wear[M].1963:5~169
    [74] Jahamnir S. Wear[M].1981:309
    [75] Tilly G P. Wear[M].1973:87
    [76] Cousen A K. Hutchings L M. Wear[M].1981(70):335
    [77] Bitter J G A. A study of erosion phenomena[J]. Wear,1963,1(6):5-21
    [78] Hutchings I M. Wear[M].70(1981):269
    [79] Follansbee P S. Wear[M].74(1982):107
    [80]崔月仙.我国植保机械3C认证发展状况及建议[J].中国农机化,2012,239(1):21-23
    [81] Ozkan H E, Ackerman K D. An automated computerized spray pattern analysissystem[J]. Applied Engineering in Agriculture,1992,8(3):325-331
    [82]钟丽.搅拌槽内固—液悬浮的数值模拟[D].北京:北京工业大学,2003
    [83] Zwietering T N.Suspending solid particles in liquid by agitators[J].Chemical Engineering,1958,(8):244-253
    [84] Chudacek M W. Solid suspension behaviour in profiled bottom and flat bottom mixingtanks[J]. Chemical Engineering Science,40(3):385-392
    [85] Bohnet M,Niesmak G.Distribution of solids in stirred suspension[J].German:chemicalEngineering,1980,57(3)
    [86]孙远广.液固两相流固相浓度及沉降速度的测量研究[D].沈阳:东北大学,2009
    [87]孙传友.感测技术与系统设计[M].北京:科学出版社,2004年
    [88]王惠,金以惠.计算机控制系统[M].北京:化学出版社,2000年
    [89]沈银华,邓松圣,张攀锋.喷嘴参数对射流结构影响的数值模拟[J].水科学与工程技术.2007,(2):6-9
    [90]韩占忠,王敬,兰小平. FLUENT:流体工程仿真计算机实例与应用[M].北京:北京理工大学出版社,2004
    [91] Clift R,Grace j R,Weber M E.Bubbles,Drops and Particles[M].New York:Academicpress,1978
    [92] Wallis G B.One-Dimension Two-Phase Flow[M].New York:MoGraw-Hill BookCompany,1969
    [93]王福军.计算流体动力学分析: CFD软件原理与应用[M].北京:机械工业出版社,2004
    [94]钟明春.德国LECHLER喷头的分类及性能指标[J].吉林农业,2011(6):184
    [95]杨学军,严荷荣,周海燕.扇形雾喷嘴的试验研究[J].中国农机化,2005(1):39-42.
    [96] ASAE STANDARDS2008.Spray nozzle classification by droplet Spectra[S].Transactionsof the ASAE S572AUG992000:389–391
    [97] ASAE STANDARDS2007. Test Procedure for Determining the Uniformity of WaterDistribution of Center Pivot and Lateral Move Irrigation Machines Equipped with Spray orSprinkler Nozzles[S]. Transactions of the ASAE S436.1JUN1996:1033-1039
    [98]薛新宇,柳平增,龚艳.喷头综合性能测试实验台的研制及应用[J].中国农机化,2006(2):94-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700