用户名: 密码: 验证码:
复杂非线性系统智能故障诊断及容错控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性是机械系统动力学的固有属性。大型机械系统是一个复杂的非线性动力学系统,具有不确定性、非线性、时变性的特点,故障状况复杂,干扰因素多,基于线性理论的机械故障诊断方法具有很大局限性,难以满足实际诊断需要。因此,开展复杂非线性系统的故障诊断和容错控制方法研究具有重要的理论意义和实际应用价值。在本文中,针对复杂非线性系统,研究了智能故障诊断方法和几种复杂非线性系统的容错控制方法。主要研究内容如下:
     本文研究了小波变换和混沌理论与神经网络相结合进行故障诊断的方法。在故障诊断中,首先利用小波对所分析的信号进行消噪预处理,有效的检测出故障信息成分,并使用关联维数等混沌特征量刻画振动信号的故障特征,对机械设备的状态进行分类和识别,克服了传统方法在故障信号特征提取和分析上的困难。然后提出了小波神经网络的网络模型,并使用改进的遗传算法对神经网络模型的权值和阈值进行优化,避免了传统BP算法的不足,并通过实验,验证了算法的可行性。
     提出了一类非线性时滞系统的容错控制方法。针对带有故障的非线性时滞系统和非线性切换时滞系统,设计基于自适应故障估计算法的非线性系统自适应观测器,通过对故障的自适应估计设计故障系统容错控制器,并通过李雅普诺夫有界性理论验证算法的有效性。
     提出了一类时滞中立系统的容错控制方法。针对带有故障的时滞中立系统,采用自适应故障估计算法,设计基于输出反馈的时滞中立系统全维观测器,并通过李雅普诺夫有界性理论验证了算法的有效性。
     提出了一类非仿射非线性神经网络自适应容错控制方法。由于神经网络的非线性逼近能力,用神经网络对非线性系统故障进行估计,设计了神经网络故障诊断方法,并根据神经网络的逼近能力设计了非仿射非线性系统神经网络控制器,神经网络的权值系数通过自适应算法进行在线调整,根据李雅普诺夫理论,证明了系统闭环跟踪误差是一致有界稳定的。
Nonlinear is the inherent attribute of the mechanical system dynamics. Largemechanical system is a complex nonlinear dynamic system, it has uncertainty, nonlinear,time variation etc, fault condition is complex, and interference factors are great.Mechanical fault diagnosis methods based on linear theory have great limitations, it isdifficult to meet the practical needs for diagnosis. Therefore, development of complexnonlinear system fault diagnosis and fault tolerant control method research has importanttheory significance and practical application value. In this thesis, for complex nonlinearsystem, some kinds of different intelligent fault diagnosis methods are studied, and severalfault-tolerant control methods of nonlinear system are put forwarded. The main contentsof this thesis are as follows:
     In this thesis, wavelet transformation and chaos theory are combined with neuralnetwork for fault diagnosis. In fault diagnosis, first, wavelet analysis is used in signalde-noising pretreatment, the fault information components are detected effectively, and thecorrelation dimension and other chaotic characteristics are used to depict the fault featuresof vibration signal, the status of mechanical equipment are classified and recognized, thismethod overcomes the difficulty of the traditional method in fault signal feature extractionand analysis. Next, the network model of a wavelet neural network is put forwarded, andusing improved genetic algorithm who has global search capability on the optimization ofthe weights and thresholds, avoiding the disadvantages of BP algorithm, and throughsimulation experiment, the feasibility of this algorithm is proved.
     In this thesis, fault tolerant control method of a kind of nonlinear time-delay systemis put forwarded. For the nonlinear time-delay system and nonlinear switching time-delaysystem with fault, the adaptive fault estimation algorithm is adopted, and nonlinear systemadaptive observer based on the algorithm is designed, and fault-tolerant controller of faultsystem is designed according to adaptive estimation of the faults, and through thelyapunov boundedness theory, effectiveness of this algorithm are proved. Finally, thesimulation experiments show that the algorithm is feasible.
     In this thesis, fault tolerant control method of a kind of time-delay neutral system isput forwarded. For the time-delay neutral system with fault, the adaptive fault estimationalgorithm is adopted, and whole dimension observer of time-delay neutral system basedon output feedback is designed, and through the lyapunov boundedness theory,effectiveness of this algorithm are proved. Finally, the simulation experiments show thatthe algorithm is feasible.
     In the thesis, adaptive fault tolerant control method of a kind of non-affine nonlinearneural network is put forwarded. Because of the nonlinear approximation ability of neuralnetwork, neural network is used to estimate faults of nonlinear system, the neural networkfault diagnosis method is designed, and neural network controller of non-affine nonlinearsystem is designed according to the approximation ability of neural network, the weightvalues of neural network are online adjusted through the adaptive algorithm, based onLyapunov theory, the closed-loop system tracking error is uniform bounded stable isproved. Finally, the effectiveness of this adaptive algorithm is verified through thenumerical simulation results.
引文
[1]崔彦平,傅其凤,葛杏卫.机械设备故障诊断发展历程及展望[J].河北工业科技, 2004, 21
    (4): 59-62.
    [2]张飞云,彭小晖,李长福.软件可靠性测试充分性工程技术研究[J].质量与可靠性, 2005,13(5): 49-52.
    [3]魏春燕.小波分析与神经网络在刀具故障诊断中的应用[D].成都:西华大学机械制造及其自动化专业硕士学位论文,2008: 3-22.
    [4]邓小文.旋转机械几种典型故障的诊断方法及软件实现[D].西安:西北工业大学, 1999:49-81.
    [5]石博强,申焱华.机械故障诊断的分形方法:理论与实践[M].北京:冶金工业出版社,2001:19-36.
    [6] V. Venkatsubramanian, et al. A Review of Process Fault Detection and Diagnosis Part I:Quantitative Model-based Methods[J]. Computers & Chemical Engineering, 2003, 27(3):293-311.
    [7] V. Venkatasubramanian, et al. A Review of Process Fault Detection and Diagnosis Part II:Qualitative Models and Search Strategies[J]. Computers and Chemical Engineering, 2003, 27(3):234-245.
    [8] V. Venkatasubramanian, et al. A Review of Process Fault Detection and Diagnosis: Part III:Process History based Methods[J]. Computers & Chemical Engineering, 2003, 27(3): 327-346.
    [9] R. Isermann. Supervision, Fault-detection and Fault-diagnosis Methods--An Introduction[J].Control Engineering Practice, 1997, 5(5): 639-652.
    [10]陈长征,白秉三,严安.设备故障智能诊断技术研究进展[J].沈阳工业大学学报, 2000,22(4):349-352.
    [11]张萍,王桂增,周东华.动态系统的故障诊断方法[J].控制理论与应用, 2000, 17(2):153-188.
    [12]王福利.容错控制[M].东北大学八十周年校庆学术著作, 2003: 102-115.
    [13]杨伟.容错飞行控制系统[M].西安:西北工业大学. 2007: 106-128.
    [14]王慧,容旭东.非线性系统故障诊断和容错控制技术综述[J].浙江万里学院学报, 2010, 23(4): 43-48.
    [15]徐德洪,程肇基.用傅里叶分析法诊断电力电子电路的故障[J].浙江大学学报:自然科学版,1994, 28(6): 666-674.
    [16]孙丽颖,屈丹,闫铀.傅里叶变换与小波变换在信号故障诊断中的应用[J].辽宁工学院学报, 2005, 25(3): 155-160.
    [17]陈侃,博攀,谢辉.倒频谱分析在滚动轴承故障监测中的运用[J].四川兵工学报,2008, 29(1):93-96.
    [18]韩业峰,仲涛,石磊.基于包络谱分析的滚动轴承故障诊断分析[J].机械研究与应用,2010,23(4): 118-119.
    [19]秦恺,陈进.一种滚动轴承故障特征提取的新方法—谱相关密度[J].振动与冲击,2001,20(1): 34-37.
    [20]丁康,陈健林.平稳和非平稳振动信号的若干处理方法及发展[J].振动工程学报, 2003,16(1): 1-10.
    [21] S. H. Nawab, T. F. Quatieri. Short-time Fourier transform[M]. Advanced Topic in SignalProcessing. 1987: 289-337.
    [22]郝云虎,王福明.小波变换在机械故障信号分析中的应用[J].现代电子技术, 2008, 31(23):110-112.
    [23]任伟建,康朝海,于镝等.小波变换在信号奇异性检测中的应用[J].自动化技术与应用,2005, 24(1): 68-69.
    [24]贺银芝,沈松.基于小波变换的奇异性检测在发动机连杆轴承故障诊断中的应用[J].背景工业大学学报,2000,26(4): 72-76.
    [25]欧阳鑫玉,唐跃鹏.基于小波变换的奇异性检测在信号分析中的应用[J].鞍山科技大学学报,2006, 29(3): 250-254.
    [26]徐丙莲,羿旭明.基于小波变换的信号奇异性分析[J].数学杂志,2004, 26(7): 661-664.
    [27] S.Mallat, W.L.Hang.Singularity detection and processing with wavelet[J]. IEEETrans onInformationTheory, 1992, 38(22): 617-643.
    [28]邓秀华,朱伟兴.基于正交小波系数的阈值降噪法[J].农业网络信息, 2007,(7):122-123.
    [29] M. Lang. Noise reduction using an undecimated discrete wavelet transform[J]. Signal ProcessingLetters, IEEE, 1996, 3(1): 10-12.
    [30] J. B. Weaver. Filtering noise from images with wavelet transforms[J]. Magnetic Resonance inMedicine, 1991, 21(2): 288-295.
    [31]徐溪,宋珊珊.小波分析在信号消噪中的应用研究[J].舰船电子工程,2010,30(3): 185-187.
    [32]朱启兵.基于小波理论的非平稳信号特征提取与智能诊断方法研究[D].沈阳:东北大学机械设计及制造专业博士学位论文, 2005: 98-123.
    [33]加玉,王学伟,李雪梅.基于小波包时-频能量群的非稳态谐波分析[J].电测与仪表, 2008,45(11): 6-10.
    [34] Z. Peng. Singularity analysis of the vibration signals by means of wavelet modulus maximalmethod [J]. Mechanical Systems and Signal Processing, 2007, 21(2): 780-794.
    [35]阮明忠.基于小波包分析的信号噪声去除方法[J].中国高新技术企业. 2010, (10): 67-68.
    [36]胡汉辉,谭青.基于小波包分析的风机故障诊断[J].风机技术. 2010, (3):49-51.
    [37]张盈盈,潘宏侠,郑茂远.基于小波包和Hilbert包络分析的滚动轴承故障诊断方法[J].电子测试. 2010, (6): 20-23.
    [38]周德廉,卞海宁.小波包分析方法在齿轮箱振动信号处理中的应用[J].徐州师范大学学报:自然科学版. 2002, (4): 57-61.
    [39]郑海波,陈心昭.小波神经网络故障诊断系统的设计与应用[J].农业机械学报, 2002, 33(1):73-76.
    [40] J. D. Wu, C. H. Liu. An Expert System for Fault Diagnosis in Internal Combustion Engines usingWavelet Packet Transform and Neural Network [J]. Expert Systems with Applications, 2009,
    (36): 4278-4286.
    [41]姜万录,王益群.混沌振子在液压泵故障诊断中的应用[J].机床与液压, 1999, (5): 52-53.
    [42]戴冲,姜向东.基于混沌振子的微弱信号检测[J].微计算机信息, 2008, (4): 122-123.
    [43]李崇晟,屈梁生.齿轮早期疲劳裂纹的混沌检测方法[J].机械工程学报, 2005,(41):195-198.
    [44]朱春梅,徐小力,张建民.基于混沌分形的旋转机械故障诊断方法研究[J].煤矿机械, 2006,27(6): 1101-1102.
    [45]高瑞乾,甘新年,闫源江.基于混沌特征的航空发动机故障诊断研究[J].国外电子测量技术, 2011(3):24-28.
    [46]魏霞,徐敏强,鹿卫国.故障诊断技术及应用综述[J].热力透平, 2004, 33(4): 238-246.
    [47]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社, 2000: 196-251.
    [48]周东华.容错控制理论及其应用[J].自动化学报, 2000, 26(6): 788-797.
    [49]史定华,王松瑞.故障树分析技术方法和理论[M].北京:北京师范大学出版社, 1993:263-289.
    [50]朱大奇,于盛林.基于知识的故障诊断方法综述[J].安徽工业大学学报:自然科学版, 2002,19(3): 197-204.
    [51]张周锁,李凌均.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报, 2002,36(12): 1303-1306.
    [52]胡寿松,王源.基于支持向量机的非线性系统故障诊断[J].控制与决策, 2001, 16(5):617-620.
    [53]何学文,赵海鸣.支持向量机及其在机械故障诊断中的应用[J].中南大学学报:自然科学版, 2005, 36(1): 97-101.
    [54]陈果.一种实现结构风险最小化思想的结构自适应神经网络模型[J].仪器仪表学报, 2007,28(10): 1874-1879.
    [55] B. Kosko, J. C. Burgess. Neural networks and fuzzy systems[J]. The Journal of the AcousticalSociety of America, 1998,103(6): 3131-3131.
    [56] H. K. Kwan, Y. Cai. A fuzzy neural network and its application to pattern recognition[J]. FuzzySystems, IEEE Transactions on, 1994, 2(3): 185-193.
    [57] P. M. Frank, B. K ppen-Seliger. New developments using AI in fault diagnosis[J]. EngineeringApplications of Artificial Intelligence, 1997, 10(1): 3-14.
    [58] P. M. Frank, B. K ppen-Seliger., Fuzzy logic and neural network applications to faultdiagnosis[J]. International Journal of Approximate Reasoning, 1997, 16(1): 67-88.
    [59]胡世玲.基于神经网络的模拟电路故障诊断专家系统研究[D].哈尔滨:哈尔滨理工大学机械设计及制造专业硕士学位论文, 2009: 51-82.
    [60]吴今培,肖健华.智能故障诊断与专家系统[M].北京:科学出版社, 1997: 231-265.
    [61]王计生,黄惟公,喻俊馨.小波分析和神经网络技术在故障诊断中的应用[J].振动,测试与诊断, 2004, 24(1): 46-49.
    [62]方敏,陈雁翔.基于模糊神经网络的机械故障诊断方法的研究[J].控制理论与应用, 1998,
    (15): 460-465.
    [63]于刚,高正平,徐治皋等.基于神经网络与专家系统的汽轮发电机组故障诊断系统[J].电力系统自动化, 2004, 28(3): 67-70.
    [64] R. Isermann. Supervision, fault-detection and fault-diagnosis methods--an introduction[J].Control engineering practice, 1997, 5(5): 639-652.
    [65] S. Edwards. Fault diagnosis of rotating machinery [J]. Shock and Vibration Digest, 1998, 30(1):4-13.
    [66]傅周东.液压系统泄漏故障诊断技术研究[D].杭州:浙江大学机械电子工程专业博士学位论文, 1996: 40-61.
    [67]黄志坚,戴稳兴.珠风轧机液压在线监测系统[J].南方钢铁, 2000, (3): 13-18.
    [68]王益群,高英杰.液压传动及控制系统故障诊断技术的新进展[J].燕山大学学报, 1998,22(1): 1-3.
    [69] Boskovic, J.D, Sai-Ming Li, Mehra, R.K. Intelligent control of spacecraft in the presence ofactuator failures [A] .Proceedings of the 38th conference on decision and control,Phoenix,Arizona,USA,1999, (5):4472-4477.
    [70] Kabore P, Wang H. Design of fault diagnosis filters and fault tolerant control for a class ofnonlinear systems[ J ] .IEEE Transactions on automatic control,2001,46(11):1805-1810.
    [71] W H N,Zhang H Y. Reliable H∞fuzzy control for continuous -time nonlinear systems withactuator failures [ J ] .IEEE Trans on Fuzzy Systems,2006,14(5):609-618.
    [72] Shao Hua-ping, Qin Zheng. Intelligent fault-tolerant control of the nonlinear system based onfuzzy learning methodology[J]. Journal of Transportation Engineering and Information, 2005,3(1): 1-8.
    [73] Ramamurti K, Agogino A M. Real-time expert system for fault tolerant supervisory control[J].Journal of Dynamic System, Measurement, and Control, 1993, 5(3): 219-227.
    [74] Darouach M,Zasadzinski M. Unbiased minimum variance estimation for systems with unknownexogenous imputs. Automatica, 1997, 33(4): 717-719.
    [75] Kwong W A, Passino K M, Laukonen E G, et al. Expert Supervision of Fuzzy Learning Systemsfor Fault Tolerant Aircraft[J]. Proc. IEEE, 1995, 83(3): 466-468.
    [76]李明,徐向东.用容错技术提高锅炉控制系统的可靠性[J].清华大学学报. 1999, 39(3):88-91.
    [77] Noriga J R, Wang H. A direct adaptive neutral-network control for unkown nonlinear systemsand its application on neural networks[J]. IEEE Transaction on Neural Networks, 1998, 9(1):27-34.
    [78]黄湘云,朱学峰.基于改进BP神经网络的传感器集成故障诊断[J].控制工程,2005, 12(5):429-431.
    [79]曹云峰,王耀才,王军威.基于粗糙集的容错神经网络故障诊断系统[J].计算机工程与设计,2006, 27(4):637-639.
    [80] Mario Polycarpou, Zhang xiaodong, et al. A neural network based approach to adaptive faulttolerant flight control[A]. International Symposium on Intelligent control[C]. Taipei, Taiwan,2004,2(4): 61~66.
    [81]王晓东,杨德生.神经网络在火箭容错控制中的应用[J].航天控制, 1996, 1(1): 7-11.
    [82]蔡慧娟,范志宏.基于神经网络的自适应控制[J].硅谷. 2008, 24(24): 21-22.
    [83]李庆国,冯玉珠.基于神经网络的非线性系统故障检测及容错控制方法[J].信息与控制,1998, 27(6): 440-445.
    [84]吴忠强,奥顿,刘坤,等.不确定非线性系统的模糊保性能容错控制[J].系统仿真学报,2004, 16(5): 1105-1107.
    [85]李秀琴,李书臣.一类非线性系统的故障检测与容错控制算法[J].测控技术, 2005, 24(8):31-33.
    [86]李娟.含控制时滞系统的实时故障诊断和最优容错控制[J].控制与决策, 2008, 23(4):439-444.
    [87] J. SUN. Robust Fault-Tolerant Control of Uncertain Time-Delay Systems [J]. Control Theory &Applications, 1998, 33(3): 79-82.
    [88] H. Qinglong, Y. Jinshou. Fault-tolerant Controller Design for Linear Continuous Control Systemswith a Small Time-delay [J]. Journal of East China University of Science and Technology. 1995,21(6): 720-724.
    [89]邱恺,魏瑞轩.一种基于RBF网络的自适应容错联邦滤波算法研究[J].控制与决策, 2004,19(12): 1420-1424.
    [90] C. Anhua, Z. Jue. Description and prediction of catastrophe of vibration state for faulty rotors[J].Transactions of Nonferrous Metals Society of China, 1996, 6(1): 215-221
    [91]杨宗凯.小波去噪及其在信号检测中的应用[J].华中理工大学学报, 1997, 25(2): 1-4.
    [92]樊永生.机械设备诊断的现代信号处理方法[M].北京:国防工业出版社, 2009.
    [93] J. Zarei, J. Poshtan. Bearing fault detection using wavelet packet transform of induction motorstator current [J]. Tribology international, 2007, 40(5): 763-769.
    [94] V. Purushotham. Multi-fault diagnosis of rolling bearing elements using wavelet analysis andhidden Markov model based fault recognition [J]. NDT & E International, 2005, 38(8): 654-664.
    [95] J. Rafiee. Application of mother wavelet functions for automatic gear and bearing fault diagnosis[J]. Expert systems with applications, 2010, 37(6): 4568-4579.
    [96] L. Li. Haar wavelet for machine fault diagnosis [J]. Mechanical Systems and Signal Processing,2007, 21(4): 1773-1786.
    [97]李军,俞建定,徐铁峰.基于小波变换的故障诊断信号非平稳性分析[J].系统工程与电子技术, 2006, 28(7): 1109-1111.
    [98]潘泉,孟晋丽,张磊,等.小波滤波方法及应用[M].电子与信息学报, 2007, (29): 236-242.
    [99]段晨东,何正嘉.第二代小波降噪及其在故障诊断系统中的应用[J].小型微型计算机系统,2004, (25): 1341-1343.
    [100]林京,刘红星.小波奇异性检测及其在故障诊断中的应用[J].信号处理, 1997, 13(2):182-187.
    [101]林京,屈梁生.基于连续小波变换的奇异性检测与故障诊断[J].振动工程学报, 2000, 13(4):523-530.
    [102]D. Logan, J. Mathew. Using the correlation dimension for vibration fault diagnosis of rollingelement bearings—I. Basic concepts [J]. Mechanical Systems and Signal Processing, 1996, (10):241-250.
    [103]D. B. Logan, J. Mathew. Using the correlation dimension for vibration fault diagnosis of rollingelement bearings—II. Selection of experimental parameters [J]. Mechanical Systems and SignalProcessing, 1996, (10): 251-264.
    [104]J. Yang. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractaldimension [J]. Mechanical Systems and Signal Processing, 2007, (21): 2012-2024.
    [105]赵树魁,周景新,黄楠.分形维数在机械故障诊断中的具体应用[J].东北电力学院学报,2005, 25(6): 68-72.
    [106]徐玉秀,杨文平.关联维数及其在故障诊断中的应用研究[J].振动.测试与诊断, 2001,21(4): 275-280.
    [107]汪慰军,陈进,吴昭同.关联维数在大型旋转机械故障诊断中的应用[J].振动工程学报,2000, 13(2): 229-234.
    [108]王明祥,宁宇蓉,王晋国.基于Mallat算法的一维离散小波变换的实现[J].西北大学学报:自然科学版, 2006, 36(3): 364-368.
    [109]N. Nikolaou, I. Antoniadis. Rolling element bearing fault diagnosis using wavelet packets [J].NDT & E International, 2002, 35(3): 197-205.
    [110]屈梁生.机械故障诊断学[M].上海:上海科学技术出版社, 1986.
    [111] J. D. Wu, C. H. Liu. Investigation of engine fault diagnosis using discrete wavelet transform andneural network [J]. Expert systems with applications, 2008, 35(3): 1200-1213.
    [112]J. D. Wu, J. M. Kuo. An automotive generator fault diagnosis system using discrete wavelettransform and artificial neural network [J]. Expert systems with applications, 2009,36(6):9776-9783.
    [113]陈哲,冯天瑾.小波神经网络研究进展及展望[J].青岛海洋大学学报:自然科学版, 1999,29(4): 663-668.
    [114]马平,王英敏,张建,等.基于遗传优化神经网络的故障诊断研究[J].微计算机信息, 2007,5 (1): 142-143.
    [115]欧健,孙才新,胡雪松,等.基于遗传优化BP网络的振动故障诊断[J].高电压技术, 2006,32(7): 46-48.
    [116]张铃,张钹.神经网络中BP算法的分析[J].模式识别与人工智能, 1994, 7(3): 191-195.
    [117]胡金滨,唐旭清.人工神经网络的BP算法及其应用[J].信息技术, 2004, 28(4): 1-4.
    [118]席裕庚,柴天佑.遗传算法综述[J].控制理论与应用, 1996, 13(6):697-708.
    [119]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社, 2002.
    [120]X. Zhang. Adaptive fault-tolerant control of nonlinear uncertain systems: an information-baseddiagnostic approach [J]. IEEE Transactions on Automatic Control, 2004, 39(8): 1259-1274.
    [121]F. You.Active fault-tolerant control design for a class of time-delay systems [J].IntelligentControl and Automation, 2006:5535-5538.
    [122]B. Marx. Robust fault-tolerant control for descriptor systems [J].IEEE Transactions onAutomatic Control, 2004, 49(10): 1869-1876.
    [123]E. Fridman. New Lyapunov–Krasovskii functionals for stability of linear retarded and neutraltype systems [J].Systems & Control Letters, 2001, 43(4): 309-319.
    [124]Q. L. Han. On robust stability of neutral systems with time-varying discrete delay andnorm-bounded uncertainty [J].Automatica, 2004, 40(6): 1087-1092.
    [125]C. H. Lien. Stability conditions for a class of neutral systems with multiple time delay [J].Journal of Mathematical Analysis and Applications, 2000, 245(1): 20-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700