用户名: 密码: 验证码:
倾斜柱塞式斜盘变量泵的流量特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压传动技术在工程机械等领域得到了广泛应用。随着节能环保要求的不断提高,液压传动系统的效率问题日益突显。众所周知,变量泵是提高液压传动系统效率的最有效途径。斜盘式轴向变量柱塞泵具有供油压力高、易于实现变量等技术优势,成为绝大多数高压泵控系统的首选动力元件。因此改善斜盘式轴向变量柱塞泵流量特性是进一步提高液压系统效率必须解决的技术难题。
     论文以倾斜柱塞式斜盘变量泵为研究对象,针对这种泵的流量脉动和变流量控制等特性,采用理论分析、数值仿真与试验研究相结合的方法进行了系统的研究。针对倾斜柱塞式斜盘变量泵的结构特点,着重研究了柱塞倾角对泵性能的影响。论文的主要研究内容如下:
     1.建立了倾斜柱塞式斜盘变量泵的理论模型。根据绝对坐标系下的柱塞运动规律,采用集中参数法分别建立了柱塞泵理想液体和实际液体的瞬时流动特性模型。针对倾斜柱塞式斜盘变量泵的结构特点,依据刚体动力学方法建立了柱塞-缸体摩擦副、滑靴-斜盘摩擦副的动力学方程。建立了变量机构的位移-力反馈型控制系统数学模型。上述基于倾斜柱塞式斜盘变量泵结构特点引入柱塞倾角作为变参数的数学模型,同样适用于其它结构形式的柱塞泵理论分析。
     2.建立了倾斜柱塞式斜盘变量泵流量特性的研究平台。依据上述理论模型,建立了基于协同交互技术和虚拟样机技术的柱塞泵性能仿真平台和试验测试装置,为柱塞泵流量特性的研究打下了基础。仿真平台利用模块之间的数据交换实现了对柱塞泵实际工作状况的真实模拟。测试装置通过传感器实现对液压泵压力、流量、斜盘角位移等参量的直接测量,并能根据试验测试原理求解出柱塞泵瞬时输出流量、变量机构稳态和动态特性等。协同仿真平台的仿真结果可以通过试验测试进行验证,还能完成试验装置不易测试的参数分析。
     3.倾斜柱塞式斜盘变量泵的流量脉动研究。采用Matlab对柱塞运动规律和柱塞泵理想液体模型的流量脉动进行数值求解。利用协同仿真平台分析了柱塞泵实际模型的流量脉动变化规律及影响因素。提出一种测量柱塞泵输出流量脉动的近似方法,并利用测试装置完成对柱塞泵输出管道内压力脉动和流量脉动的测量。
     4.倾斜柱塞式斜盘变量泵的变量控制特性研究。利用虚拟样机技术分析了柱塞泵动力元件的力学特性,讨论了配合间隙和柱塞倾角对柱塞-缸体摩擦副受力的影响。基于协同仿真平台,研究了变量控制机构的稳态和动态控制特性及其影响因素。通过试验测试装置得到了变量控制机构在不同工况下的稳态和动态控制特性。研究结果表明,变量控制机构的位移-力反馈组件复位弹簧是影响变量机构稳态比例特性的重要因素,基于三通阀控制差动缸的变量机构在动态特性方面存在明显的非对称性。
     上述研究内容是开发高压大流量轴向变量柱塞泵必须解决的关键问题。研究结论有助于更深入地理解流量脉动的形成机理以及变量机构的控制原理,能为优化轴向变量柱塞泵流量特性提供理论依据和设计参考。
Hydraulic transmission technology has been widely used in construction machinery and other engineering fields. The tansmission efficiency of hydraulilic power system, however, is becoming more and more overhang as the requirements of energy saving and environment protection are higher and higher. As well known, the most effective method to increase efficiency of hydraulilic power system is to use variable displacement pump directly. Because of its techno-dominance such as high supply pressure and easy for variable displacement control, swashplate axial piston variable displacement pumps have been the preferential hydraulic pumps for most hydraulic system with high pressure. To improve flow characteristics of swashplate axial piston variable displacement pump, therefore, is one of the key problems for increasing efficiency of hydraulic transmission system.
     Taking Incline Piston Type Swashplate Variable Displacement Pump (IPTSVDP) as main researching object, aimed at the flow characteristics such as flow pulsation, control performance of variable displacement machnism and so on, the pump performance are studied systematically by means of combinative methods such as theoretical analysis, numerical simulation and experimental investigation in this dissertation. Aimed at the structure specialty of IPTSVDP, the effects of piston conical angle to IPTSVDP performance are mainly researched. The main study contents of the dissertation are as follows:
     1. The theoretical model of IPTSVDP is established. According to the law of piston motion in absolute coordinate, transient flow characteristic model of the pump both in ideal liquid state and in actual liquid state are developed respectively by lamped parameter method. Dynamic equitions of friction pairs between piston and its cylinder hole, piton slipper and swash plate are established by rigid-body dynamics. The mathematic model of displacement-force feedback control system for pump delivery variable mechanism are built. Theoretical models above are built based on structucture of specialty IPTSVDP and also the piston axis angle is introduced as variable perameter. The models can be not only used for IPTSVDP performace analysis, but also employed to other type piston pump analysis.
     2. The research platform for IPTSVDP flow characteristics is created. According to above theoretical model, simulation platform based on the technics of synergism collaborative and virtual prototype and the testing device are built up. The platform could be a fundation for piston pump flow characteristics analysis. The real simulation of actual working state of the pump is carried out by means of data exchange in different modules. Pump pressure, flow rate and angle displacement of swash plate as well as other pump parameters can be measured by sensors in the test device, and the instantaneous discharge flow of piston pump, steady and dynamical performance of variable displacement mechanism are obtained based on the principle of experimentation. The simulation results of collaborative simulation platform can be verified by testing conclusion, besides the collaborative simulation platform is able to accomplish some parameters analyses that is carried out unreachably by experimentation.
     3. Researches on flow pulsation of IPTSVDP. Piston motion low and the flow pulsation in ideal liquid model of the pump are simulated numerically by Matlab. The flow pulsation varing rule in actual liquid model and its affect factors of the pump are analyzed by means of the collaborative simulation platform. An approximate method for measuring pump flow pulsation is given out, and measurements of pressure ripple and flow pulsation in outlet pipeline of the pump are carried out.
     4. Researches on variable delivery control characteristics of IPTSVDP. The dynamic performance of the IPTSVDP mechanical component is analyzed by virtual prototyping model, and the friction force affectors of frinction pair between piston and its cylinder hole due to matching clearance and piston dip angle are discussed. The control characteristics and their affecors of the pump variable displacement mechanism in steady state and dynamic state are researched based on collaborative simulation platform. The control characteristics of the pump variable displacement mechanism in steady state and dynamic state are measured by testing device in different operating conditions. The research results show that offsetting spring in displacement-force feedback system is an important factor, which affects the steady state control characteristic of the pump variable displacement mechanism. And there is evident asymmetry in the dynamic control characteristic of the pump variable displacement mechanism based on differential cylinder controlled by a three way valve.
     The research contents above are the key problems should be solved in design and development of high pressure and large flow rate axial piston variable displacement pump. The research conclusions conduce to comprehending the forming mechanism of flow pulsation and the control principle of variable displacement mechanism. Therefore, these conclusions are the theoretical foundation and data reference for optimizing the flow characteristics of swashplate-type axial variable displacement piston pump.
引文
[1]路甬祥.流体传动与控制技术的历史进展与展望[J].机械工程学报,2001,37(10):1-9.
    [2]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报,2003,39(10):95-99.
    [3]陈忠强.国外液压技术现状及发展趋势[J].现代零部件,2004,(5):54-56.
    [4]史维祥.流体传动与控制的现状及新发展[J].流体传动与控制,2003, (1):1-6.
    [5]史维祥.流体传动与控制的现状及新发展(续1)[J].流体传动与控制,2004,(1):9-15.
    [6]史维祥.流体传动与控制的现状及新发展(续2)[J].流体传动与控制,2004,(2):6-12.
    [7]徐绳武.从节能看液压传动控制系统发展的三个阶段[J].机电产品市场,2007,(4):42-43.
    [8]杨华勇,张斌,徐兵.轴向柱塞泵/马达技术的发展演变[J].机械工程学报,2008,44(10):1-8.
    [9]黄兴.液压传动技术发展动态[J].装备制造技术,2006,(1):36-39.
    [10]权龙.泵控缸电液技术研究现状、存在问题及创新解决方案[J].机械工程学报,2008,44(11):87-92.
    [11]许仰曾.21世纪液压泵的发展趋势[J].机电信息,2001,(5):72-73.
    [12]黄人豪.关于中国工业液压和控制技术的发展的一些思考和建议[J].液压气动与密封,2009,(1):5-8.
    [13]徐绳武.轴向柱塞泵和马达的发展动向[J].液压气动与密封,2003,(4):10-15.
    [14]俞云飞.液压泵的发展展望[J].液压气动与密封,2002,(1):2-6.
    [15]王庆丰,魏建华,吴根茂,张彦廷.工程机械液压控制技术的研究进展与展望[J].机械工程学报,2003,39(12):51-56.
    [16]徐绳武.Q**CY14-1BK系列轴向泵的研制[J].锻造装备与制造技术,2004,(5):25-29.
    [17]许贤良,游爱军,张军,等.关于斜柱塞泵问题[J].煤矿机械,2003(9):40-41.
    [18]博世力士乐(中国)有限公司.博世力士乐工业液压产品样本(第三册)[M].RC00115-03/08.04.
    [19]江国耀.力士乐AV系列高压柱塞泵发展概况[J].建筑机械,2003,(7):17-20.
    [20]冯世波.A4V系列液压泵的开发和应用[J].液压气动与密封,1999,(4):16-19.
    [21]S.A.Kassem,M.K.Bahr.On the Dynamics of Swash Plate Axial Piston Pumps with Conical Cylinder Blocks[C]. Sixth Triennial International Symposium on Fluid Control Measurement and Visualization Flucome2000. Sherbrooke University, Sherbrooke, Canada. August 13-17,2000.
    [22]M.K.Bahr Khalil, J.Svoboda, R.B.Bhat. Modeling of Swash Plate Axial Piston Pumps with Conical Cylinder Blocks[J]. ASME Journal of Mechanical Design,2004, 126:196-200.
    [23]M.K.Bahr, J.Svoboda, R.B.Bhat. Dynamic Loads on the Drive Shaft Bearings of Swash Plate Axial Piston Pumps with Conical Cylinder Blocks[C]. Proceedings of the CSME Forum. Queen's University, Toronto, Canada.2002.
    [24]那成烈.从A4V看现代轴向柱塞泵抗噪声型配流盘的发展趋势[J].甘肃工业大学学报,1988,14(3):21-29.
    [25]蒋国平.静压驱动集成化元件——A4V通轴泵[J].液压工业,1988,(2):27-31.
    [26]陈真炎.A4V通轴泵配流盘位置与变量力矩的关系[J].液压与气动,1989,(4):27.
    [27]许贤良,张军,杨奇顺,等.斜盘斜轴泵的柱塞运动曲线[J].液压与气动,2003(6):42-44.
    [28]汪胜陆,许贤良,陈清华.A4V柱塞泵运动方程及流量特性数字仿真研究.煤炭科学技术,2003(8):41-43.
    [29]杨华勇,马吉恩,徐兵.轴向柱塞泵流体噪声的研究现状[J].机械工程学报,2009,45(8):71-79.
    [30]Zaichenko.I.Z., Boltyanskii.A.D.. Reducing Noise Levels of Axial Piston Pumps[J]. Russ Engine Journal,1969,49(4):21-23.
    [31]Yamauchi.K., Ymamoto.T.. Noise Generated by Hydraulic Pump and Their Control Method[R]. Mitsubishi Heavy Industries Technical Report, Tokyo,1975.
    [32]Kojima.E., Shinad.A.M.. Characteristics of Fluidborne Noise Generated by a Fluid Power Pump[J]. Bulletin of the JSME,1986,29(258):4147-4155.
    [33]Edge.K.A., Darling.J.. The Pumping Dynamics of Swash Plate Piston Pumps[J]. ASME Journal of Dynamic Systems, Measurement and Control,1989,111(2): 307-312.
    [34]Edge.K.A., Darling.J.. A Theoretical Model of Axial Piston Pump Flow Ripple[C]. The First Bath International Fluid Power Workshop:Design Modeling and Control of Pumps. Bath, UK.1988:113-136.
    [35]Noah D. Manring. The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump[J]. ASME Journal of Dynamic Systems, Measurement, and Control,2000,122:263-268.
    [36]Noah D. Manring, Suresh B.Kasaragadda. The Theoretical Flow Ripple of an External Gear Pump[J]. ASME Journal of Dynamic Systems, Measurement, and Control,2003,125:396-404.
    [37]严金坤.液压元件[M].上海:上海交通大学出版社,1989.
    [38]许贤良,赵连春,王传金.轴向柱塞泵的流量脉动[J].北京矿业大学学报,1992,21(4):72-82.
    [39]许贤良,赵连春,杨奇顺.轴向柱塞泵流量脉动的理论研究[J].淮南矿业学院学报,1993,13(3):69-81.
    [40]叶敏.轴向柱塞泵流量脉动的理论分析[J].机床与液压,1990,(2):41-46.
    [41]郭卫东,王占林.斜盘式轴向柱塞泵实际流量的分析研究[J].北京航空航天大学学报,1996,22(2):223-227.
    [42]刘春节,许贤良.轴向柱塞泵实际流量的仿真分析[J].机床与液压,1999,(3):66-67.
    [43]那成烈,刘淑莲,那焱青,李书泽.轴向柱塞泵的流量脉动的理论分析与仿真[J].机床与液压,2000,增刊:16-18.
    [44]李小宁.降低斜盘型轴向柱塞泵噪声的理论与试验研究[D].哈尔滨:哈尔滨工业大学,1984.
    [45]叶敏,那成烈.轴向柱塞泵配流盘结构对泵流量脉动特性的影响[J].工程机械,1988,(11):25-31.
    [46]余经洪.柱塞泵动态模型与降噪[D].上海:上海交通大学,1990.
    [47]余经洪,陈兆能,陆元章.液压柱塞泵配流过程的理论模型及参数辨识[J].上海交通大学学报,1992,26(4):28-33.
    [48]尹文波.可压缩流体工作介质轴向柱塞泵配流及瞬时流量仿真研究[D].兰州:兰州理工大学,2003.
    [49]那成烈,尹文波.可压缩流体工作介质情况下轴向柱塞泵配流盘设计[J].兰州理工大学学报,2002,28(4):65-67.
    [50]那焱青,尹文波,那成烈.轴向柱塞泵瞬时流量的理论分析[J].兰州理工大学学报,2004,30(1):56-59.
    [51]邓斌,刘晓红,王金诺,柯坚.水压轴向柱塞泵流量脉动动态仿真[J].液压与气动,2004,(1):31-34.
    [52]卢菊仙.飞机液压油源脉动分析与消振研究[D].北京:北京航空航天大学,2006.
    [53]卢菊仙,周汝胜,焦宗夏.航空柱塞泵源脉动建模与仿真[J].流体传动与控制,2006,(3):7-9.
    [54]马吉恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D].杭州:浙江大学,2009.
    [55]S.A. Kassem, M.K.Bahr. Effect of Port Plate Silencing Grooves on Performance of Swash Plate Axial Piston Pumps[C].7th Mechanical Design and Production Congress MDP7. Cairo University, Cairo, Egypt.2000:139-148.
    [56]Bowns.D.E., Tomlinson.S.P., Dorey.R.E.. Computer Simulation Techniques for the Dynamic Performance Assessment of Fluid Power Symposium[C]. The 7th International Fluid Power Symposium. Bath, UK.1976:81-88.
    [57]Bowns.D.E., Edge.K.A., Cadlish.D.. Factors Affecting the Choice of a Standard Method for the Determination of Pump Pressure Ripple[C]. IMechE Conference Quiet Oil Hydraulic System. London, UK.1980:141-148.
    [58]Edge.K.A., Wing.T.J.. Measurement of the Fluid Borne Pressure Ripple Characteristics of Hydraulic Components[J]. Proceddings of the Institution of Mechanical Engineers, Part B:Management and Engineering Manufacturing,1983, 197(B):247-254.
    [59]Edge.K.A., Freitas.F.J.T.. Study of Pressure Fluctuations in the Suction Lines of Positive Displacement Pumps[J]. Proceddings of the Institution of Mechanical Engineers, Part B:Management and Engineering Manufacturing,1985,199(B4): 211-217.
    [60]Edge.K.A., Johnston.D.N.. The Secondary Source Method for the Measurement of Pump Pressure Ripple Characteristics 2:Experimental Results[J]. Proceddings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1990, 204(1):41-46.
    [61]Johnston.D.N., Drew.J.E.. Measurement of Positive Displacement Pump Flow Ripple and Impedance[J]. Journal of Systems and Control Engineering (Proceedings of the Institution of Mechanical Engineers. Part I),1996,210(1):65-74.
    [62]Johnston.D.N.. Measurement and Prediction of the Fluid Borne Noise Characteristics of Hydraulic System[D], Bath:University of Bath,1997.
    [63]The International Organization for Standardization. ISO 10767-1-1996 Hydraulic Fluid Power-Determination of Pressure Ripple Levels Generated in System and Components Part 1:precision method for pumps[S]. London:British Standards Institution,1996.
    [64]Pettersson.M.E.. Design of Fluid Power Piston Pumps with Special Reference to Noise Reduction[D]. Linkoping: Linkoping University,1995.
    [65]Pettersson.M.E., Weddfelt.K.G., Palmberg.J.S.. Methods of Reducing Flow Ripple from Fluid Power Pumps Theoretical Approach[R]. SAE,911762,1991.
    [66]Ericson.L.. Measurement System for Hydrostatic Pump Flow Pulsations[D]. Linkoping: Linkoping University,2005.
    [67]Johansson.A.. Design Principles for Noise Reduction in Hydraulic Piston Pumps-Simulation, Optimozation and Experimental Verification[D]. Linkoping: Linkoping University,2005.
    [68]Haarhans M.. Untersuchung neuer Wegzur Geraenuschmindrung bei Axialkolbeneinheiten[J]. Otp,1985, (39).
    [69]Kojima.E.. Experimental Determining and Theoretical Predicting of Source Flow Ripple Generated by Fluid Power Piston Pumps[C]. SAE International Off-Highway and Powerplant Congress and Exposition. Milwaukee, USA.2000:73-82.
    [70]Wang Yi. Experimental Example of Compare Even Piston Pump with Odd Piston Pump in Flow and Pressure Pulsation[C]. ICFP Symposium. Zhejiang University, Hangzhou, China.1985.
    [71]邱泽麟.轴向柱塞泵流体噪声与振动研究及降噪、诊断应用[D].上海:上海交通大学,1988.
    [72]邱泽麟,陈兆能,陆元章.柱塞泵配流冲击与试验研究[J].上海交通大学学报,1992,45(4):71-79.
    [73]余经洪,陈兆能,陆元章.油液综合体积弹性模量压力模型的研究[J].液压与气动,1991,(1):2-6.
    [74]余经洪,陈兆能,陆元章.液压系统油液综合体积弹性模量的测试[J].液压工业,1991,(3):46-48.
    [75]余经洪,陆元章.测试液压系统油液综合体积弹性模量的互相关测速方法[J].机床与液压,1991,(5):29-32.
    [76]刘小华.斜盘式轴向柱塞泵流量脉动的理论和试验研究[D].淮南:安徽理工大学,1998.
    [77]邓斌.水压轴向柱塞泵的特性研究与分析[D].成都:西南交通大学,2004.
    [78]Ma Jien, Xu Bing, Zhang Bin, Yang Huayong. Flow Ripple of Axial Piston Pump with Computational Fluid Dynamic Simulation Using Compressible Hydraulic Oil[J]. Chinese Journal of Mechanical Engineering,2010,23(1):45-52.
    [79]Zeiger G., A.Akers. Torque on the Swash Plate of an Axial Piston Pump[J]. ASME Journal of Dynamic Systems, Measurement, and Control,1985,107:220-226.
    [80]Zeiger G., A.Akers. Dynamic Analysis of an Axial-Pump Swash Plate Control[J]. Proceedings of Institution of Mechanical Engineers,1986,200:49-58.
    [81]Kiyoshi Inoue, Masakasu Nakazato. A Study on Operating Moment of a Swash Plate Type Axial Piston Pump[J]. Journal of the Japan Hydraulics and Pneumatics Society, 1987,18(4):67-74.
    [82]Kiyoshi Inoue, Masakasu Nakazato. A New Prediction Method of Operating Moment and Cylinder Pressure of a Swash Platy Type Axial Piston Pump[J]. Fluid Power,1993.
    [83]GJ.Schoenau, R.T.Burton, GP.Kavanagh. Dynainic Analysis of a Variable Displacement Pump[J]. ASME Journal of Dynamic Systems, Measurement, and Control.1990,112:122-132.
    [84]N.D.Manring, Johnson R.E.. Swivel Torque Within a Variable-Displacement Pump[C]. Proceedings of the 46th National Conference on Fluid Power.1994.
    [85]Noah D.Manring. The Control and Containment Forces on the Swash Plate of an Axial-Piston Pump[J]. ASME Journal of Dynamic Systems, Measurement, and Control,1999,121:599-605.
    [86]Noah D.Manring. Designing a Control and Containment Device for Cradle-Mounted, Transverse-Actuated Swash Plates[J]. ASME Journal of Mechanical Design,2001, 123:447-455.
    [87]Noah D.Manring. Designing a Control and Containment Device for Cradle-Mounted, Axial-Actuated Swash Plates[J]. ASME Journal of Mechanical Design,2001,124: 456-464.
    [88]Noah D.Manring. The Control and Containment Forces on the Swash Plate of an Axial Piston Pump Utilizing a Secondary Swash-Plate Angle[C]. Proceedings of the American Control Conference. Anchorage, AK.2002:4837-4842.
    [89]常真卫.带斜盘夹角的轴向柱塞泵流量脉动分析[J].液压气动与密封,1999,(4):26-28.
    [90]Noah D.Manring, Zhilin Dong. The Impact of Using a Secondary Swash-Plate Angle within an Axial Piston Pump[J]. ASME Journal of Dynamic Systems, Measurement and Control,2004,126:65-74.
    [91]Fikreadam A.Damtew. The Design of Piston-Bore Springs for Overwhelming Inertial Effects within Axial-Piston Swash-Plate Type Hydrostatic Machines[D]. Columbia: University of Missouri-Columbia,1998.
    [92]Noah D.Manring, Fikreadam A.Damtew. The Control Torque on the Swash Plate of an Axial-Piston Pump Utilizing Piston-Bore Springs[J]. ASME Journal of Dynamic Systems, Measurement, and Control,2001,123:471-478.
    [93]X.Zhang, J.Cho, S. S. Nair. Damping on the Swash Plate of an Axial-Piston Pump[C]. Proceedings of the American Control Conference. Chicago, Illinois, USA. 2000.
    [94]X.Zhang, J.Cho, S.S.Nair, N.D.Manring. New Swash Plate Damping Model for Hydraulic Axial-Piston Pump[J]. ASME Journal of Dynamic Systems, Measurement and Control,2001,123:463-470.
    [95]Vasiliu Nicolae, Rosu Cristian Adrian, Stefan Sorohan, Sandu Marin. Theoretical and Experimental Research on the Yoke of the Axial Piston Pumps[C]. ANSYS Conference. Pittsburgh, USA.2002.
    [96]Rosu Cristian Adrian, Vasiliu Nicolae. Researches on the Main Components of a Positive Displacement Pump by FEM[C]. The 2nd FPNI-PhD Symposium. Modena, Italy.2002.
    [97]M.K.Bahr Khalil, J.Svoboda, R.B.Bhat. Dynamic Loads on the Drive Shaft Bearings of Swash Plate Axial Piston Pumps with Conical Cylinder Blocks[J]. CSME Transaction,2004,27(4):309-318.
    [98]M.K.Bahr, J.Svoboda, R.B.Bhat. Vibration Analysis of Constant Power Regulated Swash Plate Axial Piston Pumps[J]. Journal of Sound and Vibration.2002,259(3): 1225-1236.
    [99]Alessandro Roccatello, Salvatore Manco, Nicola Nervegna. Modelling a Variable Displacement Axial Piston Pump in a Multibody Simulation Environment[J]. ASME Journal of Dynamic Systems, Measurement, and Control,2007,129:456-468.
    [100]宋俊.轴向柱塞泵滑靴-斜盘摩擦副瞬时脱离失效分析[J].机床与液压,1985,(6):14-16.
    [101]葛建华,沈之敏.斜盘式轴向柱塞泵变量阻力的研究[J].浙江大学学报,1988,(4):71-79.
    [102]邱泽麟,陈兆能,陆元章.柱塞泵配流冲击与试验研究[J].上海交通大学学报,1992,45(4):71-79.
    [103]李书泽.轴向柱塞泵配流盘对缸体的液压作用力矩稳定性仿真研究[D].兰州:甘肃工业大学,2001.
    [104]李书泽.轴向柱塞泵斜盘力矩分析[J].柴油机设计与制造,2001,(1):24-26.
    [105]刘健,罗斌,姜伟.斜盘支承反力对轴向柱塞泵结构及参数的影响[J].科技通报,2006,22(2):206-208.
    [106]Zhang Bin, Xu Bing, Xia Chunlin, Yang Huayong. Modeling and Simulation on Axial Piston Pump Based on Virtual Prototype Technology[J]. Chinese Journal of Mechanical Engineering,2009,22(1):84-90.
    [107]杨智炜.轴向柱塞泵虚拟样机仿真技术研究[D].杭州:浙江大学,2006.
    [108]范卓立.基于虚拟样机技术的轴向柱塞泵运动及动力特性仿真分析[D].秦皇岛:燕山大学,2007.
    [109]王国志.电液比例轴向变量柱塞泵的特性研究[D].成都:西南交通大学,2009.
    [110]路甬祥,胡大纮编著.电液比例控制技术[M].北京:机械工业出版社,1988.
    [111]吴根茂,邱敏秀,王庆丰等编著.实用电液比例技术[M].杭州:浙江大学出版社,1993.
    [112]路甬祥主编.液压气动技术手册[M].北京:机械工业出版社,2002.
    [113]吴根茂,邱敏秀,王庆丰,魏建华等编著.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [114]Kim S.D., Cho H.S., Lee C.O.. A Parameter Sensitivity Analysis for the Dynamic Model of a Variable Displacement Axial Piston Pump[J]. Proceedings of the Institution of Mechanical Engineers.1987,201:235-243.
    [115]Lin Su-Chen Jonathon. Optimal Control of an Axial Piston Pump Using Single-Stage and Two-Stage Eletrohydraulic Servovavles[D]. Ames: Iowa State University,1987.
    [116]S.J.Lin, A.Akers. Optimal Control Theory Applied to Pressure-Controlled Axial Piston Pump Design[J]. ASME Journal of Dynamic Systems, Measurement, and Control,1990,112:475-481.
    [117]N.D.Manring, R.E.Johnson. Modeling and Designing a Variable-Displacement Open-Loop Pump[J]. ASME Journal of Dynamic Systems, Measurement, and Control,1996,118:267-271.
    [118]S.A. Kassem, M.K.Bahr. Fuzzy Logic Control of Constant Power Regulated Swash Plate Axial Piston Pumps[C]. Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition IMECE2001. New York, USA.2001.
    [119]M.K.Bahr, J.Svoboda, R.B.Bhat. Response of Constant Power Regulated Swash Plate Axial Piston Pumps to Harmonic and Random Inputs[C]. Proceedings of the International Conference on Multidisciplinary Design in Engineering, CSME-MDE2001. Concordia University, Montreal, Canada.2001.
    [120]M.K.Bahr, V.Yurkevich, J.Svoboda, R.B.Bhat. Implementation of Single Feedback Control Loop for Constant Power Regulated Swash Plate Axial Piston Pumps[J]. Internatianal Journal of Fluid Power.2002,3(3):27-36.
    [121]M.K.Bahr, J.Svoboda, R.B.Bhat. Experimental Investigation on Swash Plate Axial Piston Pumps with Conical Cylinder Blocks Using Fuzzy Logic Control[C]. Proceedings of ASME International Mechanical Engineering Congress and Exposition IMECE2002. New Orleans, Louisiana, USA.2002.
    [122]Deping Li. Servo Controlled Swash Plate Axial Piston Pumps Operating under Variable Load Demands with Application to Rolling Mills[D]. Montreal:Concordia University,2003.
    [123]M.K. Bahr Khalil, Deping Li, R.B.Bhat. Condition Monitoring and Control of Rolling Mills Using Electro-Hydraulic System[C]. Proceedings of the 14th International Scientific Conference AMME'2006. Gliwice-Wista, Poland.2006.
    [124]Osama Gad, M.Galal Rabie, Refaat M.EI-Taher. Prediction and Improvement of Steady-State Performance of a Power Controlled Axial Piston Pump[J]. ASME Journal of Dynamic Systems, Measurement, and Control,2002,124:443-451.
    [125]季雅娟,周德繁,陈丽华.基于Matlab的高压变量泵变量机构的计算机仿真[J].应用科技,2004,31(6):10-13.
    [126]李泽松,寇子明.A4VG系列变量泵伺服机构动态特性分析[J].煤矿机电,2005,(2):8-9.
    [127]刘健.A4V变量泵伺服变量原理及试验研究[J].矿山机械,2007,35(10):128-130.
    [128]张甲林,宋宇.斜盘式轴向比例变量泵控制系统建模与仿真[J].科技信息(学术研究),2007,(2):26-28.
    [129]范政武,权龙.位移-力反馈原理斜轴式变量柱塞泵特性研究[C].第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集,2008:623-627.
    [130]范政武.位移-弹簧-力反馈流量控制元件的设计和参数研究[D].太原:太原理工大学,2008.
    [131]陈元建.位移-弹簧-力反馈泵/马达在二次调节静液传动系统中的研究与应用[D].太原:太原理工大学,2008.
    [132]王国志,吴文海,刘桓龙,柯坚.开闭环型电液比例轴向变量柱塞泵的特性研究[J].机械科学与技术,2008,27(1):83-87.
    [133]王国志,吴文海,柯坚,刘桓龙.电液比例闭环变量柱塞泵的实验研究[J].机械科学与技术,2009,28(1):136-140.
    [134]焦宗夏,王占林.变量机构主要参数的优化设计[J].机床与液压,1993,(6): 339-343.
    [135]赵继云,柴光远,李昌熙.非对称阀控非对称缸特性的理论研究[J].中国矿业大学学报,1996,25(4):22-27.
    [136]王传礼,许贤良.阀控非对称液压缸机构建模探讨[J].矿山机械,1998,(7):66-68.
    [137]许贤良,丁雪峰,杨球来.非对称伺服阀控制非对称液压缸的理论分析[J].液压与气动,2004,(3):16-18.
    [138]张业建,李洪人.阀控非对称缸电液伺服系统控制策略研究[J].中国机械工程,1999,10(10):1172-1175.
    [139]张业建,李洪人.非对称缸系统液压缸两腔压力特性的研究[J].机床与液压,2000,(5):63-64.
    [140]郭洪波,李洪人.非对称缸电液伺服系统的反馈线性化方法[C].黑龙江省机械工程学会年会论文集.黑龙江省机械工程学会,2002:88-92.
    [141]郭洪波,李洪人.基于Backstepping的阀控非对称缸电液伺服系统非线性控制[J].液压与气动,2004,(10):38-40.
    [142]李洪人,王栋梁,李春萍.非对称缸电液伺服系统的静态特性分析[J].机械工程学报,2003,39(2):18-22.
    [143]王栋梁,李洪人,李春萍.非对称阀控制非对称缸系统的静态及动态特性分析[J].机床与液压,2003,(1):198-200.
    [144]吴博,吴盛林,任好玲.非对称阀控非对称缸系统建模和仿真研究[J].机床与液压,2004,(8):73-75.
    [145]吴振顺,郑慧奇,于华艳.基于误差多项式的模型参考自适应控制在阀控非对称缸系统中的应用[J].机械工程学报,2006,42(8):56-59.
    [146]王传礼,丁凡,李其朋,杨奇顺.对称四通阀控非对称液压缸伺服系统动态特性研究[J].中国机械工程,2004,15(6):471-474.
    [147]汪首坤,王军政,张宇河.基于小脑模型神经网络的对称阀控非对称缸复合控制方法[J].北京理工大学学报,2005,25(1):49-53.
    [148]吕云嵩.阀控非对称缸频域建模[J].机械工程学报,2007,43(9):122-126.
    [149]孟亚东,李长春,张金英,刘晓东.阀控非对称缸液压系统建模研究[J].北京交通大学学报,2009,33(1):66-70.
    [150]陈浩峰,戴一帆,杨军宏.船舶运动模拟器阀控非对称缸液压系统神经网络辨识[J].液压气动与密封,2005,(4):6-9.
    [151]杨军宏,尹自强,李圣怡.阀控非对称缸的非线性建模及其反馈线性化[J].机械工程学报,2006,42(5):203-207.
    [152]杨军宏,李圣怡,戴一帆.阀控非对称缸系统的稳定性分析与设计[J].机械科学与技术,2007,26(12):1625-1629.
    [153]杨军宏,李圣怡,戴一帆.阀控非对称缸位置伺服系统鲁棒控制策略研究[J].机床与液压,2007,35(7):115-118.
    [154]杨军宏,李圣怡,戴一帆.阀控非对称缸非线性系统高精度位置跟踪鲁棒控制研究[J].中国机械工程,2007,18(23):2801-2805.
    [155]饶励,薛英杰.柱塞泵斜盘裂纹原因分析和改进措施[C].中国航空学会年会.浙江宁波,2006:295-300.
    [156]Medhat Khalil. Performance Investigation of the Swash Plate Axial Piston Pumps with Conical Cylinder Blocks[D]. Montreal:Concordia University,2003.
    [157]许贤良,陈亚立.A4V柱塞泵特点和运动方程[J].矿山机械,1994(8):9-11.
    [158]刘仙船.基于虚拟样机的斜柱塞泵仿真研究[D].成都:西南交通大学,2009.
    [159]翟培祥.斜盘式轴向柱塞泵设计[M].北京:煤炭工业出版社,1978.
    [160]高永强.轴向柱塞泵流量脉动的研究[J].山东轻工业学院学报,2007,21(1):39-41.
    [161]李静.基于CFD的轴向柱塞泵配流特性研究[D].杭州:浙江大学,2008.
    [162]阎学文,许安,展朝勇.轴向柱塞泵泄漏的检测与修理[J].建筑机械,2006,(3):64-65.
    [163]R. D. Harris, K. A. Edge, D. G. Tilley. The Suction Dynamics of Positive Displacement Axial Piston Pump[J]. ASME Journal of Dynamic Systems, Measurement, and Control,1994,116:281-287.
    [164]那成烈.轴向柱塞泵可压缩流体配流原理[M].北京:兵器工业出版社,2003:21-23.
    [165]那成烈.三角槽节流口面积的计算[J].兰州理工大学学报,1993,19(2):45-48.
    [166]张春阳.轴向柱塞泵内泄漏的研究[J].筑路机械与施工机械化,2005,(4):60-61.
    [167]于兰英,王国志,刘桓龙,柯坚,邓斌.水压柱塞泵滑靴中的短阻尼孔效应[J].液压与气动,2003,(12):51-54.
    [168]陈海明,胡新华,杨继隆,姜伟.变粘度条件下柱塞摩擦副泄漏流量的计算[J].润滑与密封,2003,(3):25-26.
    [169]邓海顺,许贤良,王传礼.球面配流副的泄漏分析与研究[C].第四届全国流体传动与控制学术会议论文集.中国机械工程学会流体传动与控制分会,2006:89-91.
    [170]路甬祥.两通插装阀的流量系数和液动力[J].液压气动与密封,1983,(4):14-21.
    [171]周新建.球阀流量系数的研究[J].流体机械,2001,29(5):44-45.
    [172]袁小川,郭迎清.机械液压系统流量方程中流量系数的选取[J].航空计算技术,2006,36(5):90-91.
    [173]范海平,曾小林.基于计算流体动力学的流量系数研究[J].机电设备,2007, (2):9-12.
    [174]H. F. George, A. Barber. What is Bulk Modulus and When is it Important[J]. Hydraulic and Pneumatics,2007, (7):34-39.
    [175]王静,龚国芳,杨华勇.油液体积模量的研究与在线测量[J].机械工程学报,2009,45(7):120-125.
    [176]时培成,王幼民,王立涛.液压油液数字建模与仿真[J].农业机械学报,2007,38(12):148-151.
    [177]马吉恩,徐兵,杨华勇.轴向柱塞泵流动特性理论建模与试验分析[J].农业机械学报,2010,41(1):188-194.
    [178]方桂花,汪建新,张玉宝,姚瑶.液压传动[M].北京:地震出版社,2002:54-56.
    [179]许贤良,刘利国.A4V柱塞泵运动方程研究.煤矿机械,2001(7):19-21.
    [180]李静,徐兵,马吉恩.可压缩流体介质轴向柱塞泵流量脉动仿真研究[J].机床与液压,2003,36(5):154-155.
    [181]余经洪,陈兆能.液压泵流量脉动特性的精确评定[J].机床与液压,1993(4):217-223.
    [182]余经洪,陈兆能,王钧功,陆元章.液压柱塞泵的噪声控制[J].液压与气动,1991(4):18-22.
    [183]高常识,马昌,韩桂华.低流量脉动齿轮泵及其测试[J].机床与液压,1999(1):43-44,84.
    [184]余经洪,张勇.测试液压系统非恒定流量的新方法[J].中国机械工程,1992,3(5):15-16.
    [185]孙家匡.液压泵流量脉动的测定[J].液压与气动,1987(3):42-47.
    [186]余经洪,陈兆能,陆元章.液压柱塞泵流量脉动测试的试验研究[J].机床与液压,1992(4):187-193.
    [187]曾松祥.液压泵流量脉动的测定[J].国外舰船技术,1979(1):49-52.
    [188]马昌,高常识,韩桂华,胡海波.泵的流量脉动率对比测试[J].哈尔滨理工大学学报,1999,4(1):53-55.
    [189]成大先主编.机械设计手册(单行本)——弹簧(第5版)[M].北京:化学工业出版社,2010:第11篇.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700