用户名: 密码: 验证码:
设施菜田养分平衡特征与优化调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设施菜田化肥用量过大、氮磷钾施用不平衡、有机肥用量不合理、施肥方法不当等现象十分突出,由此导致了菜田土壤肥力非均匀化、化肥利用率下降、菜田生态环境质量下降、蔬菜产品安全性降低等一系列较为严重的问题。迄今为止,设施菜田的研究工作主要集中在不同肥料用量下作物养分吸收、土壤养分累积、养分运移等单一过程方面,迫切需要全面了解和定量研究养分循环的整个过程。为研究设施菜田土壤-蔬菜系统养分循环与平衡过程,于2009年至2011年在天津市西青区开展田间定位试验,研究了芹菜-番茄轮作体系下有机无机肥料配合施用对设施菜田土壤氨挥发、N_2O排放、养分淋失、作物养分吸收、作物产量等过程的影响。田间试验共设置8个处理,分别为不施氮、(4/4)化肥氮+(0/4)猪粪氮、(3/4)化肥氮+(1/4)猪粪氮、(2/4)化肥氮+(2/4)猪粪氮、(1/4)化肥氮+(3/4)猪粪氮、(2/4)化肥氮+(1/4)猪粪氮+(1/4)秸秆氮、(2/4)化肥氮+(2/4)秸秆氮和农民习惯施肥处理,除不施氮和农民习惯施肥处理外,其余处理等氮等磷等钾。采用通气法测定氨挥发,应用密闭箱-气相色谱法监测N_2O排放,利用田间原位淋溶装置测定养分淋溶损失。研究取得的主要进展如下:
     1.有机无机肥料配合施用对设施菜田土壤氨挥发的影响
     设施芹菜和番茄施基肥后2~3d出现土壤氨挥发高峰,至施基肥后8~10d接近不施氮处理水平;追肥(施肥与灌溉同步)第1d出现氨挥发峰值,至追肥后第10~11d接近不施氮处理水平。土壤氨挥发受温度影响显著,各处理土壤氨挥发速率与5cm土层温度之间总体上呈显著相关,相关系数在0.37~0.67之间。土壤氨挥发主要发生在温度较高的番茄季,番茄季各处理土壤氨挥发总量是芹菜季的3.0倍。设施菜田大幅减施肥料的有机无机肥料配合施用模式可显著降低土壤氨挥发损失量,芹菜季和番茄季土壤氨挥发损失量较习惯施肥处理的分别降低50.0%和47.9%。等氮量投入时,施用秸秆较施用猪粪可有效降低土壤氨挥发损失,芹菜季和番茄季(2/4)化肥N+(2/4)秸秆N处理土壤氨挥发损失量较(2/4)化肥N+(2/4)猪粪N处理的分别降低32.4%和30.0%。
     2.有机无机肥料配合施用对设施菜田土壤N_2O排放的影响
     设施芹菜和番茄施基肥后5~7d(灌溉后1~3d)出现土壤N_2O排放通量峰值,至施肥后20d(灌溉后15~16d)接近不施氮处理水平;追肥后(施肥与灌溉同步)1d出现土壤N_2O排放通量峰值,至追肥后第11d接近不施氮处理水平。芹菜季和番茄季施用基肥后20d内N_2O排放量分别占当季总排放量的40%~65%,是土壤N_2O主要排放期。土壤N_2O排放受灌水影响较大,施用基肥后至定植灌水前各处理土壤N_2O排放量逐渐降低,灌水后N_2O排放通量迅速上升。各处理土壤N_2O排放通量与土壤含水量之间呈显著相关,相关系数在0.43~0.72之间。土壤N_2O排放受温度影响显著,各处理土壤N_2O排放通量与5cm土层温度之间总体上呈显著相关,相关系数在0.40~0.58之间。土壤N_2O排放主要发生在温度较高的番茄季,番茄季各处理土壤N_2O总排放量是芹菜季的3.1倍。设施菜田大幅减施肥料的有机无机肥配合施用模式可显著降低土壤N_2O排放量和肥料损失率,芹菜季和番茄季土壤N_2O排放量较习惯施肥处理分别降低了66.3%和85.1%,肥料损失率分别降低了45.2%和74.9%。等氮量投入时,施用秸秆较施用猪粪可有效降低土壤N_2O排放,芹菜季和番茄季(2/4)化肥N+(2/4)秸秆N处理土壤N_2O排放量较(2/4)化肥N+(2/4)猪粪N处理分别降低了43.4%和74.2%。
     3.有机无机肥料配合施用对设施菜田养分淋失的影响
     有机无机肥料配合施用模式能显著降低渗漏水中氮素(总氮、硝态氮和铵态氮)渗漏量,渗漏水中总氮和硝态氮渗漏量较全部施用化肥处理的平均分别降低29.6%和33.0%,较习惯施肥处理的平均分别降低54.5%和55.7%;铵态氮渗漏量较习惯施肥处理的平均降低59.8%。氮素淋失主要以硝态氮为主,硝态氮淋失比例平均在80%左右。有机无机肥料配合施用模式可降低渗漏水中磷素和钾素渗漏量。设施菜田养分淋溶损失主要是氮素淋失,磷、钾淋失量很低,总氮、总磷(P)和总钾(K)淋失量平均分别为37.2、0.114和1.45kg/hm~2。等氮等磷等钾条件下,有机肥替代化肥可以有效降低渗漏水中氮素(总氮、硝态氮和铵态氮)的渗漏量。
     4.有机无机肥料配合施用对设施菜田土壤肥力的影响
     芹菜收获后(2月份)从耕层到深层土壤硝态氮含量总体上呈逐渐增加的趋势,番茄收获后(6月份)土壤硝态氮含量总体上表现出表层增加、深层降低的趋势。与习惯施肥处理相比,大幅减施肥料的有机无机肥料配合施用模式处理可显著降低土壤硝态氮含量,0~20、20~40、40~60、60~80和80~100cm土层硝态氮含量较习惯施肥处理的平均分别降低34.5%、44.9%、44.7%、40.2%和34.6%。土壤速效磷含量从表层至深层表现出明显下降的趋势。与习惯施肥处理相比,大幅减施肥料的有机无机肥料配合施用模式处理可显著降低土壤速效磷含量,0~20、20~40、40~60和60~80cm土层速效磷含量较习惯施肥处理的平均分别降低21.0%、21.6%、21.1%和21.7%。施用有机肥可显著增加土壤有机质含量,第一茬~第四茬有机无机肥料配合施用模式处理0~20cm土层有机质含量较全部施用化肥处理的平均分别增加8.5%、12.2%、17.5%和24.5%(平均15.7%)。
     5.有机无机肥料配合施用对设施蔬菜产量、品质及养分吸收的影响
     与习惯施肥处理相比,大幅减施肥料的有机无机肥配合施用模式处理均能保证芹菜和番茄产量稳定,显著提高经济效益,其中(3/4)化肥氮+(1/4)猪粪氮模式处理产量和效益相对较高,较全部施用化肥处理产量和效益平均分别增加4.8%和9351元/hm~2,较习惯施肥处理产量和效益平均分别增加5.1%和28431元/hm~2。有机无机肥料配合施用模式处理可降低蔬菜可食部分的硝酸盐含量,较全部施用化肥处理和习惯施肥处理的平均分别降低11.3%和19.1%;有机无机肥料配合施用模式处理总体上可提高芹菜可食部分和番茄果实中的Vc含量,芹菜季较全部施用化肥处理的平均提高32.6%,番茄季平均提高6.5%。与习惯施肥处理相比,大幅减施肥料的有机无机肥配合施用模式处理总体上可以保证芹菜和番茄植株氮素累积量的稳定和提高;各处理植株磷素累积量总体上差异不明显;与习惯施肥处理相比,大幅减施肥料的有机无机肥配合施用模式处理总体上可以保证芹菜和番茄植株钾素累积量的稳定。每生产1000kg芹菜产品对N、P_2O_5和K_2O的吸收量平均分别为1.91、0.96和5.47kg,N、P_2O_5和K_2O吸收比例平均为1:0.52:2.93;每生产1000kg番茄产品对N、P_2O_5和K_2O的吸收量平均分别为2.33、0.83和4.68kg,N、P_2O_5和K_2O吸收比例平均为1:0.36:2.02。
     6.有机无机肥料配合施用条件下设施菜田养分平衡特征
     施肥是养分输入的主要途径,其比例占到总输入量的95%以上,灌溉水和种子带入的养分量所占比例低于5%。作物吸收是养分输出的主要途径,氮、磷和钾吸收量平均分别占其总输入量的49.1%、34.6%和94.3%。氮素淋溶量平均占氮素总输入量的7.7%;磷和钾淋失量极少,占其总输入量的比例均低于1%。氮素气体损失(氨挥发和N_2O排放)的量较低,占氮素总输入量的比例低于5%。与习惯施肥处理相比,大幅减施肥料的有机无机肥料配合施用模式处理可显著降低土壤氮、磷和钾盈余量,有机无机肥料配合施用模式处理周年N、P_2O_5和K_2O盈余量较习惯施肥处理的平均分别降低71.7%、75.4%和90.0%。大幅减施肥料的有机无机肥料配合施用模式处理周年钾素基本保持平衡,而周年氮素和磷素盈余仍较多,需对设施菜田氮肥和磷肥用量作进一步调整,以提高氮肥和磷肥利用效率。在本试验条件下,短期内基于产量、经济效益和环境效益的适宜有机无机肥料配合施用模式为(3/4)化肥N+(1/4)猪粪N模式处理。
Recently, the excessive use of chemical fertilizer (especially nitrogen and phosphorus fertilizers),unbalanced application of nitrogen, phosphorus and potassium, irrational application (excessive orinsufficient) of organic manure, and improper fertilization methods led to some serious problems, suchas degradation of soil fertility, low fertilizer use efficiency, negative impact on environment anddecreasing safety of vegetable products in main greenhouse vegetable production regions in China.Little information is available on the effect of different fertilization patterns on NH3volatilization,nitrous oxide (N_2O) fluxes, and nutrient leaching loss from greenhouse vegetable soils. Scientificevaluation of nutrient balance in soil-greenhouse vegetable system is very helpful for improving soilfertility management. This study was conducted to determine the effect of combined application oforganic manure and chemical fertilizers on ammonia volatilization, N_2O emission, nutrient leaching,soil fertility, nutrient uptake by vegetable (celery-tomato rotation), and vegetable yield undergreenhouse condition in Tianjin from2009to2011. The field experiment consisted of eight treatments:1) No N,2)4/4CN, all nitrogen in chemical fertilizer (CN),3)3/4CN+1/4nitrogen in organicmanure(PN),4)2/4CN+2/4PN,5)1/4CN+3/4PN,6)2/4CN+1/4PN+1/4nitrogen in straw (SN),7)2/4CN+2/4SN and8) CF, conventional fertilization. Equal amount of N, P and K was used fortreatments2,3,4,5,6and7and same rates of P_2O_5and K_2O were applied for treatments1,2,3,4,5,6and7. Soil NH3volatilization, N_2O emission and nutrient leaching loss was measured by the ventingmethod, static chamber-gas chromatograph method and a lysimeter device method with undisturbed soillayers. The main results obtained are summarized as follows:
     1. Effects of combined application of organic manure and chemical fertilizers on ammoniavolatilization from greenhouse vegetable soil
     The peak of NH3volatilization rate occurred within2~3days after basal fertilization, whereas infirst day after fertilizer top-dressing (fertilization and irrigation were carried out simultaneously) duringthe celery and tomato growth period. Thereafter, the NH_3volatilization rate from the nitrogenapplication treatment decreased and closed to the similar level from the no nitrogen applicationtreatment8~10days after basal fertilization and10~11days after fertilizer top-dressing. The NH_3volatilization was significantly affected by temperature and exhibited obviously seasonal variationsduring the celery and tomato growth period. Significant correlations between the NH3volatilization andsoil temperature in5cm soil layer during the celery and tomato growth period were generally observed,with correlation coefficients ranging from0.37to0.67.Total NH3volatilization during tomato growthperiod with higher temperature was notably higher than that in celery season, with the total amounts ofNH3volatilization for all treatments in tomato season being3.0times of that from the celery growthperiod. Compared with the conventional fertilization with much higher rates of fertilizers, the combinedapplication patterns of organic manure and chemical fertilizers significantly decreased the total NH3volatilization by50.0%and47.9%during the celery and tomato growth period, respectively. Strawapplication compared with pig manure application with the same N rate respectively decreased the NH_3 volatilization by32.4%and30.0%during the growth period of celery and tomato under thisexperimental condition.
     2. Effects of combined application of organic manure and chemical fertilizers on N_2Oemission from greenhouse vegetable soil
     The peak of N_2O emission flux occurred within5~7days after basal fertilization (1~3days afterirrigation), whereas within1day after fertilizer top-dressing (fertilization and irrigation were carriedout simultaneously) during the celery and tomato growth period. The N_2O emission fluxes from thenitrogen application treatments were close to the flux from the no nitrogen application treatment20days after basal fertilization (15~16days after irrigation), whereas11days after fertilizer top-dressing.40%~65%of total N_2O emissions during celery or tomato growth period occurred from the first20days after basal fertilization. The N_2O emission fluxes were greatly affected by irrigation during thegrowth period of celery and tomato, with the fluxes gradually decreasing after basal fertilization, thenrapidly increasing after irrigation. Significant correlations between the N_2O emission fluxes for alltreatments and soil moistures were observed, with correlation coefficients ranging from0.43to0.72.The N_2O emission was significantly affected by temperature, and exhibited obviously seasonalvariations during the celery and tomato season. Significant correlations between the N_2O emissionfluxes for different treatments and soil temperatures in5cm soil layer during the celery and tomatogrowth period were generally observed, with correlation coefficients ranging from0.40to0.58. TotalN_2O emission during tomato growth period with higher temperature was higher than that during celeryseason, with the total amounts for all treatments in tomato season being3.1times as high as that of thecelery growth period. Compared with the conventional fertilization with much higher rates of fertilizers,the combined application patterns of organic manure and chemical fertilizers significantly decreased thetotal N_2O emissions by66.3%and85.1%as well as loss ratio of N fertilizer by45.2%and74.9%during the celery and tomato growth period, respectively. Straw application compared with pig manureapplication with the same N rate respectively decreased the N_2O emission by43.4%and74.2%duringthe growth period of celery and tomato under this experimental condition.
     3. Effects of combined application of organic manure and chemical fertilizers on soil nutrientleaching loss under greenhouse condition
     Compared with treatments of all NPK applied with chemical fertilizer and the conventionalfertilization treatment, the combined application patterns of organic manure and chemical fertilizersdecreased total N leakage rate in the leakage water by29.6%and54.5%, and NO_3~--N leakage rate inthe leakage water by33.0%and55.7%, respectively. Compared with the conventional fertilization, thecombined application patterns of organic manure and chemical fertilizers decreased NH_4~+-N leakagerate in the leakage water by59.8%. NO_3~--N leaching loss accounted for almost80%of total nitrogenleakage rate during four growth seasons. Compared with the conventional fertilization, the combinedapplication patterns of organic manure and chemical fertilizers decreased total P and total K leakage rate,respectively. Nitrogen leaching loss was identified as significant sources of leaching loss in soilnutrients (N, P and K) under greenhouse condition. The average leakage rates of nitrogen (N), phosphorus (P) and potassium (K) for all treatments were37.2,0.114and1.45kg/ha. Combinedapplication patterns of organic manure and chemical fertilizers with the same NPK rate significantlydecreased nitrogen (Total N, NO_3~--N and NH_4~+-N) leakage rates in the leakage water.
     4. Effects of combined application of organic manure and chemical fertilizers on soil fertilityunder greenhouse condition
     Soil nitrate contents generally tended to increase from surface soil layer (0-20cm) to deep soillayer after celery harvest, whereas increase in surface soil layer and decrease in deep soil layers aftertomato harvest. Compared with the conventional fertilization, the combined application patterns oforganic manure and chemical fertilizers significantly decreased NO-3-N contents in soil layers of0-20,20-40,40-60,60-80and80-100cm by34.5%,44.9%,44.7%,40.2%and34.6%, respectively. Soilavailable P generally tended to decrease from surface soil layers to deep soil layer after celery andtomato harvest. Compared with the conventional fertilization, the combined application patterns oforganic manure and chemical fertilizers decreased available P contents in soil layers of0-20,20-40,40-60, and60-80cm by21.0%,21.6%,21.1%and21.7%, respectively. The combined applicationpatterns of organic manure and chemical fertilizers significantly increased soil OM contents by8.5%,12.2%,17.5%and24.5%(averaged15.7%for four growth seasons) than that with treatment of all NPKapplied with chemical fertilizer after celery and tomato harvest.
     5. Effects of combined application of organic manure and chemical fertilizers on vegetableyield, qulity and nutrient uptake under greenhouse condition
     Compared with the conventional fertilization with much higher rates of N, P_2O_5and K_2O, there arenot significant differences of celery and tomato yields under the different combined application patternsof organic manure and chemical fertilizers with proper rates of N, P_2O_5and K_2O. Income of thecombined application patterns of organic manure and chemical fertilizers was significantly increased.Compared with treatments of all NPK applied with chemical fertilizer and the conventional fertilizationtreatment, the combined application pattern of3/4N in chemical fertilizer and1/4N in organic manureincreased yield by4.8%and5.1%, and increased income by9351and28431RMB yuan/ha,respectively. Compared with treatments of all NPK applied with chemical fertilizer and the conventionalfertilization treatment, the combined application patterns of organic manure and chemical fertilizersdecreased nitrate contents in edible parts of vegetable by11.3and19.1%, respectively. Whereas thecombined application patterns of organic manure and chemical fertilizers increased Vc contents inedible celery parts and fruit of tomato by32.6%and6.5%, respectively, than that in treatment of allNPK applied with chemical fertilizer. Compared with the conventional fertilization, there are notsignificant differences of celery and tomato nutrient (N, P_2O_5and K_2O) uptake under the differentcombined application patterns of organic manure and chemical fertilizers with proper rates of N, P_2O_5and K_2O. The average plant uptake of N, P_2O_5and K_2O for producing1000kg products were1.91,0.96and5.47kg for celery, and2.33,0.83and4.68kg for tomato, respectively. The average uptake ratio ofN, P_2O_5and K_2O was1:0.52:2.93for celery, and1:0.36:2.02for tomato.
     6. Nutrient balance in soil–greenhouse vegetable system under the combined application patterns of organic manure and chemical fertilizers
     Nutrient application with both chemical fertilizer and organic manre was the main source ofnutrient input, accounting for more than95%of the total nutrient input. Crop nutrient uptake wasprimary nutrient output, with N, P_2O_5and K_2O uptake accounting for49.1%,34.6%and94.3%of totalN, P_2O_5and K_2O input, respectively. Moreover, the average N leakage rate accounted for7.7%of totalN input, whereas P or K leakage rate only contributed less than1%of the total P or K input. NH3volatilization and N_2O emission contributed less than5%of the total N input. Compared with theconventional fertilization, the combined application patterns of organic manure and chemical fertilizersdecreased the annual N, P_2O_5and K_2O surpluses rate by71.7%,75.4%and90.0%, respectively. Theannual N and P_2O_5surpluses in the soil–greenhouse vegetable system still exceeded its rational range.Application of P and K fertilizers in the soil–greenhouse vegetable system should be improved bybalanced fertilization to rationalize P and K status. The proper pattern of combined application oforganic manure and chemical fertilizers based on yield, income and environment during a short periodwas the pattern of combined application of3/4N in chemical fertilizer and1/4N in organic manureunder this experimental condition.
引文
1.白红英,孙华,李世清,等.地膜的水热效应与麦田土壤N2O排放[J].农业环境科学学报,2009,28(10):2111-2118
    2.白小琳,张海林,陈阜,等.耕作措施对双季稻田CH4与N2O排放的影响[J].农业工程学报,2010,26(1):282-289.
    3.柏兆海,万其宇,李海港,等.县域农田土壤磷素积累及淋失风险分析——以北京市平谷区为例[J].农业环境科学学报,2011,30(9):1853-1860.
    4.鲍士旦.土壤农化分析[M].北京:中国农业出版社.2000.58-61
    5.曹兵,贺发云,徐秋明,等.南京郊区番茄地中氮肥的效应与去向[J].应用生态学报,2006,17(10):1839-1844
    6.陈平,杜太生,王峰等.西北旱区温室辣椒产量和品质对不同生育期灌溉调控的响应.中国农业科学,2009,42(9):3203-3208
    7.陈卫卫,张友民,王毅勇,等.三江平原稻田N2O通量特征[J].农业环境科学学报,2007,1(26):364-368.
    8.丁洪,蔡贵信,王跃思,等.玉米-潮土系统中氮肥硝化反硝化损失和N2O排放[J].中国农业科学,2001,34(4):416-421.
    9.丁洪,王跃思,项虹艳,等.菜田氮素反硝化损失与N2O排放的定量评价[J].园艺学报,2004,31(6):762-766
    10.董文旭,吴电明,胡春胜,等.华北山前平原农田氨挥发速率与调控研究[J].中国生态农业学报,2011,19(5):1115-1121.
    11.董玉红,欧阳竹,李运生,等.不同施肥方式对农田土壤CO2和N2O排放的影响[J].中国土壤与肥料,2007(4):34-39
    12.董章杭,李季,孙丽梅.集约化蔬菜种植区化肥施用对地下水硝酸盐污染影响的研究——以“中国蔬菜之乡”山东省寿光市为例[J].农业环境科学学报,2005,24(6):1139-1144.
    13.杜建军,毋永龙,田吉林,等.控/缓释肥料减少氨挥发和氮淋溶的效果研究[J].水土保持学报,2007,2(2):49-52
    14.杜军,杨培岭,李云开,等.灌溉、施肥和浅水埋深对小麦产量和硝态氮淋溶损失的影响[J].农业工程学报,2011,27(2):57-64.
    15.杜连凤,赵同科,安志装,等.菜地氮素循环途径及其环境效应综述[J].中国农学通报,24(2):414-418.
    16.杜亚琴,郑丽行,樊小林.三种控释肥在赤红壤中的氧化亚氮排放[J].应用生态学报,2011,22(9):2370-2376.
    17.樊兆博,刘美菊,张晓曼,等.滴灌施肥对设施番茄产量和氮素表观平衡的影响[J].植物营养与肥料学报,2011,17(4):970-976.
    18.范凤翠,李志宏,张立峰,等.日光温室番茄灌水量与根层硝态氮淋溶特征及渗漏关系研究[J].植物营养与肥料学报,2010,16(5):1161-1169.
    19.高兵,任涛,李俊良,等.灌溉策略及氮肥施用对设施番茄产量及氮素利用的影响[J].植物营养与肥料学报,2008,14(6):1104-1109.
    20.高峻岭,宋朝玉,黄绍文等.青岛市设施蔬菜施肥现状与土壤养分状况[J].山东农业科学,2011,3:68-72
    21.高峻岭,宋朝玉,王玉军等.施肥对青岛市设施蔬菜产量、净产值及土壤环境的影响[J].中国生态农业学报,2011,19(6):1261-1267
    22.高伟,朱静华,高宝岩,等.天津市设施蔬菜不同种植年限土壤及地下水养分特征[J].华北农学报,2010,25(2):206–211.
    23.高伟,朱静华,李明悦,等.有机无机肥料配合施用对设施条件下芹菜产量、品质及硝酸盐淋溶的影响[J].植物营养与肥料学报,2011,17(3):657-664.
    24.高忠霞,杨学云,周建斌,等.小麦-玉米轮作期间不同施肥处理氮素的淋溶形态及数量[J].农业环境科学学报,2010,29(8):1624-1632.
    25.葛顺峰,姜远茂,彭福田,等.春季有机肥和化肥配施对苹果园土壤氨挥发的影响[J].水土保持学报,2010,24(5):199-203.
    26.耿玉辉,卢文喜,姜亦梅.秸秆培肥土壤对优先流中养分淋失的影响[J].西北农林科技大学学报,2007,35(11):146-150,155
    27.龚文,张怀志,李永梅,等.滇池流域原位模拟降雨条件下不同有机肥用量的农田氮素流失研究[J].中国土壤与肥料,2010,(2):16-20.
    28.郭颖,赵牧秋,吴蕊,等.有机肥对设施菜地土壤-植物系统硝酸盐迁移累积的影响[J].农业环境科学学报,2008,27(5):1831-1835.
    29.国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002
    30.过燕琴,高志亮,张令,等.设施和露天栽培下有机菜地土壤氮素矿化和硝化作用的比较研究[J].农业环境科学学报2010,29(12):2436-2442
    31.郝小雨,高伟,王玉军,等.有机无机肥料配施对设施番茄产量、品质和硝态氮淋失的影响[J].农业环境科学学报,2012,31(3):538-547.
    32.何传龙,马友,于红梅,等.减量施肥对保护地土壤养分淋失及番茄产量的影响[J].植物营养与肥料学报,2010,16(4):846-851.
    33.何飞飞,任涛,陈清,等.日光温室蔬菜的氮素平衡及施肥调控潜力分析[J].植物营养与肥料学报,2008,14(4):692-699.
    34.贺发云,尹斌,蔡贵信,等.菜地和旱作粮地土壤氮素矿化和硝化作用的比较[J].土壤通报,2005,36(1):41-44.
    35.贺发云,尹斌,金雪霞,等.南京两种菜地土壤氨挥发的研究[J].土壤学报,2005,42(2):253-259.
    36.侯爱新,陈冠雄,吴杰,等.稻田CH4和N2O排放关系及其生物学机理和一些影响因子[J].应用生态学报,1997,8(3):270-274.
    37.胡诚,曹志平,胡菊,等.长期施用生物有机肥土壤的氮矿化[J].生态学报,2009,29(4):2080-2086
    38.胡春胜,董文旭,张玉铭,等.华北山前平原农田生态系统氮通量与调控[J].中国生态农业学报,2011,19(5):997-1003.
    39.胡道龙,崔骁勇,王艳,等.京郊保护地土壤氮素矿化研究[J].华北农学报,2008,23(5):214-218
    40.胡小凤,王正银,孙倩倩,等.缓释复合肥料在不同pH值紫色土中氨挥发特性[J].农业工程学报,2009,25(6):100-103.
    41.胡晓霞,丁洪,张玉树,等.不同菜地土壤硝化与反硝化活性[J].农业环境科学学报2009,28(12):2657-2662.
    42.胡玉婷,廖千家骅,王书伟,等.中国农田氮淋失相关因素分析及总氮淋失量估算[J].土壤,2011,43(1):19-25
    43.黄德明,徐秋明,李亚星,等.土壤氮、磷营养过剩对微量元素锌、锰、铁、铜有效性及植株中含量的影响[J].植物营养与肥料学报,2007,13(5):966-970.
    44.黄东风,王果,李卫华,等.不同施肥模式对蔬菜生长、氮肥利用及菜地氮流失的影响[J].应用生态学报,2009,20(3):631-638.
    45.黄东风,王果,李卫华,等.施肥模式对蔬菜产量、硝酸盐含量及模拟土柱氮磷淋失的影响[J].生态与农村环境学报,2009,25(2):68-73.
    46.黄光辉,张明园,陈阜,等.耕作措施对华北地区冬小麦田N2O排放的影响[J].农业工程学报,2011,27(2):167-173.
    47.黄绍敏,宝德俊,皇甫湘荣,等.长期施用有机和无机肥对潮土氮素平衡与去向的影响[J].植物营养与肥料学报,2006,12(4):479-484
    48.黄绍敏,郭斗斗,张水清.长期施用有机肥和过磷酸钙对潮土有效磷积累与淋溶的影响[J].应用生态学报,2011,22(1):93-98.
    49.黄绍文,王玉军,金继运,等.我国主要菜区土壤盐分、酸碱性和肥力状况[J].植物营养与肥料学报,2011,17(4):906-918
    50.黄树辉,吕军.农田土壤N2O排放研究进展[J].土壤通报,2004,35(4):516-522.
    51.吉艳芝,巨晓棠,刘新宇,等.不同施氮量对冬小麦田氮去向和气态损失的影响[J].水土保持学报,2012,24(3):114-118.
    52.纪玉刚,孙静文,周卫,等.东北黑土玉米单作体系氨挥发特征研究[J].植物营养与肥料学报,2009,15(5):1044-1050.
    53.姜勇,张玉革,李纪柏,等.沈阳市苏家屯区耕地土壤有效氮磷钾变化趋势的研究[J].沈阳农业大学学报,2002,33(2):107-109.
    54.解文艳,樊贵盛,周怀平,等.旱地褐土长期定位施肥土壤剖面硝态氮分布与累积研究[J].华北农学报,2011,26(2):180-185
    55.金雪霞,范晓晖,蔡贵信,等.菜地土壤氮素矿化和硝化作用的特征[J].土壤,2004,36(4):382-386.
    56.靳红梅,常志州,郭德杰,等.追施猪粪沼液对菜地氨挥发的影响[J].土壤学报,2012,4(1):86-95.
    57.董文旭,吴电明,胡春胜,等.华北山前平原农田氨挥发速率与调控研究[J].中国生态农业学报,2011,19(5):1115-1121.
    58.巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中氮肥效应和平衡研究[J].中国农业科学,2002,35(11):1361-1368.
    59.巨晓棠,刘学军,邹国元,等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):1493-1499.
    60.李菊梅,徐明岗,秦道珠,等.有机无机肥配施对稻田氨挥发和水稻产量影响[J].植物营养与肥料学报,2005,11(1):51-56.
    61.李俊良,崔德杰,孟祥霞,等.山东寿光保护地蔬菜施肥现状及问题的研究[J].土壤通报,2002,33(2):126–128.
    62.李同杰,刘晶晶,刘春生,等.磷在棕壤中淋溶迁移特征研究[J].水土保持学报,2006,20(4):35-39
    63.李晓,颜晓元,邢光熹,等.不同动物排泄物氮的作物利用及对N2O排放的贡献[J].土壤,2008,40(4):548-553
    64.李新慧.京郊粮田土壤氮索损失机制与提高氮肥利用率[J].北京土壤学会简讯,1999,(2):
    5.
    65.李鑫,巨晓棠,张丽娟,等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J].应用生态学报,2008,19(1):99-104.
    66.李毅杰,原保忠,别之龙,等.不同土壤水分下限对大棚滴灌甜瓜产量和品质的影响[J].农业工程学报,2012,28(6):132-138.
    67.李银坤,武雪萍,梅旭荣,等.常规灌溉条件下施氮对温室土壤氨挥发的影响[J].农业工程学报,2011,27(7):23-30.
    68.李玉梅,冯浩,吴淑芳.秸秆粉碎氨化还田对土壤养分淋溶损失的影响[J].水土保持学报,2010,24(1):12-15
    69.李宗新,董树亭,王空军,等.不同施肥条件下玉米田土壤养分淋溶规律的原位研究[J].应用生态学报,2008,19(1):65-70.
    70.李宗新,王庆成,刘开昌,等.不同施肥模式下夏玉米田间土壤氨挥发规律[J].生态学报,2009,29(1):307-314.
    71.梁东丽,方日尧,李生秀,等.硝、铵态氮肥对旱地土壤氧化亚氮排放的影响[J].干旱地区农业研究,2007,25(1):67-72.
    72.梁国庆,周卫,夏文建,等.优化施氮下稻-麦轮作体系土壤N2O排放研究[J].植物营养与肥料学报,2010,16(2):304-211
    73.林立,胡克林,李光德,等.高产粮区不同施肥模式下玉米季农田氮素损失途径分析[J].环境科学,2011,32(9):2617-2624.
    74.刘枫,赵正雄,李忠环,等.不同前茬作物条件下烤烟氮磷钾养分平衡[J].应用生态学报,2011,22(10):2622-2626
    75.刘浩,孙景生,王聪聪.土壤水分状况对温室青茄水分利用和外观品质的影响[J].中国生态农业学报,2011,19(4):812-817
    76.刘宏斌,李志宏,张维理,等.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J].植物营养与肥料学报,2004,10(3):286-291.
    77.刘宏斌.施肥对北京市农田土壤硝态氮积累与地下水污染的影响[D].北京:中国农业科学院博士学位论文,2002.
    78.刘晓梅,方建,张婧等.长期施肥对麦田土壤微生物垂直分布的影响[J].植物生态学报,2009,33(2)397-404
    79.刘新宇,巨晓棠,张丽娟,等.不同施氮水平对冬小麦季化肥氮去向及土壤氮素平衡的影响[J].植物营养与肥料学报2010,16(2):296-303
    80.刘运通,万运帆,林而达,等.施肥与灌溉对春玉米土壤N2O排放通量的影响[J].农业环境科学学报,2008,27(3):997-1002
    81.刘兆辉,江丽华,张文君,等.设施菜地土壤养分演变规律及对地下水威胁的研究[J].土壤通报,2008,39(2):293-298
    82.刘兆辉,江丽华,张文君等.山东省设施蔬菜施肥量演变及土壤养分变化规律[J].土壤学报,2008,45(2):296-303
    83.卢丽兰,甘炳春,许明会,等.不同施肥与灌水量对槟榔土壤氨挥发的影响[J].生态学报,2011,31(15):4477-4484.
    84.卢艳艳,宋付朋.不同包膜控释尿素对农田土壤氨挥发的影响[J].生态学报,2011,31(23):7133-7140.
    85.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.125-143
    86.鲁如坤.土壤P素水平和水体环境保护[J].磷肥与复肥,2003,18(1):4-8.
    87.吕福堂,张秀省,董杰,等.日光温室土壤速效养分的累积和淋移特征研究[J].水土保持学报,2009,23(5):191-194
    88.吕海霞,周鑫斌,张金波,等.长白山4种森林土壤反硝化潜力及产物组成[J].土壤学报,2011,48(1):39-46
    89.吕家珑,Fortune S,Brookes P C.土壤磷淋溶状况及其Olsen磷“突变点”研究[J].农业环境科学学报,2003,22(2):142-146.
    90.孟磊,蔡祖聪,丁维新.长期施肥对华北典型潮土N分配和N2O排放的影响[J].生态学报,2008,28(12):6197-6203.
    91.孟祥海,魏丹,王玉峰,等.氮素水平与施氮方式对稻田氨挥发影响[J].黑龙江农业科学,2011,12:38-41.
    92.母国宏,白红英,刘连杰.水热条件对黄土性小麦田N2O排放特征的影响[J].农业环境科学学报,2007,26(4):1561-1567.
    93.倪康,丁维新,蔡祖聪.有机无机肥长期定位试验土壤小麦季氨挥发损失及其影响因素研究[J].农业环境科学学报,2009,28(12):2614-2622.
    94.宁建凤,罗文贱,杨少海,等.施磷对苦麦菜生长及土壤磷素淋失的影响[J].中国生态农业学报,2011,19(3):525-531.
    95.宁建凤,邹献中,杨少海,等.有机无机氮肥配施对土壤氮淋失及油麦菜生长的影响[J].农业工程学报,2007,23(11):95-100.
    96.彭世彰,杨士红,徐俊增.节水灌溉稻田氨挥发损失及影响因素[J].农业工程学报,2009,25(8):35-39.
    97.秦红灵,全智,刘新亮,等.长沙市郊不同种植年限菜地土壤磷状况及淋失风险分析[J].中国农业科学,2010,43(9):1843-1851.
    98.邱炜红,刘金山,胡承孝,等.不同施氮水平对菜地土壤N2O排放的影响[J].农业环境科学学报,2010,29(11):2238-2243.
    99.阮晓红,王超,朱亮.氮在饱和土壤层中迁移转化特征研究[J].河海大学学报,1996,24(2):51-55.
    100.上官宇先,师日鹏,韩坤,等.垄作覆膜条件下冬小麦田的氨挥发研究[J].干旱地区农业研究,2011,29(5):163-168.
    101.施振香,柳云龙,尹骏,等.上海城郊不同农业用地类型土壤硝化和反硝化作用[J].水土保持学报,2009,23(6):99-102,111.
    102.史奕,黄国宏.土壤中反硝化酶活性变化与N2O排放的关系[J].应用生态学报,1999,10(3):329-331.
    103.宋长春,张丽华,王毅勇.淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应[J].环境科学,2006,12(27):2369-2375.
    104.苏芳,丁新泉,高志岭,等.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[J].中国环境科学,2007,27(3):409-413.
    105.苏芳,黄彬香,丁新泉,等.不同氮肥形态的氨挥发损失比较[J].土壤,2006,38(6):682-686.
    106.孙华银,康绍忠,胡笑涛,等.根系分区交替灌溉对温室甜椒不同灌水下限的响应[J].农业工程学报,2008,24(6):78-84.
    107.孙克君,毛小云,卢其明,等.几种控释氮肥减少氨挥发的效果及影响因素研究[J].应用生态学报,2004,15(12):2347-2350.
    108.孙志强,郝庆菊,江长胜,等.农田土壤N2O的产生机制及其影响因素研究进展[J].土壤通报,2010,41(6):1524-1530.
    109.谭德水,江丽华,张骞,等.同施肥模式调控沿湖农田无机氮流失的原位研究——以南四湖过水区粮田为例[J].生态学报,2011,31(12):3488-3496.
    110.汤丽玲,陈清,李晓林,等.日光温室秋冬茬番茄氮素供应目标值的研究[J].植物营养与肥料学报,2005,11(2):230-235.
    111.万运帆,李玉娥,高清竹,等.不同农业措施下冬小麦田N2O排放通量的特征[J].中国农业气象,2008,29(2):130-133.
    112.汪军,王德建,张刚,等.秸秆还田条件下氮肥用量对稻田氮素淋失的影响[J].中国环境科学,2010,30(12):1650-1657.
    113.汪涛,朱波,况福虹,等.有机-无机肥配施对紫色土坡耕地氮素淋失的影响[J].环境科学学报,2010,30(4):781-788.
    114.王朝辉,刘学军,巨晓棠,等.田间土壤氨挥发的原位测定——通气法[J].植物营养与肥料学报,2002,8(2):205-209.
    115.王朝辉,田霄鸿,李生秀.冬小麦生长后期地上部分氮素的氨挥发损失[J].作物学报,2001,27(1):1-6.
    116.王淳,周卫,李祖章,等.不同施氮量下双季稻连作体系土壤氨挥发损失研究[J].植物营养与肥料学报,2012,18(2):349-358.
    117.王东,于振文,于文明.施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响[J].应用生态学报,2006,17(9):1593-1598.
    118.王改玲,郝明德,陈德立.硝化抑制剂和通气调节对土壤N2O排放的影响[J].植物营养与肥料学报2006,12(1):32-36.
    119.王海云,邢光熹.不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J].农业环境科学学报2009,28(12):2631-2636.
    120.王红霞,周建斌,雷张玲,等.有机肥中不同形态氮及可溶性有机碳在土壤中淋溶特性研究[J].农业环境科学学报,2008,27(4):1364-1370.
    121.王立刚,李虎,邱建军.黄淮海平原典型农田土壤N2O的排放特征[J].中国农业科学,2008,41(4):1248-1254.
    122.王立河,孙新政,赵喜茹,等.有机肥与氮肥配施对日光温室黄瓜产量和品质的影响[J].中国农学通报,2006,22(11):237-242.
    123.王立河,赵喜茹,王喜枝,等.有机肥与氮肥配施对日光温室黄瓜和土壤硝酸盐含量的影响[J].土壤通报,2007,38(3):472-476.
    124.王帘里,孙波.温度和土壤类型对氮素矿化的影响[J].植物营养与肥料学报,2011,17(3):583-591
    125.王柳,张福墁,魏秀菊.不同氮肥水平对日光温室黄瓜品质和产量的影响[J].农业工程学报,2007,23(12):225-229.
    126.王新军,廖文华,刘建玲.菜地土壤磷素淋失及其影响因素[J].华北农学报,2006,21(4):67-70.
    127.王秀斌,梁国庆,周卫,等.优化施肥下华北冬小麦/夏玉米轮作体系农田反硝化损失与N2O排放特征[J].植物营养与肥料学报,2009,15(1):48-54
    128.王秀斌,周卫,梁国庆,等.优化施肥条件下华北冬小麦/夏玉米轮作体系的土壤氨挥发[J].植物营养与肥料学报,2009,15(2):344-351.
    129.王秀斌.优化施氮下冬小麦-夏玉米轮作农田氮素循环与平衡研究[D].北京:中国农业科学院博士论文,2009
    130.王永生,杨世琦.宁夏黄灌区稻田冬春休闲期硝态氮淋失量[J].生态学报,2011,31(16):4653-4660.
    131.王媛,周建斌,杨学云.长期不同培肥处理对土壤有机氮组分及氮素矿化特性的影响.中国农业科学2010,43(6):1173-1180
    132.尉孝琴,李亚灵,温祥珍.太谷地区日光温室温湿度年变化规律的研究[J].北方园艺,2010(15):76-79.
    133.吴成龙,沈其荣,夏昭远,等.麦-稻轮作系统有机无机肥料配施协同氮素转化的机制研究I:小麦季15N去向分析[J].土壤学报,2010,47(5):905-912.
    134.武其甫,武雪萍,李银坤,等.保护地土壤N2O排放通量特征研究[J].植物营养与肥料学报,2011,17(4):942-948.
    135.习斌,张继宗,左强,等.保护地菜田土壤氨挥发损失及影响因素研究[J].植物营养与肥料学报,2010,16(2):327-333.
    136.夏文建,周卫,梁国庆,等.优化施氮下稻-麦轮作体系氮肥氨挥发损失研究[J].植物营养与肥料学报,2010,16(1):6-13.
    137.项大力,杨学云,孙本华,等.灌溉水平对塿土磷素淋失的影响[J].植物营养与肥料学报,2010,16(1):112-117.
    138.谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(4):47-52.
    139.谢军飞,李玉娥.土壤温度对北京旱地农田N2O排放的影响[J].中国农业气象,2005,26(1):7-10.
    140.新华网,http://news.xinhuanet.com/newscenter/2009-05/13/content_11368747.htm
    141.徐华,刑光熹,蔡祖聪,等.土壤水分状况和质地对稻田N2O排放的影响[J].土壤学报,2000,37(4):499-504.
    142.徐力刚,张奇,徐进,等.不同降雨强度对营养盐垂向迁移过程和淋失量的影响[J].土壤学报,2008,45(3):437-444.
    143.徐明岗,邹长明,秦道珠,等.有机无机肥配合施用下的稻田氮素转化与利用[J].土壤学报,2002,39(增刊):147-156.
    144.徐万里,刘骅,张云舒,等.施肥深度、灌水条件和氨挥发监测方法对氮肥氨挥发特征的影响[J].新疆农业科学,2011,48(1):86-93.
    145.徐文彬,刘广深,刘维屏.降雨和土壤湿度对贵州旱田土壤N2O释放的影响[J].应用生态学报,2002,13(1):67-70.
    146.徐玉裕,曹文志,黄一山,等.五川流域农业土壤反硝化作用测定及其调控措施[J].农业环境科学学报,2007,26(3):1126-1131.
    147.薛利红,俞映倞,杨林章.太湖流域稻田不同氮肥管理模式下的氮素平衡特征及环境效应评价[J].环境科学,2011,32(4):1133-1138.
    148.杨珏,阮晓红.土壤磷素循环及其对土壤磷流失的影响[J].土壤与环境,2001,10(3):256-258.
    149.姜子绍,宇万太.农田生态系统中钾循环研究进展[J].应用生态学报,2006,17(3):545-55.
    150.杨俊刚,徐凯,佟二健,等.控释肥料与普通氮肥混施对春白菜产量、品质和氮素损失的影响[J].应用生态学报,2010,21(12):3147-3153.
    151.杨淑莉,朱安宁,张佳宝,等.不同施氮量和施氮方式下田间氨挥发损失及其影响因素[J].干旱区研究,2010,27(3):415-421.
    152.杨小红,董云社,齐玉春,等.锡林河流域温带草原土壤的净氮矿化研究[J].农业工程学报,2005,21(12):179~182
    153.杨兴明,徐阳春,黄启为,等.有机(类)肥料与农业可持续发展和生态环境保护[J].土壤学报,2008,45(5):925-932
    154.杨云,黄耀,姜纪峰,等.土壤理化特性对冬季菜地N2O排放的影响[J].农村生态环境,2005,21(2):7-12.
    155.杨治平,陈明昌,张强,等.不同施氮措施对保护地黄瓜养分利用效率及土壤氮素淋失影响[J].水土保持学报,2007,21(2):57-60.
    156.易琼,张秀芝,何萍,等.氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响[J].植物营养与肥料学报,2010,16(5):1069-1077
    157.于红梅,李子忠,龚元石.不同水氮管理对蔬菜地硝态氮淋洗的影响[J].中国农业科学,2005,38(9):1849-1855.
    158.于红梅,李子忠,龚元石.传统和优化水氮管理对蔬菜地土壤氮素损失与利用效率的影响[J].农业工程学报,2007,23(2):54-59.
    159.于亚军,朱波,王小国,等.成都平原水稻-油菜轮作系统氧化亚氮排放[J].应用生态学报,2008,19(6):1277-1282.
    160.余海英,李廷轩,张锡洲.温室栽培系统的养分平衡及土壤养分变化特征[J].中国农业科学,2010,43(3):514-522.
    161.俞映倞,薛利红,杨林章.不同氮肥管理模式对太湖流域稻田土壤氮素渗漏的影响[J].土壤学报,2011,48(5):988-995.
    162.宇万太,姜子绍,马强,等.施用有机肥对土壤肥力的影响[J].植物营养与肥料学报,2009,15(5):1057-1064.
    163.袁丽金,巨晓棠,张丽娟,等.设施蔬菜土壤剖面氮磷钾积累及对地下水的影响[J].中国生态农业学报,2010,18(1):14-19.
    164.张福锁,马文奇,陈清,等.养分资源综合管理理论与技术概论[M].北京,中国农业大学出版社.2006,103-116
    165.张光亚,陈美慈,闵航,等.设施栽培土壤氧化亚氮释放及硝化、反硝化细菌数量的研究[J].植物营养与肥科学报,2002,8(2):239-243
    166.张贵龙,任天志,李志宏,等.施氮量对白萝卜硝酸盐含量和土壤硝态氮淋溶的影响[J].植物营养与肥料学报,2009,15(4):877-883.
    167.张贵龙,任天志,邱建军,等.日光温室白萝卜生产系统的氮素利用与平衡研究[J].农业环境科学学报,2009,28(7):1500-1507.
    168.张贵龙.蔬菜保护地氮素利用与去向研究[D].北京:中国农业科学院博士论文,2009.
    169.张惠,杨正礼,罗良国,等.黄河上游灌区稻田氨挥发损失研究[J].植物营养与肥料学报,2011,17(5):1131-1139.
    170.张丽娟,巨晓棠,刘辰琛,等.北方设施蔬菜种植区地下水硝酸盐来源分析——以山东省惠民县为例[J].中国农业科学,2010,43(21):4427-4436.
    171.张强,巨晓棠,张福锁.应用修正的IPCC2006方法对中国农田N2O排放量重新估算[J].中国生态农业学报,2010,18(1):7-13.
    172.张瑞杰,胡正义,林国林,等.施用硫磺对滇池北岸碱性菜田氨挥发的影响[J].土壤通报,2009,40(3):636-639.
    173.张学军,赵营,陈晓群,等.滴灌施肥中施氮量对两年蔬菜产量、氮素平衡及土壤硝态氮累积的影响[J].中国农业科学,2007,40(11):2535-2545.
    174.张永丽,于振文.灌水量对不同小麦品种籽粒品质、产量及土壤硝态氮含量的影响[J].水土保持学报,2007,21(5):155-158,174.
    175.张玉铭,董文旭,曾江海,等.玉米地土壤反硝化速率与N2O排放通量的动态变化[J].中国生态农业学报,2001,9(4):70-72.
    176.张玉铭,胡春胜,毛任钊,等.华北太行山前平原农田生态系统中氮、磷、钾循环与平衡研究[J].应用生态学报,2003,14(11):1863-1867.
    177.张玉铭,胡春胜,张佳宝,等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报,2011,19(4):966975
    178.张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    179.张玉平,刘强,荣湘民,等.有机无机肥配施对双季稻田土壤养分利用与渗漏淋失的影响[J].水土保持学报,2012,26(1):22-27,32.
    180.张云贵,刘宏斌,李志宏,等.长期施肥条件下华北平原农田硝态氮淋失风险的研究[J].植物营养与肥料学报,2005,11(6):711-716.
    181.张仲新,李玉娥,华珞,等.不同施肥量对设施菜地N2O排放通量的影响[J].农业工程学报,2010,26(5):269-275
    182.张作新,廖文华,刘建玲,等.过量施用磷肥和有机肥对土壤磷渗漏的影响[J].华北农学报,2008,23(6):189-194.
    183.张作新,刘建玲,廖文华,等.磷肥和有机肥对不同磷水平土壤磷渗漏影响研究[J].农业环境科学学报,2009,28(4):729-735
    184.赵言文,刘常珍,胡正义,等.元素硫和双氰胺对蔬菜地土壤硝态氮淋失的影响[J].应用生态学报,2005,16(3):496-500.
    185.赵营,张学军,罗健航,等.施肥对设施番茄-黄瓜养分利用与土壤氮素淋失的影响[J].植物营养与肥料学报,2011,17(2):374-383.
    186.郑洁,张继宗,翟丽梅,等.洱海流域农田土壤氮素的矿化及其影响因素[J].中国环境科学,2010,30:35-40
    187.郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响[J].应用生态学报,1996,7(3):273-279.
    188.郑循华,王明星,王跃思,等.温度对农田N2O产生与排放的影响[J].环境科学,1997,18(5):1-5.
    189.中国农业科学院农业资源与农业区划研究所,国家环境保护总局南京环境科学研究所.全国种植业污染源普查排污系数测算实施方案-地下淋溶监测技术规程[S].2007.
    190.中国农业统计年鉴,2009
    191.中国政府网. http://www.gov.cn/jrzg/2009-10/12/content_1436654.htm
    192.钟晓英,赵小蓉,鲍华军,等.我国23个土壤磷素淋失风险评估Ⅰ.淋失临界值[J].生态学报,2004,24(10):2275-2280.
    193.周鹏,李玉娥,刘利民,等.施肥处理和环境因素对华北平原春玉米田N2O排放的影响——以山西晋中为例[J].中国农业气象,2011,32(2):179-184
    194.周晓芬,杨军芳,冯伟,等.设施菜田土壤磷、钾养分积累状况与特点[J].华北农学报,2008,23(4):196-200
    195.朱咏莉,吴金水,韩建刚.地膜覆盖对土壤中N2O释放的影响[J].农业工程学报,2004,20(3):222-225
    196.朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.171-196.
    197.朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.
    198.朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    199.庄远红,吴一群,李延.机无机磷肥配施对蔬菜地土壤磷素淋失的影响[J].土壤,2007,39(6):905~909
    200.邹建文,黄耀,宗良纲,等.不同种类有机肥施用对稻田CH4和N2O排放的综合影响[J].环境科学,2003,24(4):7-12
    201.邹晓锦,张鑫,安景文.氮肥减量后移对玉米产量和氮素吸收利用及农田氮素平衡的影响[J].中国土壤与肥料,2011(6):25-29
    202. Abd El-Razek A M, Atta Y I, Hassan A F. Effect of different levels of irrigation and nitrogenfertilizer on sugar beet yield, quality and some water relations in East Delta region[J]. Journal ofSouthern Agriculture,2011,42(8):916-922.
    203. Abril A, Baleani D, Casado-Murillo N, et al. Effect of wheat crop fertilization on nitrogendynamics and balance in the Humid Pampas, Argentina[J]. Agriculture, Ecosystems andEnvironment,2007(2):171-176.
    204. Alberto S C, Thomas H M, Augusto A, et al. An inhibitor of urease activity effectively reducesammonia emissions from soil treated with urea under Mediterranean conditions[J]. Agriculture,Ecosystems and Environment,2008,126:243-249.
    205. Alfaro M A, Gregory P J, Jarvis S C. Dynamics of potassium leaching on a hillslope grassland[J].Journal of Environmental Quality,2004,33:192-200.
    206. Alfaro M A, Jarvis S C, Gregory P J. Factors affecting potassium leaching in different soils[J]. SoilUse and Management,2004,20:182-189.
    207. Aparicio V, Costa J L, Zamora M. Nitrate leaching assessment in a long-term experiment undersupplementary irrigation in humid Argentina[J]. Agricultural Water Management,2008,95(12):1361-1372.
    208. Aulakh MS, Doran J W, Mosier A R. Soil denitrification-significance, measurement, and effect ofmanagement[J]. Advances in Soil Science,1992,18:1-57.
    209. Avrahami S, Liesack W, Conrad R. Effects of temperature and fertilizer on activity and communitystructure of soil ammonia oxidizers[J]. Environmental Microbiology,2003,5(8):691-705.
    210. Azeez J O, Averbeke W V, Okorogbona A O M. Differential responses in yield of pumpkin(Cucurbita maximaL.) and nightshade (Solanum retroflexumDun.) to the application of threeanimal manures[J]. Bioresource Technology,2010,101(7):2499-2505.
    211. Barberis E, Ajmone-Marsan F, Preta M, et al. Phosphorus leaching from five heavily fertilizedsoils.Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. InternationalPhosphorus Transfer Workshop,2001.25.
    212. Bayrakli F. Ammonia volatilization losses from different fertilizers and effect of several ureaseinhibitors, CaCl2and phosphogypsum on losses from urea[J]. Fertilizer Research,1990,23:147-150.
    213. Bergstrom L, Brink N. Effects of differentiated applications of fertilizer N leaching losses anddistribution of inorganic N in soil[J].Plant and Soil,1986,93(3):333-345.
    214. Blake L, HeskethN, Fortune S, et al. Assessing phosphorus ‘Change-Points’ and leaching potentialby isotopic exchange and sequential fractionation[J]. Soil Use and Management,2002,18:199-207.
    215. Bouwman A F, Boumans L J M, Batjes N H. Estimation of global NH3volatilization loss fromsynthetic fertilizers and animal manure applied to arable land and grasslands[J]. GlobalBiogeochemical Cycles,2002,16:10.1029/2000GB001389
    216. Bouwman A F. Direct emission of nitrous oxide from agricultural soils[J]. Nutrient cycling inAgroecosystems,1996,46:53-70.
    217. Brock E H, Ketterings Q M, Kleinman P J A. Phosphorus leaching through intact soil cores asinfluenced by type and duration of manure application[J]. Nutrient Cycling in Agroeosystems,2007,77:269-281.
    218. Broschat T K. Nitrate, phosphate, and potassium leaching from container-grown plants fertilizedby several methods[J]. Hortscience,1995,30(1):74-77.
    219. Cabrera M L, Kissel D E, Craig J R, et al. Relative humidity controls ammonia loss from ureaapplied to loblolly pine[J]. Soil Science Society of America Journal,2010,74:543-549.
    220. Campbell J L, Hornbeck, McDowell W H, et al. Dissolved organic nitrogen budgets for upland,forested ecosystems in New England[J]. Biogeochemistry,2000,49(2):123-142.
    221. Carreira R I, Stoecker A L, Epplin F M, et al. Subsurface drip irrigation versus center-pivotsprinkler for applying swine effluent to corn[J]. Journal of Agricultural and Applied Economics,2006,38:645-658.
    222. Chen G C, He Z L, Stoffella P J, et al. Use of dolomite phosphate rock (DPR) fertilizers to reducephosphorus leaching from sandy soil[J]. Environmental Pollution,2006,139(1):176-182.
    223. Chen Q, Zhang X S, Zhang H Y, et al. Evaluation of current fertilizer practice and soil fertility invegetable production in the Beijing region[J]. Nutrient Cycling in Agroecosystems,2004,69:51-58.
    224. Ciarlo E, Conti M, Bartoloni N, et al. The effect of moisture on nitrous oxide emissions from soiland the N2O/(N2O+N2) ratio under laboratory conditions[J]. Biology and Fertility of Soils,2007,43:675-681
    225. Davidson E A. Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In:Oremland, R.S.(Ed.). Biogeochemistry of Global Change: Radiactively Active Gases. Chapmanand Hall, New York,1993,369-386.
    226. Davidson E. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since1860[J]. Nature Geoscience,2009,2:659-662.
    227. De Klein C A M, Sherlock R R, Cameron K C, et al. Nitrous oxide emissions from agriculturalsoils in New Zealand-a review of current knowledge and directions for future research[J]. Journalof the Royal Society of New Zealand,2001,31:543-574.
    228. Di H J, Cameron K C. Nitrate leaching in temperate agroecosystems: sources, factors andmitigating strategies[J]. Nutrient Cycling in Agroecosystems,2002,64(3):237-256.
    229. Di H J, Cameron K C. Reducing environmental impacts of agriculture by using a fine particlesuspension nitrification inhibitor to decrease nitrate leaching from grazed pastures[J]. Agriculture,Ecosystems and Environment,2005,109(3/4):202–212.
    230. Diez J A, Caballero R, Roman R, et al. Intergrated fertilizer and irrigation management to reducenitrate leaching in central Spain[J].Journal of Environment Quality,2000,29:1539-1547.
    231. Dmitri C, Jorgen O. Soil tillage enhanced CO2and N2O emissions from loamy sand soil underspring barley[J].Soil and Tillage Research,2007,97:5-18.
    232. Eghball B, Power J F, Gilley J E et al. Nutrient, carbon, and mass loss during composting of beefcattle feedlot manure[J]. Journal of environmental quality,1997,26:189-193.
    233. Fangmeier A, Hadwiger-Fangmeier A, vander Eerden L J, et al. Effects of atmospheric ammoniaon vegetation-a review[J]. Environmental Pollution,1994,86:43-82.
    234. FAO/IFA. Global estimate of gaseous emissions of NH3, NO and N2O from agricultural land. Foodand Agriculture Organization of the United Nations (FAO)/International Fertilizer IndustryAssociation (IFA), Rome,2001,106.
    235. Federer C A. Nitrogen mineralization and nitrification: depth variation in four New England forestsoils[J]. Soil Science Society of America Journal,1983,47:1008-1014.
    236. Fenn L B, Escarzaga R. Ammonia volatilization from surface applications of ammoniumcompounds on calcareous soils: V. Soil water content and method of nitrogen application[J]. SoilScience Society of America Journal,1976,40:537-541.
    237. Fenn L B, Hossner L R. Ammonia volatilization from ammonium or ammonium-forming nitrogenfertilizers[J]. Advance in Soil Science,1985,1:123-169.
    238. Fenn L B, Kissel D E.. Ammonia volatilization from surface applications of ammoniumcompounds on calcareous soils: II. Effects of temperature and rate of ammonium-nitrogenapplication[J]. Soil Science Society of America Journal,1974,38(3):606-610.
    239. Fillery I R P, Simpson J R, De Datta S K. Influence of field environment and fertilizer managementon ammonia loss from flooded soil[J]. Soil Science Society of America Journal,1984,48:914-920.
    240. Fillery R P, de Datta S K. Ammonia volatilization from nitrogen volatilization as a N lossmechanism in flooded rice fields[J]. Fertilizer Research,1986,9:78-98.
    241. Flückiger J, D llenbach A, Blunier T, et al. Variations in atmospheric N2O concentration duringabrupt climatic changes[J]. Science,1999,285(5425):227-230.
    242. Gagnon B, Ziadi N, Rochette P, et al. Fertilizer source influenced nitrous oxide emissions from aclay soil under corn[J]. Soil Science Society of America Journal,2011,75:595–604.
    243. Gaines T P, Gaines S T. Soil texture effect on nitrate leaching in soil percolates[J].Communicationsin Soil Science and Plant Analysis,1994,25(13-14):2561-2570.
    244. Gao X J, Hu X F, Wang S P, et al. Nitrogen losses from flooded rice field[J]. Pedosphere,2002,12(2):151-156.
    245. Garcia-montiel D C, Steudler P A, Piccolo M, et al. Nitrogen oxide emissions following wetting ofdry soils in forest and pastures in Rond nia, Brazil[J]. Biogeochemistry,2003,64:319-336.
    246. Gillingham A G, Thorrold B S. A review of New Zealand research measuring phosphorus in runofffrom pasture[J]. Journal of Environmental Quality,2000,29:88-96.
    247. Gollany HT, Molina J A, Clapp C E, et al. Nitrogen leaching and denitrification in continuous cornas related to residue management and nitrogen fertilization[J]. Environment Management,2004,33(S1):289-298
    248. Gómez-Rey M X, Madeira M, Vasconcelos E. Effects of organic residue management and legumecover on growth of pine seedlings, nutrient leaching and soil properties[J]. Annals of ForestScience,2008,65(8),807, DOI:10.1051/forest:2008063
    249. Halvorson A D, Del Grosso S J, Alluvione F. Tillage and inorganic nitrogen source effects onnitrous oxide emissions from irrigated cropping systems[J]. Soil Science Society of AmericaJournal,2010,74:436-445.
    250. Harrison R, Webb J. A review of the effect of N fertilizer type on gaseous emissions[J]. Advancesin Agronomy,2001,73:65-108.
    251. Hatch D J, Trindade H, Cardenas L M, et al. Laboratory study of the effects of two nitrificationinhibitors on greenhouse gas emissions from a slurry-treated arable soil: impact of diurnaltemperature cycle[J]. Biology and Fertility of Soils,2005,41(4):225-232.
    252. Hayashi K, Nishimura S, Yagi K. Ammonia volatilization from the surface of a Japanese paddyfield during rice cultivation[J]. Soil Science and Plant Nutrition,2006,52,545-555.
    253. Haynes R J, Sherlock R R. Gaseous losses of nitrogen. In: Haynes RJ (ed) Mineral nitrogen inthe plant-soil system. Academic Press, London,1986,242-302.
    254. He F F, Jiang R F, Chen Q, et al. Nitrous oxide emissions from an intensively managed greenhousevegetable cropping system in Northern China[J]. Environment Pollution,2009,157:1666-1672.
    255. Heckrath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from containing differentphosphorus concentrations in the Broadbalk experiment[J]. Journal of environmental Quality,1995,24:904-910.
    256. Holcomb J C, Sullivan D M, Horneck D A, et al. Effect of irrigation rate on ammoniavolatilization[J]. Soil Science Society of America Journal,2011,75(6):2341-2347.
    257. Huang S W, Jin J Y, Bai Y L, et al. Evaluation of nutrient balance in soil-vegetable system usingnutrient permissible surplus or deficit rate[J]. Communications in Soil Science and Plant Analysis,2007,38(7):959-974
    258. Huang S W, Jin J Y, Yang L P, et al. Spatial variability of soil nutrients and influencing factors in avegetable production area of Hebei Province in China[J]. Nutrient Cycling in Agroecosystems,2006,75:201-212
    259. Huang S W, Jin J Y. Status of heavy metals in agricultural soils as affected by different patterns ofland use[J]. Environmental monitoring and assessment,2008,139:317-327.
    260. Huijsmans J F M, Hol J M G, Hendriks M M W B. Effect of application technique, manurecharacteristics, weather and field conditions on ammonia volatilization from manure applied tograssland[J]. Netherlands Journal of Agricultural Science,2001,49:323-342.
    261. Huijsmans J F M, Hol J M G, Vermeulen G D. Effect of application method, manure characteristics,weather and field conditions on ammonia volatilization from manure applied to arable land[J].Atmospheric Environment,2003,37:3669–3680.
    262. IFA/FAO.Global Estimates of Gaseous Emissions of NH3, NO, and N2O from Agricultural Land.International Fertilizer Industry Association and the Food and Agriculture Organization of theUnited Nations, Rome, Italy.2001,106.
    263. IPCC. Climate Change2007: Synthesis Report[R]. Cambridge: Cambridge University Press,2007
    264. IPCC. Climate change2007: The physical science basis[R]. Cambridge: Cambridge UniversityPress,2007.
    265. Jalali M, Merrikhpour H. Effects of poor quality irrigation waters on the nutrient leaching andgroundwater quality from sandy soil[J]. Environmental Geology,2008,53:1289-1298
    266. Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application offertilizers and manures to two contrasting intensive cropping systems on the North China Plain [J].Environ. Poll.,2007,145:497–506.
    267. Ju X T, Kou C L, Zhang F S, et al. Nitrogen balance and groundwater nitrate contamination:comparison among three intensive cropping systems on the North China Plain[J]. EnvironmentalPollution,2006,143:117–125.
    268. Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils:a review[J]. Soil Science,2000,165(4):277-304.
    269. Kang J, Amoozegar A, Hesterberg D, et al. Phosphorus leaching in a sandy soil as affected byorganic and inorganic fertilizer sources[J]. Geoderma,2011,161(3-4):194-201.
    270. Klemedtsson L, Svensson S H, Rosswall T. A method of selective inhibition to distinguish betweennitrification and denitrification as sources of nitrous oxide in soil[J]. Biology and Fertility of Soils,1988,6:112-119.
    271. Knowles R. Denitrificafion[J]. Microbiology Reviews,1982,46:43-70.
    272. Kostyanovsky K I, Evanylo G K, Lasley K K, et al. Leaching potential and forms of phosphorus indeep row applied biosolids underlying hybrid poplar[J]. Ecological Engineering,2011,37(11):1765-1771.
    273. Kreye C, Dittert K, Zheng X H, et al. Fluxes of methane and nitrous oxide in water-saving riceproduction in north China[J]. Nutrient Cycling in Agroecosystems,2007,77:293-304.
    274. Kroeze C, Mosier A, Bouwman A F. Closing the global N2O budget: a retrospective analysis1500-1994[J]. Global Biogoechemical Cycles,1999,13:1-8.
    275. Kumar U, Jain M C, Pathak H, et al. Nitrousoxide emission from different fertilizers anditsmitigation by nitrification inhibitors in irrigated rice[J]. Biology and fertility of Soils,2000,32:474-478.
    276. Li H, Liang X L, Chen Y X, et al. Ammonia volatilization from urea in rice fields withzero-drainage water management[J]. Agricultural Water Management,2008,95(8):887-894.
    277. Lin D X., Fan, XH., Hu, F, et al. Ammonia volatilization and nitrogen utilization efficiency inresponse to urea application in rice fields of the Taihu lake region, China[J]. Pedosphere,2007,17:639–645.
    278. Lin S, Iqbal J, Hu R G, et al. N2O emissions from different land uses in mid-subtropical China[J].Agriculture, Ecosystems and Environment,2010,136:40-48
    279. Liu G D, Li Y C,Alva A K. Moisture Quotients for Ammonia Volatilization from Four Soils inPotato Production Regions[J]. Water, Air, and Soil Pollution,2007,183:115-127.
    280. Liu G D, Li Y C,Alva A K. Temperature Quotients of Ammonia Emission of Different NitrogenSources Applied to Four Agricultural Soils[J]. Soil Science Society of America Journal,2007,71:1482-1489.
    281. Liu J L, Liao W H, Zhang Z X, et al.. Effect of phopshate fertilizer and manure on crop yield, soilp accumulation, and the environmental risk assessment[J]. Agricultural Sciences in China.2007,6(9):1107-1114
    282. Liu X J, Mosier A R, Halvorson A D, et al. Dinitrogen and N2O emissions in arable soils: Effect oftillage, N source and soil moisture[J]. Soil Biology and Biochemistry,2007,39:2362-2370.
    283. Ma B L, Wu T Y, Tremblay N, et al. On-farm assessment of the amount and timing of nitrogenfertilizer on ammonia volatilization[J]. Agronomy Journal,2010,102:134-144.
    284. Ma J, LiX L, Xu H, et al. Effect of nitrogen fertilizer and wheat straw application on CH4and N2Oemissions from a paddy rice field[J]. Australian Journal of Soil Research,2007,45:359-367.
    285. Ma J, Ma E D, Xu H, et al. Wheat straw management affects CH4and N2O emissions from ricefields[J]. Soil Biology and Biochemistry,2009,41:1022-1028.
    286. Ma W K, Schautz A, Fishback L A E, et al. Assessing the potential of ammonia oxidizing bacteriato produce nitrous oxide in soils of a high arctic lowland ecosystem on Devon Island, Canada[J].Soil Biology and Biochemistry,2007,39:2001-2013.
    287. Maag M, Vinther F P. Nitrous oxide emission by nitrification and denitrification in different soiltypes and at different soil moisture contents and temperatures[J]. Applied Soil Ecology,1996,4:5-14.
    288. Majumdar D, Kumar S, Pathak H. Reducing nitrous oxide emission from an irrigated rice field ofNorth India with nitrification inhibitors[J]. Agriculture, Ecosystems and Environment,2000,81:163-169.
    289. Majumdar D, Pathak H, Kumar S. Nitrous oxide emission from a sandy loam Inceptisolunderirrigatedwheat in India as influenced by different nitrification inhibitors[J]. Agriculture,Ecosystems and Environment,2002,91:283-293.
    290. Malla G, Bhatia A, Pathak H. Mitigation nitrous oxide and methane emissions from soil inrice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors[J].Chemosphere,2005,58:141-147.
    291. McDowell R, Sharpley A, Brookes P, et al. Relationship between soil test phosphorus andphosphorus release to solution[J]. Soil Science,2001,166:137-149.
    292. McDowell R, Sinaj S, Sharpley A, et al. The use of isotopic exchange kinetics to assess phosphorusavailability in overland flow and subsurface drainage waters[J]. Soil Science,2001,166(6):365-373.
    293. Meijide A, D′ez J A, Sa′nchez-Mart′n L, et al. Nitrogen oxide emissions from an irrigated maizecrop amended with treated pig slurries and composts in a Mediterranean climate[J]. Agriculture,Ecosystems and Environment,2007,121:383-394
    294. Metay A, Oliver R, Scopel E, et al. N2O and CH4emissions from soils under conventional andno-till management practices in Goiania (Cerrados,Brazil)[J]. Geoderma,2007,141:78-88.
    295. Min J, Shi W M, Xing G X, et al. Effects of a catch crop and reduced nitrogen fertilization onnitrogen leaching in greenhouse vegetable production systems[J]. Nutrient Cycling inAgroecosystems,2011,91(1):31-39.
    296. Min J, Zhao X, Shi W M, et al. Nitrogen balance and loss in a greenhouse vegetable system insoutheastern China[J]. Pedosphere,2011,21(4):464-472.
    297. Mosier A R, Guenzi W D, Schweizer E E. Soil losses of dinitrogen and nitrous oxide from irrigatedcrop in northeastern Colorado[J]. Soil Science Society of America Journal,1986,50:344-348.
    298. Mosier A, Kroeze C, Nevison C, et al. Closing the global N2O budget: nitrous oxide emissionsthroughthe agricultural nitrogen cycle[J]. Nutrient Cycling in Agroecosystems,1998,52:225-248.
    299. Nelson N O, Parsons J E, Mikkelsen R L. Field-scale evaluation of phosphorus leaching in acidsandy soils receiving swine waste[J]. Journal of Environmental Quality,2005,34:2024–2035
    300. Olesen J E, Sommer S G. Modelling effects of wind speed and surface cover on ammoniavolatilization from stored pig slurry[J]. Atmospheric Environment,1993,27(16):2567-2574.
    301. Oorts K, Merckxb R, Gréhan E, etal. Determinants of annual fluxes of CO2and N2O in long-termno-tillage and conventional tillage systems in northern France[J]. Soil and Tillage Research,2007,95:133-148.
    302. quist M G, Petrone K, Nilsson M, et al. Nitrification controls N2O production rates in a frozenboreal forest soil[J].Soil Biology and Biochemistry,2007,39(7):1809-1811.
    303. Pattey E, Edwards G C, Desjardins R L, et al. Tools for quantifying N2O emissions fromagro-ecosystems[J].. Agricultural and Forest Meteorology[J].2007,142,103–119.
    304. Pavlou G C, Ehaliotis C D, Kavvadias V A. Effect of organic and inorganic fertilizers appliedduring successive crop seasons on growth and nitrate accumulation in lettuce[J]. ScientiaHorticulturae,2007,111:319-325.
    305. Perakis S S, Hedin L Q. Nitrogen loss from unpolluted South American forests mainly viadissolved organic compounds[J]. Nature,2002,415(6870):416-419.
    306. Petersen S O, Schj nning P, Thomsen I K, et al. Nitrous oxide evolution from structurally intactsoil as influenced by tillage and soil water content[J]. Soil Biology and Biochemistry,2008,40:967-977.
    307. Pihlatie M, Syvasalo E, Simojoki A, et al. Contribution of nitrification and denitrification to N2Oproduction in peat, clay and loamy sand soils under different soil moisture conditions[J].NutrientCycling in Agroecosystems,2004,70:135-141.
    308. Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): the dominant dzone-depletingsubstance emitted in the21st century[J]. Science,2009,326(5949):123-125
    309. Robertson G P, Paul E A, Harwood R R. Greenhouse gases in intensive agriculture: Contributionsof individual gases to the radioactive forcing of the atmosphere[J]. Science,2000,289(5486):1922-1925.
    310. Rochette P, Angers D A, Chantigny M H, et al. Reducing ammonia volatilization in a no-till soil byincorporating urea and pig slurry in shallow bands[J]. Nutrient Cycling in Agroecosystems,2009,84:71-80.
    311. Rochette P, MacDonald J D, Angers D A, et al. Banding of urea increased ammonia volatilizationin a dry acidic soil[J]. Journal of Environmental Quality,2009,38(4):1383-1390.
    312. Ruser R, Flessa H, Russow R, et al. Emission of N2O, N2and CO2from soil fertilized withnitrate:effect of compaction, soil moisture and rewetting[J]. Soil Biology and Biochemistry,2006,38:263-274.
    313. Ryden J C, Lund L J. Nature and extent of directly measured denitrification losses from someirrigated vegetable crop production units[J]. Soil Science Society of America Journal,1980,44:
    505.
    314. Salomeza J, Hofman G. Nitrogen nutrition effects on nitrate accumulation of soil-growngreenhouse butterhead lettuce[J]. Soil Science and Plant Analysis,2009,40(1):620-632
    315. Sharpe R R, Harper L A. Soil, plant and atmospheric conditions as they relate to ammoniavolatilization[J]. Fertilizer Research,1995,42:149-158.
    316. Sharpley A N, Sisak I. Differential availability of manure and inorganic source of phosphorus insoil[J]. Soil Science Society of America Journal,1997,61:1503-1508.
    317. Shen R P, Sun B, Zhao Q G. Spatial and temporal variability of N, P and K balances foragroecosystems in China[J]. Pedosphere,2005,15(3):347-355.
    318. Shi W M, Yao J, Yan F. Vegetable cultivation under greenhouse conditions leads to rapidaccumulation of nutrients, acidification and salinity of soils and groundwater contamination inSouth-Eastern China[J]. Nutrient Cycling in Agroecosystems,2009,83:73-84.
    319. Siemens J, Kaupenjohann M. Contribution of dissolved organic nitrogen to N leaching from fourGerman agricultural soils Ⅲ[J]. Journal of Plant Nutrition and Soil Science,2002,165(6):675-681.
    320. Six J, Ogle S M, Breidt F J, et al. The potential to mitigate global warming with no-tillagemanagement is only realized when practised in the long term[J].Global Change Biology,2004,10(2):155-160.
    321. Sogbedji J M, Van Es H M, Yang C L, et al. Nitrate leaching and nitrogen budget as affected bymaize nitrogen rate and soil type[J]. Journal of Environment Quality,2000,29(6):1813-1820.
    322. Sommer S G, Olesen J E. Modelling ammonia volatilization from animal slurry applied with trailhoses to cereals[J]. Atmospheric Environment,2000,34(15):2361-2372.
    323. Sommer S G, Schjoerring, J K, Denmead, O T. Ammonia emission from mineral fertilizers andfertilizedcrops[J]. Advances in Agronomy,2004,82:557-622.
    324. Sommer, S G, Olesen J E, Christensen B T. Effects of temperature, wind speed, and air humidity onammonia volatilization from surface-applied cattle slurry[J]. The Journal of Agricultural Science,1991,117:91-100.
    325. Stevens R J, Laughlin R J. Measuring the contributions of nitrification and denitrification to theflux of nitrous oxide from soil[M]. In: Diekkrüger B, Heinemeyer O, Nieder R (eds)9th nitrogenworkshop. Technische Universit t Braunschweig,Forschungsanstalt für Landwirtschaft (FAL),Braunschweig,Germany,1996,161-164.
    326. Stevens R J, Logan H J. Determination of the volatilization of ammonia from surface-applied cattleslurry by the micrometeorological mass balance method[J]. The Journal of Agricultural Science,1987,109:205-207.
    327. Stowe, D C, Lamhamedi M S, Carles S, et al. Managing irrigation to reduce nutrient leaching incontainerized white spruce seedling production[J]..New Forests,2010,40:185–204
    328. Tenuta, M, Beauchamp E G.. Nitrous oxide production from granular nitrogen fertilizers applied toa silt loam soil[J]. Canadian journal of soil science,2003,83:521-532.
    329. Thompson R B, Martnez-Gaitan C, Gallardo M, et al. Identification of irrigation and Nmanagement practices that contribute to nitrate leaching loss from an intensive vegetableproduction system by use of a comprehensive survey[J]. Agricultural Water Management,2007,89:261-274.
    330. Toth J D, Dou Z, Ferguson J D, et al. Nitrogen-vs. phosphorus-based dairy manure applications tofield crops: Nitrate and phosphorus leaching and soil phosphorus accumulation[J]. Journal ofEnvironmental Quality,2006,35:2302-2312.
    331. Tunney H, Carton O T, Brookes P C, et al. Phosphorus loss from soil to water[M]. CABinternational.1997,253-271.
    332. Ussiri D A N, Lal R, Jarecki M K. Nitrous oxide and methane emissions from long-term tillageunder a continuous corn cropping system in Ohio[J].Soil and Tillage Research,2009,104(2):247-255.
    333. Vallejo A, Skiba U M, García T L, et al. Nitrogen oxides emission from soils bearing a potato cropas influenced by fertilization with treated pig slurries and composts[J]. Soil Biology andBiochemistry,2006,38(9):2782-2793.
    334. Velthofa G L, Mosquerab J. The impact of slurry application technique on nitrous oxide emissionfrom agricultural soils[J]. Agriculture, Ecosystems and Environment,2011,140:298-308
    335. Venterea R T, Burger M, Spokas K A. Nitrogen oxide and methane emissions under varying tillageand fertilizer management[J]. Journal of Environmental Quality,2005,34:1467-1477.
    336. Venterea R T, Dolan M S, Ochsner T E. Urea decreases nitrous oxide emissions compared withanhydrous ammonia in a Minnesota corn cropping system[J]. Soil Science Society of AmericaJournal,2010,74:407-418.
    337. Webster E A, Hopkins D W. Contributions from different microbial processes to N2O emissionfrom soil under different moisture regimes[J]. Biology and Fertility of Soils,1996,22:331-335.
    338. Weitz A M, Linder E, Frolking S, et al. N2O emissions from humid tropical agricultural soils:effects of soil moisture, texture and nitrogen availability[J]. Soil Biology and Biochemistry,2001,33:1077-1093.
    339. Whalen J K, Chang C. Phosphorus accumulation in cultivated soils from long-term annualapplications of cattle feedlot manure[J].Journal of Environmental Quality,2001,30:229-237.
    340. Whitehead D C, Raistrick N. Effects of some environmental factors on ammonia volatilizationfrom simulated livestock urine applied to soil[J]. Biology and fertility of soils,11:279-284.
    341. William F S, Syers J K, Lingard J. A conceptual model for conducting audits at national, regional,and global scales[J]. Nutrient Cycling in Agroecosystems,2002,62(1):61-72
    342. Wrage N, Velthof G L, van Beusichem M L, et al. Role of nitrifier denitrification in the productionof nitrous oxide[J]. Soil Biology and Biochemistry,2001,33:1723-1732.
    343. Wu S F, Wu L H, Shi Q W, et al. E ects of a new nitrification inhibitor3,4-dimethylpyrazolephosphate (DMPP) on nitrate and potassium leaching in two soils[J]. Journal of EnvironmentalSciences,2007,19:841-847.
    344. Zaman M, Nguyen M L, Gold A J, et al. Nitrous oxide generation, denitrification and nitrateremoval in a seepage wetland intercepting surface and subsurface flows from a grazed dairycatchment[J]. Soil Research,2008,46(7):565-577.
    345. Zaman M, Nguyen M L. Effect of lime or zeolite on N2O and N2emissions from a pastoral soiltreated with urine or nitrate-N fertilizer under field conditions[J]. Agriculture, Ecosystems andEnvironment,2010,136:254-261.
    346. Zhang Y M, Chen D L, zhang J B, et al.Ammonia Volatilization and Denitrification losses from anirrigated maize-wheat rotation field in the North China Plain[J]. Pedosphere,2004,14(4):533-540.
    347. Zhang Y S, Luan S J, Chen L L et al. Estimating the volatilization of ammonia from syntheticnitrogenous fertilizers used in China[J]. Journal of Environmental Management,2011,92(3):480-493.
    348. Zhao C S, Hu C X, Huang W, et al. A lysimeter study of nitrate leaching and optimum nitrogenapplication rates for intensively irrigated vegetable production systems in Central China[J]. J SoilsSediments.,2010,10:9-17
    349. Zheng X, Fu C, Xu X, et al. The Asian nitrogen cycle case study[J]. A Journal of the HumanEnvironment,2002,31:79–87.
    350. Zhou J B, Xi J G, Chen Z J, et al. Leaching and transformation of nitrogen fertilizers in soil afterapplication of N with irrigation:a soil column method[J]. Pedosphere,2006,16(2):245-252.
    351. Zhu J H, Li X L, Christie P, Li J L. Environmental implications of low nitrogen use efficiency inexcessively fertilizer hot pepper (Capsicum frutescens L.) cropping systems[J]. Agriculture,Ecosystems and Environment,2005,111:70-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700