用户名: 密码: 验证码:
银杏和茶树复合经营系统生理生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以江苏省常熟市虞山林场高密度银杏(Ginkgo biloba L.)和茶树[Camellia sinensis(L.)O.Kuntze]复合系统、低密度银杏和茶树复合系统、茶树纯林系统为研究对象,对系统中的小气候环境、茶树光合特性、茶品质、土壤养分、土壤酶活性、土壤微生物活性、土壤微生物多样性以及有机碳矿化等进行了系统研究,并对不同模式间作系统的土壤肥力质量进行综合评价,为银杏和茶树复合经营模式可持续经营配套技术的完善提供了科学的理论依据。主要结论如下:
     1、冬春季节银杏-茶树复合系统光照条件、温度及空气相对湿度等环境因子与纯茶林基本相同,夏秋季节复合模式可显著降低茶园光合有效辐射和温度,提高相对湿度,为茶树生长提供良好的环境。春秋冬三个季节不同种植模式下茶树叶片净光合速率日变化呈单峰曲线。夏季纯茶林茶树叶片净光合速率日变化呈双峰曲线,出现“午休”现象,间作林日变化则呈单峰曲线。与纯茶林相比,银杏-茶树复合系统茶树叶片茶多酚含量显著降低,氨基酸和咖啡碱含量显著提高。
     2、不同模式土壤有机碳、全氮、水解氮、全磷、速效磷、全钾和速效钾含量均随土层的加深而显著降低。银杏-茶间作林能显著提高土壤全磷、全钾及其速效养分的含量,表层土壤尤为明显。不同银杏间作密度对表层土壤养分无显著影响,仅土壤总有机碳含量差异显著,表现为高密度银杏间作林大于低密度银杏间作林。
     3、不同模式土壤过氧化氢酶、多酚氧化酶、脱氢酶、脲酶、蛋白酶和蔗糖酶活性总体上表现出随土层的增加而减少。土壤酶具有季节变化规律,冬季土壤过氧化氢酶、脱氢酶、脲酶、蛋白酶、蔗糖酶活性均比较低,夏季达到全年最高,而多酚氧化酶活性则在春季达到最高。银杏-茶间作显著提高各种土壤酶的活性。土壤酶与土壤养分呈显著或极显著正相关,多酚氧化酶与养分无显著相关。
     4、不同模式土壤微生物生物量季节变化显著,总体表现为夏秋季节大于冬春季节。不同模式土壤微生物生物量在垂直方向上均具有明显的分层现象。间作林表层土壤微生物生物量高于纯茶林。不同土层土壤基础呼吸间作林表现出较强的呼吸强度。土壤微生物代谢商随土层加深显著升高。
     5、不同模式土壤细菌与真菌群落多样性指数季节变化规律主要表现为冬春季节较低,夏秋季节较高。银杏和茶树间作后土壤细菌的群落结构变化很小,而真菌群落结构变化显著。银杏-茶间作林土壤细菌群落不同季节间相似性比较高,纯林模式土壤细菌群落相似系数较小。同一模式不同季节真菌群落相似性普遍较低。土壤细菌和真菌群落多样性指数与土壤有机碳、全氮、微生物生物量、土壤过氧化氢酶、蛋白酶以及蔗糖酶活性均呈显著或极显著正相关。
     6、不同模式土壤有机碳矿化速率前期较高,后期下降并逐渐趋于平稳。培养期间各模式各土层有机碳矿化速率符合对数函数,土壤有机碳累积矿化量符合线性函数。三种模式土壤碳矿化速率和累积矿化量均随土层的加深而递减。银杏-茶间作林与纯林的差异主要在0~20cm土层,而在底层土壤中,三种模式均无显著差异。
     7、采用改进层次分析法,对三种模式土壤肥力进行综合评价。各模式土壤肥力质量指数(FI)依次为高密度银杏-茶间作林(FI=0.889)>低密度银杏-茶间作林(FI=0.611)>纯茶林(FI=0.179),两种银杏-茶间作林土壤质量指标均高于纯茶林,纯林土壤肥力质量最差。
To explore the physiological and ecological effects of ginkgo(Ginkgo bilobaL.)-tea[Camellia sinensis (L.)O.Kuntze] intercropping systems, micro-climate characters,photosynthetic characteristics, soil nutrients, soil enzyme activities, soil microbial biomass, soilmicrobial diversities and soil carbon mineralizations were inverstigated in Yushan Farm inChangshu, Jiangsu Province. The main results were as follows:
     1. There were no significant differences in photosynthetic available radiation(PAR), airtemperature(T) and relative humidity(RH) in ginkgo-tea intercropping plantations and pure teaplantation in winter and spring. However PAR and T in summer and autumn were significantlylower and RH was significantly higher in intercropping plantations than those in pure teaplantation. Diurnal variation of net photosynthetic rate of tea in different plantations displayed asingle peak curve in spring, autumn and winter. Diurnal variation of net photosynthetic rate ofpure tea plantation in summer displayed a double peaks curve, with midday depression ofphotosynthesis. Tea polyphenol was significantly lower and amino acid and caffeine of tea weresignificantly higher in intercropping plantations than those in pure tea plantation.
     2. The content of soil total organic carbon, total nitrogen, hydrolyze nitrogen, totalphosphorus, available phosphorus, total kalium and available nutrients declined with soil depth.The content of soil total phosphorus, soil total kalium and soil available nutrients in ginkgo-teaintercropping plantations was significantly higher than those in pure tea plantation.
     3. The activities of soil catalase, polyphenol oxidase, dehydrogenase, urease, proteinase andsucrase declined with soil depth. Seasonal dynamics of soil enzyme activities were significantly.The activities of soil catalase, dehydrogenase, urease, proteinase and sucrase were lowest inwinter and highest in summer, but the activities of polyphenol oxidase was highest in spring. Soilenzyme activities were significantly higher in ginkgo-tea intercropping plantations than in puretea plantation. Correlation analysis of soil enzymes and soil nutrients showed that soil enzymeactivities were positively correlated with soil nutrients, except polyphenol oxidase.
     4. Seasonal dynamics of soil microbial biomass were significantly. Soil microbial biomassin summer and autumn was higher than that in winter and spring. Soil microbial biomassdeclined with soil depth. Soil microbial biomass was significantly higher in ginkgo-teaintercropping plantations than in pure tea plantation at0~10cm depth. Soil basic respiration wassignificantly higher in ginkgo-tea intercropping plantations than in pure tea plantation in differentsoil depths. Soil microbial metabolic quotient increased with increasing depths.
     5. Genotypic richness and diversity index of soil bacteria and fungi communities in summerand autumn were higher than that in winter and spring. Soil bacteria communities similaritycoefficients in different months in ginkgo-tea intercropping plantations were higher than those in pure tea plantation, while soil fungi communities similarity coefficients in different months ofeach system were relatively lower. Diversity indexes of soil bacteria and fungi communities werepositively correlated with soil total organic carbon, total nitrogen, microbial biomass, catalase,proteinase and sucrase activities.
     6. Soil organic carbon mineralization rates of different plantations were higher at theprophase of incubation, declined later and then tended to stable. Soil organic carbonmineralization rates of different soil depths could be described with logarithm equation duringincubation, and organic carbon cumulated mineralizations could be described with linearequation. Soil organic carbon mineralization rates and cumulated mineralizations declined withincreasing depths. Soil organic carbon mineralization rates were significantly higher inginkgo-tea intercropping plantations than in pure tea plantation at0~20cm depth.
     7. Soil fertility quality indexes of different plantations were evaluated through theprocedures of improved analytic hierarchy process, the sequence was intercropping plantationwith high ginkgo density>intercropping plantation with low ginkgo density>pure tea plantation.The pure tea plantation showed the lowest soil fertility index.
引文
[1]李文华.中国农林复合经营[M].北京:科学出版社,1994.
    [2]程鹏.银杏复合经营生物生产力及生态效应研究[D],2010.
    [3]徐华勤,肖润林,宋同清.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J].生物多样性,2008,16(2):166-174.
    [4]杨玉盛,俞新妥.不同栽杉代数根际土壤肥力及生物学特性变化[J].应用与环境生物学报,1999,5(3):254-258.
    [5]周智彬,李培军.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关系[J].应用生态学报,2003,14(8):1246-1250.
    [6]宋漳,朱锦懋,杨玉盛.闽北常绿阔叶林土壤微生物学特性的研究[J].福建林学院学报,2000,20(4):317-320.
    [7]马晓梅,尹林克,陈理.塔里木河干流胡杨和柽柳根际土壤微生物及垂直分布[J].干旱区研究,2008,25(2):183-189.
    [8] Long R J, Zhang D G, Wang X. Effect of strategic feed supplementation on productive and reproductiveperformance in Yak Cows [J]. Preventive Veterinary Medicine,1999,38(2):195-206.
    [9]陈俊蓉,洪伟,吴承祯.不同桉树土壤微生物数量的比较[J].亚热带农业研究,2008,4(2):146-150.
    [10] Qing K W, Si L W. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations [J].Journal of Forestry Research,2008,19(2):131-135.
    [11]高峻.太行山低山丘陵区两种农林复合模式中水肥光分布特征研究[D].北京;北京林业大学,2009.
    [12]彭晓邦.渭北黄土区农林复合系统生理生态特性及生产力研究[D],2009.
    [13]孟平.中国复合农林业研究[M].北京:中国林业出版社,2003.
    [14]陈长青.红壤区农林复合系统分析与评价[D];南京农业大学,2005.
    [15]叶彦辉.黄土高原农林复合系统景观边界土壤养分、微生物和酶活性的研究[D];西北农林科技大学,2007.
    [16]余立华.栗茶复合系统生态学基础及效益研究[D];安徽农业大学,2007.
    [17]费颖新.间作树木对茶园生态环境及茶叶品质影响的研究[D];南京林业大学,2004.
    [18] Kawakami M, Yamanishi T. Aroma characteristics of kbausecha [J]. Nippon Nogeikagaku Kaishi,1982,
    [19] Barua D N. Effect of leaf pose and shade on yield of vultivated tea [J]. Indian Jour of Agric Sci1982,52(10):653-656.
    [20] Barua D N, Gogoi B N. Effects of shade removal [J]. Two and a Bud,1979,26(1):40-42.
    [21] S.KULASEGARAM. Effect of shade and water supply on growth and apical dominance in tea(Camelliasinensis(L.)O.Kuntze)[J]. Tropical Agriculture,1976,53(3):161-172.
    [22]李杰,彭方仁,黄宝龙.农林复合系统种群互作研究进展[J].世界林业研究,1999,12(5):10-14.
    [23]宁小斌.农林复合系统及其种间相互作用研究进展[J].湖北林业科技,2009,(1):41-44.
    [24] Jose S, Gillespie A, Seifert J, et al. Defining competition vectors in a temperate alley cropping system inthe midwestern USA:2. Competition for water [J]. Agroforestry Systems,2000,48(1):41-59.
    [25]赵彦华.白三叶与多年生黑麦草种间竞争机理初步研究[D];甘肃农业大学,2007.
    [26]王继永,王文全,武惠肖.林药间作系统光照效应及其对药用植物高生长的影响[J].浙江林学院学报,2003,20(1):17-22.
    [27]王兴祥,何园球,张桃林,等.低丘红壤花生南酸枣间作系统研究IV.光能竞争与剪枝作用[J].土壤,2003,35(4):320-324.
    [28]王兴祥,张斌,王明珠,等.低丘红壤花生南酸枣间作系统研究I.生产力[J].土壤,2002,(6):324-327,343.
    [29]赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    [30]董成森,肖润林,彭晚霞,等.亚热带红壤丘陵茶区茶-杉复合系统生态经济效应探析[J].中国生态农业学报,2006,14(2):198-202.
    [31]张劲松,孟平,辛学兵,等.太行山低山丘陵区苹果生姜间作系统综合效应研究[J].林业科学,2001,37(2):74-78.
    [32]曹明华,刘长全.红壤幼龄果园不同管理模式对土壤养分状况影响的研究[J].福建热作科技,2000,25(4):1-4.
    [33]李发林,黄炎和,刘长全.土壤管理模式对幼龄果园根际土壤养分和酶活性的影响[J].福建农业学报,2002,17(2):112-115.
    [34]李振吾,籍增顺.山西旱地农业高效持续发展模式研究[J].干旱地区农业研究,2001,19(1):108-114.
    [35]李华,惠竹梅,张振文.行间生草对葡萄园土壤肥力和葡萄叶片养分的影响[J].农业工程学报,2004,20(增刊):116-119.
    [36]李发林,傅金辉,刘长全,等.果园生草、套种绿肥对红壤幼龄果园土壤酶活性变化的研究[J].福建热作科技,1999,24(4):1-7.
    [37]田明英,徐淑桂,刘倩.果园生草技术研究[J].中国果菜,2001,(1):20.
    [38]黄毅武,应朝阳,郑仲登.生态牧草筛选及其在生态果园应用的研究[J].中国生态农业学报,2001,9(3):48-51.
    [39]陈清西,廖镜思,郑国华.果园生草对幼龄龙眼园土壤肥力和树体生长的影响[J].福建农业大学学报,1996,25(4):429-432.
    [40]王淑媛.果园生草制的研究[J].北方果树,1991,(3):34-37.
    [41]胡竞辉.梨园间作芳香植物对土壤微生物、土壤酶活性与土壤养分的影响[D],2010.
    [42]刁芬兰,张承印,孙雪梅.梨园生草对土壤养分及天敌数量的影响初报[J].落叶果树,2006,(4):18-19.
    [43]兰彦平,牛俊玲.石灰岩区果园生草对果树根系生态系统的效应[J].山西农业大学学报,2000,20(3):259-261.
    [44]李会科,赵政阳,张广军.种植不同牧草对渭北苹果园肥力的影响[J].西北林学院学报,2004,19(2):31-34.
    [45]杨朝选, Andrzej S, Ewa J.增施氮肥和地面管理对酸樱桃园土壤营养状况的影响[J].果树科学,2000,17(1):27-30.
    [46]沈程文,肖润林,徐华勤.覆盖与间作对亚热带丘陵区茶园土壤微生物量的影响[J].水土保持学报,2006,20(3):141-144.
    [47]关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社,1986.
    [48] Rao M A, Violante A, Gianfreda L. Interaction of acid phosphatase with clays, organic molecules andorgano-mineral complexes: Kinetics and stability [J]. Soil Biology and Biochemistry,2000,32:1007-1014.
    [49]蒲小鹏,胡自天.高寒草甸土壤酶活性分析[J].26,2006,6:7-9.
    [50]周志彬,徐新文.塔里木沙漠公路防护林土壤酶分布特征及其与有机质的关系[J].水土保持学报,2004,18(5):10-14.
    [51]安韶山,黄懿梅,刘梦云.宁南宽谷丘陵区植被恢复中土壤酶活性的响应及其评价[J].水土保持研究,2005,(3):32-35.
    [52]刘福德,姜岳忠,刘颜泉.连作I-107杨树无性系苗圃地的土壤酶活性特征[J].中国水土保持科学,2005,3(2):122-127.
    [53] Griffiths R P, Homann P S, Rile Y R. Denitrification enzyme activity of Douglas-fir and red alder forestsoils of the Pacific Northwest [J]. Soil Biology&Biochemistry,2002,30(8):1147-1157.
    [54]李发林,刘长全,傅金辉,等.土壤管理模式对幼龄果园根际土壤养分和酶活性影响初探[J].福建农业学报,2002,17(2):112-115.
    [55] Power I L, Thorrold B S, Balks M R. Soil properties and nitrogen availability in silvopastoral plantings ofAcacia melanoxylon in North Island, New Zealand [J]. Agroforestry Systems,2003,57(3):225-237.
    [56]龙健,李娟,江新荣.贵州茂兰喀斯特森林土壤微生物活性的研究[J].土壤学报,2004,41(4):597-602.
    [57]李斌,谢关林,陈若霞.耕作与栽培方式对瓜类土壤细菌数量及枯萎病拮抗细菌分布的影响[J].应用生态学报,2006,17(10):1937-1940.
    [58] SPARLING G P, VAUGHAN D, MALCOLM R E. Soil organic matter and biological activity [J].Netherlands:Martinus Nijhoft Publishers,1985,223-262.
    [59]柴强,黄鹏,黄高宝.间作对根际土壤微生物和酶活性的影响研究[J].草业学报,2005,14(5):105-110.
    [60]刘均霞,陆引罡,远红伟.小麦-绿肥间作对资源的高效利用[J].安徽农业科学,2007,35(10):2884-2885.
    [61]刁治民.高寒草地的微生物氮素生理群区系研究[J].土壤,1996,1:49-53.
    [62]孙波,赵其国,张桃林.土壤质量与持续环境III-土壤质量评价的生物学指标[J].土壤,1997,5:225-234.
    [63]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,(2):61-69.
    [64] Brookes P, Powlson D, Jenkinson D. Measurement of microbial biomass phosphorus in soil [J]. SoilBiology and Biochemistry,1982,14:319-329.
    [65] Thibodeau L R P, Camir C, et al. Impact of precommercial thinning in balsamfire stands on soil nitrogendynamics, microbial biomass, decomposition,and foliar nutrition [J]. Can J for Res,2000,30(2):229-238.
    [66] Moore JM S K, Tabatabai MA. Soil microbial biomass carbon and nitrogen as affected by croppingsystems [J]. Biology Fertility of Soils,2000,31:200-210.
    [67]唐玉姝,魏朝富,颜廷梅.土壤质量生物学指标研究进展[J].土壤,2007,39(2):157-163.
    [68]王晓龙,胡锋,李辉信,等.红壤小流域不同土地利用方式对土壤微生物量碳氮的影响[J].农业环境科学学报,2006,25(1):143-147.
    [69]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143.
    [70] Kaschuk G, Alberton O, Hungria. M. Three decades of soil microbial biomass studies in Brazilianecosystems: Lessons learned about soil quality and indications for improving sustainability [J]. SoilBiology and Biochemistry,2010,42(1):1-13.
    [71]薛冬.茶园土壤微生物群落多样性及硝化作用研究[D];浙江大学,2007.
    [72] Park M, Kim C, Yang J, et al. Isolation and characterization of diazotrophic growth promoting bacteriafrom rhizosphere of agricultural crops of Korea [J]. Microbiological Research,2005,160:127-133.
    [73]张瑜斌,林鹏,邓爱英,等.九龙江口红树林鹧鸪菜藻体自生固氮细菌[J].生态学杂志,2007,26(9):1384-1388.
    [74]郑红丽,李少红,樊明寿,等.四种牧草根际固氮细菌的分离及孤单活性的研究[J].干旱区资源与环境,2007,21(4):164-168.
    [75]张巍,冯玉杰,陈桥.耐盐碱固氮菌的分离筛选及固氮特性研究[J].环境科学与技术,2008,31(5):22-25.
    [76]胡磊.套种圆叶决明和施肥对茶园土壤固氮微生物群落的影响[D];福建农林大学,2010.
    [77]李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社,2008.
    [78] Busse M D, Ratcliff A W, Shestak C J, et al. Glyph sate toxicity and the effects of long-term vegetationcontrol on soil microbial communities [J]. Soil Biology and Biochemistry,2001,33(12):1777-1789.
    [79]吴愉萍.基于磷脂脂肪酸(Plfa)分析技术的土壤微生物群落结构多样性的研究[D],2009.
    [80]赵勇.应用分子生物学技术解析不同处理状况下土壤微生物群落结构的变化[D].南京;南京农业大学,2005.
    [81] Buckley D H, Schmidt T M. The structure of microbial evolution,diversity and ecology:A decade ofribosomal RNA analysis of uncultivated microorganisms [J]. Microbial Ecology,1998,35:1-12.
    [82] Delong E F, Wickhma G S, Pace N R. Phylogenetic stains: ribosomal RNA-based probes for theidentification of single cells [J]. Science,1989,243:1360-1363.
    [83] Eickhorst T, Tippkotter R. Improved detection of soil microorganisms using fluorescence in situhybridization (FISH) and catalyzed reporter deposition (CARD-FISH)[J]. Soil Biology and Biochemistry,2008,40:1883-1891.
    [84]邓黛青,李光明,周仰原,等. FISH荧光原位杂交技术在污水生物脱氮研究中的应用[J].微生物学通报,2006,33(2):132-136.
    [85] Velasco A G, Probanza A, Maero F J G, et al. Characterization of the rhizosphere microbial communityfrom different Arabidopsis thaliana genotypes using [J]. Plant Soil,2010,329(1):315-325.
    [86] Wu T H, Chellemi D O, Graham J H, et al. Comparison of soil bacterialcommunities under diverse agricultural land management and crop production practices [J]. Microbial Ecology,2008,55(2):293-310.
    [87]罗海峰.变性梯度凝胶电泳技术研究土壤微生物多样性[D].北京;中国科学院,2004.
    [88]滕应,骆永明,赵祥伟,等.重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析[J].土壤学报,2004,41(3):343-347.
    [89] Zhang P J, Zheng J F, Pan G X, et al. Changes in microbial community structure and function withinparticle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lakeregion [J]. China Colloids and Surfaces B: Biointerfaces,2007,58(2):264-270.
    [90] Zhao M Q, Wang B X, Li F X, et al. Analysis of bacterial communities on aging flue-cured tobacco leavesby16S rDNA PCR–DGGE technology [J]. Applied Microbiology and Biotechnology,2007,73(6):1436-1440.
    [91]钟文辉,蔡祖聪,尹力初,等.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响[J].土壤学报,2008,45(1):105-111.
    [92] Alvey S, Yang C H, Buerkert A, et al. Cereal/legume rotation effects on rhizosphere bacterial communitystructure in west african soils [J]. Biology and Fertility of Soils,2003,37(2):73-82.
    [93] Watanabe T, Kimura M, Asakawa S. Community structure of methanogenic archaea in paddy field soilunder double cropping (rice-wheat)[J]. Soil Biology and Biochemistry,2006,38(6):1264-1274.
    [94] Douterelo I G R, Lillie M. Soil microbial community response to land-management and depth, related tothe degradation of organic matter in English wetlands: Implications for the in situ preservation ofarchaeological remains [J]. Applied Soil Ecology,2010,44(3):219-227.
    [95] Salles J F, Souza F A D,. J D E. Molecular method to assess the diversity of burkholderia species inenvironmental samples [J]. Applied and Environmental Microbi-ology,2002,68(4):1595-1603.
    [96] Ros M, Pascual J A, Garcia C, et al. Hydrolase activities, microbial biomass and bacterial community in asoil after long-term amendment with different composts [J]. Soil Biology and Biochemistry,2006,38(12):3443-3452.
    [97]高崇洋,赵阳国,王爱杰,等.耕作和施肥对不同深度黑土中细菌群落结构的影响[J].微生物学报,2010,50(1):67-75.
    [98] Sun H Y, Deng S P, Raun W R. Bacterial community structure and diversity in a century-oldmanure-treated agroecosystem [J]. Applied and Environmental Microbiology,2004,70(10):5868-5874.
    [99] Muyzer G. DGGE/TGGE:A method for identifying genes from naturale eosystems [J]. Current Opinion inMicrobiology,1999,2:317-322.
    [100] Muyzer G, Waal E C D, Uitterlinden A G. Profiling of compex microbial populations by denaturinggradient gel electrophoresis of polymerase chain reaction amplified gene encoding for16S rRNA [J].Applied and Environmental Microbiology,1993,59:695-700.
    [101]孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展,1999,18(2):118-128.
    [102]骆东奇,白洁,谢德体.论土壤肥力评价指标和方法[J].土壤与环境,2002,11(2):202-205.
    [103]章铁,刘秀清.栗茶间作模式对茶树光合特性的影响[J].安徽农业大学学报,2007,34(2):244-247.
    [104]肖润林,王久荣,单武雄.不同遮荫水平对茶树光合环境及茶叶品质的影响[J].中国生态农业学报,2007,15(6):6-11.
    [105]郭素英,段建真.茶果(林)复合园的光特征研究[J].应用生态学报,1996,7(4):359-363.
    [106]唐荣南.林茶复合经营技术[M].中国林业出版社,1997.
    [107]王恒明,吴凌志,周茂山.栗茶间作对北方茶树生长及绿茶产量品质的影响[J].中国农业气象,2005,26(2):139-141.
    [108]赵甜甜,蔡新.不同遮荫度下茶树生理生化特性的研究[J].湖南农业科学,2010,(5):38-41.
    [109]张文锦,梁月荣,张方舟.覆盖遮阴对乌龙茶产量、品质的影响[J].茶叶科学,2004,24(4):276-282.
    [110]程孝.茶园遮荫栽培与茶叶品质相关性机理的研究[D];湖南农业大学,2008.
    [111]丁瑞兴,黄晓澜,周亚军.茶园间植乌桕的气候生态效应[J].应用生态学报,1992,(2):131-137.
    [112]倪善庆,竺肇华,方跃闵.茶园间种泡桐生态及经济效益的研究[J].林业科学,1990,(6):561-566.
    [113]万云,刘桂华,周敏.栗茶间作茶园主要生态因子特性的研究[J].经济林研究,2009,27(3):57-60.
    [114]马跃,刘志龙,虞木奎.不同郁闭度林茶复合模式对茶树光合日变化的影响[J].中国农学通报,2011,27(16):52-66.
    [115]陶汉之.茶树日变化研究[J].作物学报,1991,17(6):444-451.
    [116]金洁,骆耀平.茶树光合作用研究进展[J].茶叶科学技术,2002,(1):1-5.
    [117]金洁,骆耀平,康孟利.嫁接茶树光合特性研究[J].茶叶,2003,29(2):86-88.
    [118]康孟利,吴姗,任明兴.嫁接茶树及其接穗和砧木品种冬季光合日变化[J].茶叶,2003,29(4):202-205.
    [119]唐荣南,汤兴陆.湿地松与茶树间作生态效应的研究[J].南京林业大学学报,1987,(2):35-44.
    [120]潘根生,高人俊.茶树遮荫生理生化变化[J].茶叶科学,1986,6(2):1-6.
    [121]王建华,任士福,史宝胜.遮荫对连翘光合特性和叶绿素荧光参数的影响[J].生态学报,2011,31(7):1811-1817.
    [122]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [123]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Ann Rev Plant Physiol,1982,33:317-345.
    [124]舒庆龄,赵和涛.不同茶园生态环境对茶树生育及茶叶品质的影响[J].生态学杂志,1990,9(2):13-17.
    [125]王丽娟,朱兴旺,毛加梅.不同遮荫树种对茶园土壤和茶叶品质的影响[J].中南林业科技大学学报,2011,31(8):66-73.
    [126]王镇恒.茶树生态学[M].中国农业出版社,1993.
    [127]潘根生,顾冬珍.茶树栽培生理生态[M].中国农业科学技术出版社,2006.
    [128]许峰,蔡强国,吴淑安.坡地农林复合系统土壤养分时间过程初步研究[J].水土保持学报,2000,14(3):46-51.
    [129]中国标准出版社总编室.中国国家标准汇编[M].北京;中国标准出版社.1999.
    [130]杨秀清,韩有志.关帝山森林土壤有机碳和氮素的空间变异特征[J].林业科学研究,2011,24(2):223-229.
    [131]姜海燕.大兴安岭兴安落叶松林土壤微生物与土壤酶活性研究[D];内蒙古农业大学,2010.
    [132]李会科,张广军,赵政阳,等.生草对黄土高原旱地苹果园土壤性状的影响[J].草业学报,2007,16(2):32-39.
    [133]齐龙波,周卫军,郭海彦,等.覆盖和间作对亚热带红壤茶园土壤磷营养的影响[J].中国生态农业学报,2008,16(3):593-597.
    [134]Singh B, Sharma K. Tree growth and nutrient status of soil in a poplar (Populus deltoides Bartr.)-basedagroforestry system in Punjab, India [J]. Agroforestry Systems,2007,70(2):125-134.
    [135]张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境,2003,12(4):500-504.
    [136]林波,刘庆,吴彦.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    [137]李志安,邹碧,丁永祯.森林凋落物分解重要影响因子及其研究进展[J].生态学报,2004,23(6):77-83.
    [138]渠开跃,冯慧敏,代力民.辽东山区不同林型土壤有机碳剖面分布特征及碳储量研究[J].土壤通报,2009,40(6):1316-1320.
    [139]林培群,余雪标,刘苇.桉农间作系统对土壤性质变化的影响研究[J].广东农业科学,2010,(1):24-27.
    [140]汪贵斌,曹福亮,程鹏,等.不同银杏复合经营模式土壤酶活性及综合评价[J].南京林业大学学报(自然科学版),2010,34(4):1-6.
    [141]兰彦平,牛俊玲.石灰岩区果园生草对果树根系生态系统的效应[J].山西农业大学学报,2000,19(2):31-34.
    [142]Haggar J P, Beer J W. Effect on maize growth of the interaction between increased nitrogen availabilityand competition with trees in alley cropping [J]. Agroforest Syst,1993,21:239-249.
    [143]云雷.晋西黄土区果农间作系统种间关系研究[D];北京林业大学,2011.
    [144]李春霞,陈阜,王俊忠.不同耕作措施对土壤酶活性的影响[J].土壤通报,2007,38(3):601-603.
    [145]李传荣,许景伟,宋海燕.黄河三角洲滩地不同造林模式的土壤酶活性[J].植物生态学报,2006,30(5):802-809.
    [146]宋海燕,李传荣,许景伟,等.滨海盐碱地枣园土壤酶活性与土壤养分、微生物关系[J].林业科学,2007,43(S1):28-32.
    [147]章铁,刘秀清,孙晓莉.栗茶间作模式对土壤酶活性和土壤养分的影响[J].中国农学通报,2008,24(4):265-268.
    [148]王耀生,张玉龙,黄毅.渗灌对保护地土壤脲酶和过氧化氢酶活性的影响[J].安徽农业科学,2006,34(1):103-105.
    [149]胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林土壤酶活性的季节性动态研究[J].北京林业大学学报,2001,23(5):23-26
    [150]刘圳,白昌军,虞道耿.牧草间作对桉树人工林下土壤酶活性的影响[J].安徽农业科学,2009,37(12):5723-5724.
    [151]柴强.化感作用对复合群体根区土壤微生物及酶的影响研究[D];甘肃农业大学,2003.
    [152]李敏,吴长友.几种土壤生物因子对土壤养分的影响[J].土壤通报,2007,38(1):43-46.
    [153]杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(3):152-159.
    [154]吕国红,周广胜,赵先丽,等.土壤碳氮与土壤酶相关性研究进展[J].辽宁气象,2005,(2):6-8.
    [155]赵林森,王九龄.杨槐混交林生长及土壤酶活性与肥力的关系[J].北京林业大学学报,1995,17(4):1-8.
    [156]高祥斌,刘增文,潘开文.岷江上游典型森林生态系统土壤酶活性初步研究[J].西北林学院学报,2005,20(3):1-5.
    [157]张猛,张健,刘远鹏.土壤管理方式对梨园土壤微生物和酶活性的影响[J].中国南方果树,2005,34(1):42-45.
    [158]秦燕.贺兰山西坡不同草地类型土壤酶活性特征[D].兰州;兰州大学,2007.
    [159]刘子雄.退耕还林不同模式对土壤微生物和酶活性影响研究[D].雅安;四川农业大学,2005.
    [160]王素娟,高丽,苏和.内蒙古库布齐沙地土壤蛋白酶初步研究[J].草业科学,2009,26(9):13-17.
    [161]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.
    [162]李勇.原始土壤酶活性与肥力形成实质初探[M]//陕西土壤学会.1987:53-54.
    [163]鲁萍.东北羊草草原主要植物群落土壤酶活性的研究[D];东北师范大学,2002.
    [164]曹成有,陈家模,邵建飞,等.科尔沁沙地四种固沙植物群落土壤微生物生物量及酶活性的季节动态[J].生态学杂志,2011,30(2):227-233.
    [165]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,(2):61-67.
    [166]姜培坤,徐秋芳,俞益武.土壤微生物量碳作为林地土壤肥力指标[J].浙江林学院学报,2002,19(1):17-19.
    [167]朴河春,洪业汤,袁芷云.贵州山区土壤中微生物生物量是能源物质碳流动的源与汇[J].生态学杂志,2001,20(1):33-37.
    [168]Chu H Y, Lin X G, Fujii T, et al. Soil microbial biomass,dehydrogenase activity, bacterial communitystructure in response to long-term fertilizer management [J]. Soil Biology and Biochemistry,2007,39(11):2971-2976.
    [169]林英杰,高芳,张佳蕾,等.不同种植方式对花生土壤微生物生物量及活性的影响[J].应用生态学报,2010,21(9):2323-2328.
    [170]薛萐,刘国彬,戴全厚,等.黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变[J].应用生态学报,2008,19(3):517-533.
    [171]杨凯,朱教君,张金鑫,等.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J].生态学报,2009,29(10):5500-5507.
    [172]程曼,成毅,安韶山.宁南山区退耕对土壤微生物生物量和酶活性的影响[J].水土保持研究,2010,17(5):142-147.
    [173]李灵,张玉,王利宝,等.不同林地土壤微生物生物量垂直分布及相关性分析[J].中南林业科技大学学报,2007,27(2):52-60.
    [174]Devi N B, Yadava P S. Seasonal dynamics in soil micriobial biomass C,N and P in a mixed-oak forestecosystem of Manipur, Northeast India [J]. Applied Soil Ecology,2006,31(3):220-227.
    [175]Edwardsk A, Mcculloch J, Kershaw G P, et al. Soil microbial and nutrient dynamics in a wetArcticsedgemeadow in late winter and early spring [J]. Soil Biology and Biochemistry,2006,38:2843-2851
    [176]刘满强,胡蜂,何园球,等.退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义[J].土壤学报,2003,40(6):937-944.
    [177]Srivastava S C. MicrobialC, N and P in dry tropical soils: Seasonal changes and influence of soil moisture[J]. Soil Biology and Biochemistry,1992,24(7):711-714.
    [178]王国兵,阮宏华,唐燕飞,等.森林土壤微生物生物量动态变化研究进展[J].安徽农业大学学报,2009,36(1):100-104.
    [179]Tonon G, Boldreghini P, Gioacchini P. Seasonal changes in microbial nitrogen in an old broadleaf forestand in a neighboring young plantation [J]. Biology and Fertility of Soils,2005,41:1011-1018.
    [180]Vance E D, Brookes P C, Jenkison D S. An extraction method formeasuring soilmicrobial biomass C [J].Soil Biology and Biochemistry,1987,19(6):703-707.
    [181]任天志, Stefano G.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    [182]Zeller V, Bardgett R D, Tappeiner U. Site and management effects on soil microbial properties ofsubalpine meadows: A study of land abandonment along a north-south gradient in the European Alps.[J].Soil Biology and Biochemistry,2001,33:639-649.
    [183]刘恩科,梅旭荣,赵秉强,等.长期不同施肥制度对土壤微生物生物量碳、氮、磷的影响[J].中国农业大学学报,2009,14(3):63-68.
    [184]夏文建.长期施肥对石灰性潮土某些物理化学及生物学性质的影响[D].北京;中国农业科学院,2007.
    [185]Zeng D, Hu Y, Chang S. Land cover change effects on soil chemical and biological properties afterplanting Mongolian pine in sandy lands in Keerqin, northeastem China [J]. Plant and Soil,2009,317:121-133.
    [186]李志建,倪恒,周爱国.额济纳旗盆地土壤过氧化氢酶活性的垂向变化研究[J].干旱区自然与环境,2004,18(1):86-89.
    [187]何斌,温远光,袁霞.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,38(2):21-26.
    [188]沈宏,曹志洪,徐本生.玉米生长期间土壤生物量与土壤酶变化及其相关性研究[J].应用生态学报,1999,10(4):471-474.
    [189]郭继勋,姜世成,林海俊.不同草原植被碱化草甸土的酶活性[J].应用生态学报,1997,8(4):412-416.
    [190]Harris J A. Measurement of the soil microbial community for estimating the success of restoration [J].European Journal of Soil Science,2003,54:801-808.
    [191]张超兰,徐建民.外源营养物质对表征土壤质量的生物学指标的影响[J].广西农业生物科学,2004,23(1):81.
    [192]刘玮,邓光华,张嘉超,等.不同施肥处理对毛竹根际微生物影响及其PCR-DGGE分析[J].东北林业大学学报,2011,39(5):50-53.
    [193]刘秉儒.红砂植被恢复期间群落结构、土壤微生物和养分特性动态及其相互关系的研究[D].兰州;兰州大学,2009.
    [194]Maarit R N, Ilse H, Kaisa W. Extraction and purification of DNA in rhizosphere soil samples forPCR-DGGE analysis of bacterial consortia [J]. Journal of Microbiological Methods,2001,45(1):155-165.
    [195]王光华,金剑,徐美娜,等.植物、土壤及土壤管理对土壤微生物群落结构的影响[J].生态学杂志,2006,25(5):550-556.
    [196]宋亚娜, PETRA M,张福锁,等.小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响[J].生态学报,2006,26(7):2268-2274.
    [197]Zak D R, Holmes W E, White D C. Plant diversity,soilmicrobial communities, and ecosystem function:Are there any links?[J]. Ecology,2003,84:2042-2050.
    [198]Waid J S. Does soil biodiversity depend upon metabolic activity and influences [J]. Appl Soil Ecol,1999,13:151-158.
    [199]Stephan A, Meyer A H, Sehmid B. Plant diversity affects culturable soil bacteria in experimental grasslandcommunities [J]. Ecology,2000,22:988-998.
    [200]高雪峰,武春燕,韩国栋.不同利用强度下草原土壤微生物的生物量和数量的动态研究[J].干旱区资源与环境,2011,25(5):188-191.
    [201]Liu X Y, Lindemann W C, Whitford W G, et al. Microbial diversity and activity of disturbed soil in thenorthern Chihuahuan desert [J]. Biology and Fertility of Soils,2000,(32):243-249.
    [202]Nemergut D, Costello EK, Meyer A, et al. Structure and function of alpine and arctic soil microbialcommunities.[J]. Research in Microbiology,2005,156:775-784.
    [203]潘雪莲,黄晟,方昊.黄土高原土壤中细菌群落结构多样性PCR-DGGE分析[J].生态与农村环境学报,2009,25(3):39-43,48.
    [204]杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技,2001,11(6):39-41.
    [205]钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性研究进展[J].生物多样性,2004,12(4):456-465.
    [206]Naseby D, Pascual J, Lynch J. Effect of biocontrol strains of Trichoderma on plant growth,Psnhiumoptimum populations, soil microbial communities and soil enzyme activities [J]. Journal of AppliedMicrobiology,2000,88:161-169.
    [207]Kamimura Y, Hayano K. Properties of protease extracted from tea-field soil [J]. Biology and Fertility ofSoils,2000,30(4):351-355.
    [208]Nancy W M, Peter P M. Spatial variation of soil enzyme activities and microbial functional diversity intemperate alley cropping systems [J]. Biology and Fertility of Soils,2005,42(2):129-136.
    [209]Lal R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security [J]. Science,2004,304(5677):1623-1627.
    [210]韩成卫,李忠佩,刘丽,等.去除溶解性有机质对红壤水稻土碳氮矿化的影响[J].中国农业科学,2007,40(1):107-113.
    [211]王峰,王义祥,江福英,等.氮肥施用对柑橘果园土壤有机碳矿化的影响[J].中国农学通报,2012,28(01):273-278.
    [212]秦小光,蔡炳贵,吴金水.土壤温室气体昼夜变化及其环境影响因素研究[J].第四纪研究,2005,25(3):376-388.
    [213]戴慧,王希华,阎恩荣.浙江天童土地利用方式对土壤有机碳矿化的影响[J].生态学杂志,2007,27(7):1021-1026.
    [214]吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较[J].植物生态学报,2004,28(4):530-538.
    [215]陈涛,郝晓军,杜丽君.长期施肥对水稻土土壤有机碳矿化的影响[J].应用生态学报,2008,19(7):1494-1500.
    [216]Alison H M, John D A. Variation in soil net mineralization rates with dissolved organic carbon additions[J]. Soil Biology and biochemistry,2000,32:597-601.
    [217]Murwira H K, Kirchmann H, Swift M J. The effect of moisture on the decomposition rate of cattle manure[J]. Plant and Soil,1990,122:197-199.
    [218]姜发艳,孙辉,林波,等.川西亚高山云杉人工林恢复过程中土壤有机碳矿化研究[J].土壤通报,2011,42(1):91-97.
    [219]Balser T C, Firestone M K. Linking microbial community composition and soil processes in a Californiaannual grassland and mixed-conifer forest [J]. Biogeochemistry,2005,73:395-415.
    [220]Murphy D V, Sparling G P, I R P F. Seasonal fluctuations in gross N mineralization, ammoniumconsumption, and microbial biomass in a Western Australian soil underifferent land uses [J]. AustralianJournal of Agricultural Research,1998,49:523-535.
    [221]Kadono A, Funakawa S, Kosa T. Factors controlling mineralization of soil organic matter in the Eurasiansteppe [J]. Soil Biology&Biochemistry,2008,40:947-955.
    [222]Cookson W R, Abaye D A, Marschner P. The contribution of soil organic matter fractions to carbon andnitrogen mineralization and microbial community size and structure [J]. Soil Biology and Biochemistry,2005,37:1726-1737.
    [223]胡亚林,汪思龙,颜绍馗.影响土壤微生物活性与群落结构因素研究进展[J].土壤通报,2006,37(1):170-176.
    [224]杨继松,刘景双,孙丽娜.温度、水分对湿地土壤有机碳矿化的影响[J].生态学杂志,2008,27(1):38-42.
    [225]Franzluebbers A J, Stuedemann J A, SCHOMBERG H H, et al. Soil organic C and N pool underlong-term pasture management in the southern piedmont USA [J]. Soil Biology and Biochemistry,2000,32:469-478.
    [226]Fugen D, Alan L W, Frank M H. Sensitivity of labile soil organic carbon to tillage in wheat-basedcropping systems [J]. Soil Biology and Biochemistry,2008,72:1445-1453.
    [227]Ross D J, Tate K R, Scott N A, et al. Land use change:effects on soil carbon,nitrogen and phosphoruspools and fluxes in three adjacent ecosystems [J]. Soil Biology and Biochemistry,1999,31:803-813.
    [228]Collins H P, Elliott E T, Paustian K, et al. Soil carbon pools and fluxes in longterm Corn Beltagroecosystems [J]. Soil Biology and Biochemistry,2000,32:157-168.
    [229]Ross D J, Tate K R, Feltham C W. Microbial biomass,and C and N mineralization,in litter and mineral soilof adjacent montane ecosystem in a southern beech(nothofagus) forest and a tussock grassland.[J]. SoilBiology and Biochemistry,1996,28:1613-1620.
    [230]章海波,骆永明,赵其国,等.香港土壤研究V.基于改进层次分析法的土壤肥力质量综合评价[J].土壤学报,2006,43(4):577-583.
    [231]比晓丽,洪伟.生态环境综合评价方法的研究进展[J].农业系统科学与综合研究,2001,17(2):122-124,126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700