用户名: 密码: 验证码:
山岭隧道与地下工程健康评价理论研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国交通基础设施建设事业和城市规模扩大化的快速发展,我国已经成为世界上隧道和地下工程最多、最复杂、今后发展最快的国家。但是,我国的隧道与地下工程养护技术起步较晚,营运隧道的健康状态不容乐观。对于这类混凝土支护结构的健康诊断目前还是主要依据监测资料建立监控模型等方法进行,虽然在实际工作中采用统计模型、确定性模型和混合型模型等取得了一定的成就,但是多数都是针对单个测点的数据进行处理,并且对于结构的健康状态的评价多以定性的描述或静态的评价结果作为判断依据,系统性和全面性存在不足,对于该类建筑物日常维护与修缮的正确指导带来困难。本文结合工程实例,从隧道营运状态的健康指标全面性出发,提出了能够基本正确反映隧道健康状态的定量与定性相结合,最终以定量结果加以评价的指标体系,给出了相应指标的判定标准和权重,引入动态模糊评价理论,建立了隧道与地下工程健康状态动态评价模型,最后通过室内相似模型试验的方法,验证并修正了部分健康诊断指标判据,结合工程实例证明了本文提出的评价系统和评价模型的正确性。本文主要取得的成果如下:
     1.从隧道与地下工程健康综合诊断的具体特点出发,结合实际工程需要,在制定诊断指标体系中诊断指标的原则基础上,对于隧道与地下工程的支护与营运状态下的各种破损形态和影响因素进行了充分的分析,最终遴选并确定了支护结构裂缝、渗漏水、支护结构材料劣化、支护结构背后空洞、支护结构变异和支护结构起层、剥落共六个诊断指标以及各自的诊断子指标系统,构成了较为完备的隧道与地下工程健康诊断指标系统。
     2.结合各层诊断指标和最终诊断目标,从相应规范、已有方法、实践经验、医学上对健康的划分等多方面因素考虑出发,对隧道与地下工程综合诊断结构体系中的健康评价集进行了设计,将隧道与地下工程的营运状况共分为健康、亚健康、病害和病危四个等级。
     3.在实际工程实践中,各种定性或定量的判定指标标准都有其相对性,一般将判定标准与实际工程监测和检测的实际情况综合利用来加以判别。本文结合国内外工程实践经验和规范等,给出了相应评判指标体系的判定标准。
     4.本文提出了隧道与地下工程“健康值”的概念,使不同层次及各层不同指标的评价具有统一的含义。较为深入的研究了定量和定性诊断指标进行初始数据标准化的方法,基本解决了由于隧道与地下工程综合诊断结构体系中的诊断指标在表述方法、取值范围、度量方法和度量单位之间各不相同造成的同层诊断指标之间相互比较困难的问题。
     5.根据隧道与地下工程健康状态诊断指标体系中诊断指标权重的特点,通过对已有权重方法的对比研究,采用乘积标度法确定了指标层指标的标度权重,并综合运用乘积标度法和模糊人工神经网络的方法分别确定了六个准则层的标度权重。同时基于最优化原则,采用融合权重的方法最终确定了准则层的标度权重,有效避免了单一权重赋值方法的人为性误差,为后面的评判奠定了基础。
     6.针对一般模糊综合评价时把评价指标作为常量进行评价,而很少考虑评价对象的特征值随时间而变化的情况的特点,提出了隧道与地下工程动态模糊综合评价法。提出了可变模糊集理论、相对差异函数模型、模糊可变评价模型。构造了动态模糊综合评价法中的隶属函数,并结合实际物理意义,构造了吸引(为主)矩阵、范围域矩阵和点值矩阵。
     7.结合重庆市”八一”和“向阳”隧道工程实例,研究了动态模糊综合评价方法在隧道与地下工程支护结构健康综合诊断中的应用,实现了对隧道与地下工程支护结构健康状态的动态量化综合评价,结果表明,计算结果对于评判隧道与地下工程支护结构的健康状态更具稳定性,有利于该类工程的合理判断与分期、分批治理研究。
     8.采用室内相似模型试验,结合实际工程实例,分别研究了隧道支护结构衬砌减薄、拱顶支护衬砌背后空洞与相关组合状态下,在竖直应力作用下围岩与支护结构破坏规律与极限承载能力,得出了隧道支护结构在相应的结构状态下健康状态的阶段判据。判据承载力曲线呈现明显的“S”型或反“S”型,可以划分为承载力缓慢褪化阶段、快速褪化阶段和褪化完成阶段,相对应的阶段可以划分为隧道结构的健康等级与级别,为隧道支护结构的健康判断提供了判断依据与方法结果表明,采用试验方法得到的结构健康状态判据与实际工程判据之间具有很好的相似性,可以修正实际经验判据,与相关判据联合使用,可使隧道支护结构健康状态的判断更加接近于真实,增强工程判断结果的科学性和合理性。
With the rapid development of traffic infrastructure construction and city scale expansion, China has become the country with the most quantity, most complicated, most rapidly developing in the future of tunnels and underground engineerings in the world. However, the maintenance technique for tunnels and underground engineerings started relatively late in our country, it is not optimism that the health of operation tunnels. At present, the most common method of health diagnosis for these concrete structures is monitoring model basing on monitoring data, although some success has been taken out in the practice using the Statistical Model, Deterministic Model, Mixed Model and so on, but single measuring points data is dealt in most models, and the judgment basis of the evaluation of health for structures is qualitative description or static evaluation, it is not sufficient at the system and comprehensiveness, and it will bring some difficulty to correctly guide the daily maintenance and repair to use above results. In the paper, combined with practical work, puts forward index system that can basically correct reflect the tunnel health states, combining quantitative and qualitative, and the final result being evaluated quantitatively. Giving the judging standards and weight of corresponding indexes; Establishing dynamic evaluation model of health states of tunnel and underground engineerings by inducting the method of dynamic fuzzy comprehensive evaluation; At the final, verifying and modifying part criterions of health diagnosis indexes by the method of indoor similar model test, validating the correctness of evaluation system and model proposed. The main research results as follow:
     1. Analyzing the supports and various structural breakage forms and influencing factors under operation basing on the rule of diagnostic index in its system, combing the practical engineering requirement and the specific characteristics of comprehensive diagnosis of tunnel and underground engineering health. Choosing and ascertain six diagnostic indexes (including supporting structure crack, water seepage, material degradation, cavities behind the lining, variation, ling peeling off and exfoliation of tunnel and underground engineering) and sub-index, constituting a comparatively complete diagnostic index system of the structure health.
     2. According to the diagnostic index and final diagnostic targets, designing the health evaluation sets of comprehensive diagnosis system of tunnel and underground engineering thinking over the corresponding criterion, existing methods, practical experience, medically health divided and other factors, the operation states are divided as four ranks:health, sub-health, disease and sick into death.
     3. It is relative that the various qualitative or quantitative index standards in the practice engineering, so distinguishing the results of structures using the combine of judgement standard with the works monitoring data and examining results. Giving the judgement standards of correspond index system combing the home and abroad engineering experience and criterion and so on.
     4. In the paper, the concept of health value is proposed, it makes the evaluation of various levels and its various indexes have a uniform meaning. Studying relatively thorough the method of initial data standardization of quantitative and qualitative diagnostic indexes, basically solved the difficult problem of intercomparison of diagnostic indexes in the same level resulting different each other from expression method, value range, measure method and measure units.
     5. According to the weight characteristic of diagnostic indexes and the comparative study of existing weight methods of tunnel and underground engineering, introduced multiplication scale method to determine the scale-weight of index layer, and comprehensively applied with the multiplication scale method and fuzzy artificial neural network to determine the six scale weight of criterion layer. At the same time, basing on the optimization principle, adopted combined weight method to determine the scale-weight, of criterion layer, it can effectively avoid artificial error caused by single method, and lay the foundation for the latter judgment.
     6. Puting forward dynamic fuzzy comprehensive evaluation of tunnel and underground engineering according to the characteristic that it commonly takes into account the evaluation indexes as constant and almost not considers change with time of eigenvalue. Putting forward variable fuzzy set theory, relative difference function model, variable fuzzy evaluation model. Constructing membership function of dynamic fuzzy comprehensive evaluation method, and constructing attractive matrix (main), range domain matrix and point value matrix linking practical physical meaning.
     7. Studying the application of dynamic fuzzy comprehensive evaluation method in the tunnel and underground engineering linking the practical example of bayi and xiangyang tunnel in Chongqing, China, it realized dynamic comprehensive evaluation of the tunnel and underground engineering. The results shows that it is more stable to evaluate the health states of the tunnel and underground engineering than other methods and it is propitious to reasonable judgment and maintenance by stage and batch to the same class engineering.
     8. Basing on indoor similar model test liking the practical engineering example, respectively studying the failure regularity and ultimate bearing capacity of the surrounding rock and supporting structure under the state of lining thinning, cavities behind the vault lining and correlative combination of them, and under the role of vertical stress, the criterion at every healthy subsection has been obtained. The bearing capacity curves show obviously S shape or inverse s-shaped and they can be divided into three degraded stages:slowly, rapid and completed, it is corresponding between tunnel health state with the stage, and it can offer basis and methods for judgment of tunnel supporting structure. The results show that it has a good correlation between structural health criterions, which getting from the test, with that using in the practical engineering, the former can correct the latter, and it can make the judgment more close to reality and be more scientific and rational for structural health judging and practical engineering result if combinedly use correlative criterions.
引文
[1]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报,2004,1(1),7~9
    [2]杨新安,黄宏伟.隧道病害与防治[M].上海:同济大学出版社,2003
    [3]关宝树.隧道维修管理要点集[M].北京:人民交通出版社,2004
    [4]陈洪凯,李明.公路隧道健康研究现状与趋势[J].公路,2005,No 12:203~208
    [5]段怀志.隧道及地下工程健康评价研究[D].重庆交通大学硕士论文,2009
    [6]Haack Alfred, Schreyer J, and Jackel G. State of the Art of Non-Destructive Methods for Determining the State of a Tunnel Lining. STUVA Report, Cologen, Ger-man, STUVA, 1996
    [7]洪代玲.隧道衬砌无损检测技术的发展[J].世界隧道,1997,No 1:17~32
    [8]Housner G. W., Bergman L. A., Caughey T. K. etal. Structural Control:Past Present and Future[J]. ASCE, Journal of Engineering Mechanics,1997,123(9):897-971
    [9]邱海涛,赵永贵,谭卓英,等.声波无损检测技术在南昆铁路隧道检测中的应用[J].广西地质,2002,15(3):75~78
    [10]彭立敏,施成华,刘小兵.隧道衬砌火灾损伤程度的超声波检测试验研究[J].无损检测,2000,22(6):260~262、275
    [11]王永安,白明洲,王连俊.雷达探测方法在隧道病害治理中的应用研究[J].西部矿探工程,2002,74(1):82~83
    [12]冯慧民.地质雷达在隧道检测中的应用[J].现代隧道技术,2004,41(4):67~71
    [13]徐宏武,胡运兵,宋劲等.应用地质雷达无损检测清凉山隧道的质量问题及评估[J].矿业安全与环保,1997,31(4):22~24、57
    [14]周立功,严炎兴,张惠生等.探地雷达技术在隧道病害检测中的应用[J].施工技术,1998,No3:15~16
    [15]蔡建辉.地质雷达在高等级公路隧道衬砌质量无损检测中的应用研究[J].公路交通技术,2002,增刊:87~89
    [16]邓涛,杨林德,李雷.公路隧道混凝土衬砌强度的无损检测方法研究[J].河北建筑科技学院学报,2004,21(2):70~73
    [17]W. D. Friebel, Dr.-lng. J. Krieger. Quality Assurance and Assessing the State of Road Tunnels using Non-destructive Testing Methods. Quality Assurance,2000,31-34
    [18]肖宽怀,孙宇,范明外,等.地震CT技术在大风垭隧道地质病害诊治中的应用[J].地球物理学进展,2004,19(3):678~683
    [19]孙宇,肖宽怀,赵永贵.地震CT勘探原理及其在公路隧道病害诊断中的应用[J].工程地质学报,2003,11(4):440~444
    [20]蒲建雄.应变检测法在工程实际中的应用[J].甘肃科技,2004,20(5):118~119
    [21]JunS Lee, I1-YoonChoi Hee-Uplee, etc. Tunnel Measurement System and Its Application to Korea High—speed Rail Tunnels [J]. Korean Tunneling Association,2001, (3):63~67
    [22]Davis, Allen G; Lim, Malcolm K., etc. Rapid and ecoNomical evaluation of concrete tunnel linings with impulse response and impulse radar Non-destructive methods. Claus German. NDT & E International,2005,38(3), p181~186
    [23]Collar, Frank; Fenning, Peter; Mora, Carlos. Application of drillhole vector magnetic measurements to resolve the position of existing underground structures. NDT & E International,2005,38(3), p231~236
    [24]Abraham, Odile; Derobert, Xavier. Non-destructive testing of fired tunnel walls: the Mont-Blanc Tunnel case study. NDT & E International,2003,36(6), p411 ~418
    [25]Cheng, Chia-Chi; Lin, Yiching; Hsiao, Chia-Men, etc.Evaluation of simulated transfer functions of concrete plate derived by impact-echo method. NDT & E International, 2007,40 (3)3, p239~249
    [26]Lee, Ming-Gin; Wang, Yung-Chih; Chiu, Chui-Te. A preliminary study of reactive powder concrete as a new repair material. Construction& Building Materials,2007,21(1), p182~189
    [27]Yin, W.; Peyton, A. J.. Thickness measurement of Non-magnetic plates using multi-frequency eddy current sensors. NDT & E International,2007,40(1), p43~48
    [28]Shen-En Chen; Anthony, Ron; Cohen, Julie Mark. Review of NDT Methods Applied to Fatigue Reliability Assessment of Structures by Jamshid Mohammadi. Journal of Performance of Constructed Facilities,2007,21(1), p93-94
    [29]Arunachalam, K; Melapudi, V.R; Udpa, L; etc. Microwave NDT of cement-based materials using far-field reflection coefficients. NDT & E International,2006,39 (7), p585 ~ 593
    [30]Hegde, Gopalkrishna; Asundi, Anand. Performance analysis of all-fiber polarimetric strain sensor for composites structural health monitoring. NDT & E International,2006,39(4), p320~327
    [31]Kim, D.S; Seo, W.S; Lee, K.M. IE-SASW method for Nondestructive evaluation of concrete structure. NDT & E International,2006,39(2), p143~154
    [32]Assouli, B.; Simescu, F.; Debicki, G.; etc. Detection and identification of concrete cracking during corrosion of reinforced concrete by acoustic emission coupled to the electrochemical techniques. NDT & E International,2005,38(8), p682-689
    [33]Cam, Ertugrul; Orhan, Sadettin; Luy, Murat. An analysis of cracked beam structure using impact echo method. NDT & E International,2005,38(5), p368~373
    [34]Shibata, Takuya; Hashizume, Hidetoshi; Kitajima, Sumio; etc. Experimental study on NDT method using electromagnetic waves. Journal of Materials Processing TechNology, 2005,161(1), p348-352
    [35]Hashizume, H.; Shibata, T.; Yuki, K. Crack detection method using electromagnetic waves. International Journal of Applied Electromagnetics & Mechanics, 2004,20(3),p171~178
    [36]Lataste, J.F.; Sirieix, C; Breysse, D.; Frappa, M.. Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering. NDT & E International,2003,36(6), p383~394
    [37]Cho, Young S.. NDT response of spectral analysis of surface wave method to multi-layer thin high-strength concrete structures. Ultrasonics,2002,40 (1-8), p227-230
    [38]Kumar, Anish; Raj, Baldev; Kalyanasundaram, P; etc. Structural integrity assessment of the containment structure of a pressurised heavy water nuclear reactor using impact echo technique. NDT & E International,2002,35(4), p213-220
    [39]Cawley, P. Non-destructive testing—current capabilities and future directions. Proceedings of the Institution of Mechanical Engineers — Part L—Journal of Materials: Design & Applications,2001,215(4), p213~223
    [40]Lagarde, Julien; Abraham, Odile; Laguerre, Laurent; etc. Use of surface waves and seismic refraction for the inspection of circular concrete structures. Cement & Concrete Composites,2006,28(4), p337~348
    [41]Karastathis, Vassilios K.; Karmis, Petros N.; Drakatos, George; etc. Assessment of the dynamic properties of highly saturated concrete using one-sided acoustic tomography. Application in the Marathon Dam. Construction & Building Materials,2002,16(5), p261~ 269
    [42]张祉道.家竹箐隧道施工中支护大变形的整治[J].世界隧道,1997,No 1:7~16
    [43]张祉道,白继承.家竹箐道高瓦斯、大变形、大涌水的整治与对策[J].世界隧道,1998,No 1:1~10
    [44]陈绍林,李茂竹,陈忠恕,等.四川广(安)—渝(重庆)高速公路华蓥山隧道岩溶突水的研究与整治[J].岩石力学与工程学报,2002,21(9):1344~1349
    [45]吴应明.气密性混凝土在瓦斯隧道中的应用[J].铁路建筑技术,1995,No 5:8~11
    [46]何川,佘健.高速公路隧道维修与加固[M].北京:人民交通出版社,2006
    [47]欧进萍.重大工程结构的智能监测与健康诊断[J].工程力学,2002,25(2):44~53
    [48]Caravani P, Watson M L and Thomson W. T. Recursive Least-square Time Domain Identification of Structural Parameters. Journal Apply Mechanical,1.997,44:135 ~ 140
    [49]Charsley P, Robins B. Electrical resistance change of cyclically deformed copper-nickel alloys. Mater. Sci.Eng.,1975,17:117~123
    [50]Choquet P, Juneau F and Dadoun F. New Generation of Fiber-Optic Sensors for Dam Monitoring [A] Proceeding of the?9 International Conference on Dam Safety;ind Monitoring[C] Three Gorge Project Site, Yichang. Hubei, China,1999
    [51]Christopher K, Leung Y, Elvin N, Olson N et aL Optical Fiber Crack Sensor for Concrete Structrues. SPIE,1997, Vol.3042:283~292
    [52]Craig A. Rogers and Frederic Lalande. Solid-state active sensing for in-situ health monitoring. The Proceedings of the Society for Machinery Failure Prevention TechNology Showcase, Mobile, AL, April 22~26,1996
    [53]Fuhr P L,Spammer S. Fiber optic sensors in the Waterbury Bridge. SPIE,1998, 3489:124~129
    [54]Inaudi D, CasaNova N, Kronenberg P and Vurpillot S. Raiway bridge mornitoring during construction and sliding. SPIE,1997, Vol.3043:58~64
    [55]John W. Ayres, Frederic Lalande, Craig A. Rogers and Zaffir Chaudhry. Qualitative health monitoring of a steel bridge joint via piezoelectric actuator/sensor patches. Proceedings of the SPIE Nondestructive Evaluation Techniques for Aging Infrastructure&Manufacturing,3~5 December 1996, Scottsdale,AZ
    [56]Knapp J, Altmann E, Niemann J and Werner K D. Measurement of shock events by means of strain gauges and accelerometers. Measurement,1998,24:87 ~ 96
    [57]Koh C G, Hong B and Liaw C Y. Parameter Identification of Large Structural System in Time Domain. Journal of Structural Engineering,2000,126(8):957~963
    [58]Kronenberg P, Casaletta N, Inaudi D and Vurpillot S. Dam mornitoring with fiber optics deformation sensors.SPIE,1997, VOL.3043:2 ~7
    [59]Loh C H, Wu T S and Lin C Y. Adaptive Identification of Nonlinear Hysteretic Systems, Proc. Of the 2nd World Conference on Structural Control,1998, Kyoto, Japan,2177-2186
    [60]王金国.土木工程结构健康监测、诊断以及安全评定技术[J].油气田地面工程,2004,23(12):35~36
    [61]孙鸿敏,李宏男.土木工程结构健康监测研究进展[J].防灾减灾工程学报,2003,23(3):92~98
    [62]张琳琳,王嘉琪.重大水工混凝土结构健康诊断指标的度量方法研究[J].红水河,2004,23(3):82~87
    [63]张琳琳,顾冲时,王嘉琪.重大水工混凝土结构健康综合诊断结构体系研究[J].红水河,2003,22(4):81~85
    [64]马福恒,向衍,吴中如.水工混凝土结构健康诊断的预警系统[J].水利水运工程学报,2005,No 3:7~12
    [65]李宏男,李东升,土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82~90
    [66]董聪,范立础,陈肇元.结构智能健康诊断的理论与方法[J].铁道工程学报,2002,23(1):11~24
    [67]吴中如,顾冲时.重大水工混凝土结构病害检测与健康诊断[M].北京:高等教育出版社,2005
    [68]项贻强,汪劲丰,王晖等.大型桥梁与隧道工程健康监测与评估管理系统的研究[J].东北公路,2006,No 2:3~6
    [69]徐玉桂,刘清忠.浅谈光纤传感技术在隧道结构健康监测中的运用[J].道路桥隧,2006,No 2:8~13
    [70]王晓明,杨光,温浩.大峪隧道混凝土结构病害检测与结构健康诊断[J].东北公路,2003,No 2:129~131
    [71]喻波.计算机辅助结构健康诊断方法[J].计算机工程与应用,2005,No 10:183~187
    [72]吕大刚,王光远.结构智能健康诊断的信息融合原理[J].哈尔滨建筑大学学报,2004,35(4):1~5
    [73]龚昊,盛克苏.沉管隧道健康监测研究[J].长江大学学报(自科版),2006,3(2):91~94
    [74]付军,严新平,刘胜春.盾构隧道健康监测分析与研究[J].道路与铁道工程,2004,3(2):1147~1151
    [75]施斌,徐学军,王镝等.隧道健康诊断BOTDR分布式光纤应变监测技术研究[J]. 岩石力学与工程学报,2005,24(15):2622~2628
    [76]丁勇,施斌,隋海波.隧道结构健康监测系统与光纤传感技术[J].防灾减灾工程学报,2005,25(4):375~380
    [77]周智,欧进萍.上木工程智能健康监测与诊断系统[J].防灾减灾工程学报,2001,20(11):1~4
    [78]冯新,李国强,周晶.土木工程结构健康诊断中的统计识别方法综述[J].地震工程与工程振动,2005,25(2):105~113
    [79]李书进,铃木祥之.小波分析在结构健康诊断中的应用[J].华中科技大学学报(城市科学版),2003,20(2):32~36
    [80]公路水路交通“十一五”科技发展规划[N].中华人民共和国国家发展和改革委员会交通运输司,2005、9
    [81]公路水路交通中长期科技发展规划纲要(2006-2020年)[N].中华人民共和国交通部,2005.9
    [82]凌树森.无损检测的可靠性研究—NDT可靠性软件的研制[J].全国材料理化测试与产品质量控制学术研讨会论文集(物理测试部分),1999:254~258、187
    [83]汤渊,李晓军.公路隧道病害数字化的初步探索[J].现代隧道技术,2006,增l:167~170
    [84]李晓军,朱合华,解福奇.地下工程数字化的概念及其初步应用[J].岩石力学与工程学报,2006,25(10):1975~1980
    [85]关宝树.铁路隧道的维修管理:学术动态报导,18~22.
    [86]铁道部运输局.铁路桥隧建筑物大维修规则[S].北京:中国铁道出版社,2000.
    [87]J.Benford,李定越.联邦德国的铁路隧道维修[J].铁道建筑;1984,No 11:41~42
    [88]德国道路交通协会(FGSV)公路隧道设施及运转准则(RABT),1994.
    [89]迈考尔.马立克,肖诗荣(译).地下工程养护与维修[J].水利水电快报,2000,21(3):11~13
    [90]中华人民共和国行业标准.公路隧道养护技术规范(JTGH12——2003):北京.人民交通出版社.2003
    [91]方利成等.隧道工程病害防治图集[M].北京:中国电力出版社.2001
    [92]Akira Inokuma.Shigero Inano. Road Tunnels in Japan:Deterioration and Countermeasures. Tunneling and Underground Space Technology,1996,11 (3):305~309
    [93]J. A. Richard. Inspection, Maintenance and Repair of Tunnels:International Lessons and Practice. Tunneling and Underground Space Technology.13(4):369~376,
    [94]刘新昌.欧盟公路隧道最低安全标准和部分措施[J].公路隧道,2004,(2):38~42
    [95]ITA WG Maintenance and Repair. Report on the damaging effects of water on tunnels during their working life [J].Tunneling and underground space technology,1991, 6(1):11~76.
    [96]牛荻涛,等.钢筋混凝土结构碳化寿命的模糊预测[A].中国土木工程学会第九届年会论文集[c].杭州:中国水利水电出版社,2000.367~370.
    [97]Bahkm-c G, Bieanic N, Durekovic A. The influence of W/C ratio, concrete cover thickness and degree of water saturation on the corrosion rate of reinforcing steel in concrete[J]. Cement and Concrete Research,1996,26(5):761 ~ 769.
    [98]肖从真.混凝土中钢筋腐蚀的机理研究及数论模拟方法[D].北京:清华大学土木工程系,1995.
    [99]Jemberg P, sjoshom C, casse M A. TC 140-TSL:Prediction of service life of building materials and components state-of the-art report[J]. Materials and Structure, Supplement,1997, (3):22~25.
    [100]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [101]司徒丽新,邹友泉.衬砌背后空洞对于公路隧道的危害性研究[J].山西建筑,2007,33(31):301-302.
    [102]何川,余健·高速公路隧道维修与加固[M].匕京:人民交通出版社.2006
    [103]佘健,何川,汪波等.衬砌背后空洞对隧道结构承载力影响的模型试验研究[J].公路交通科技,2008,25(1):104~110.
    [104]刘永华.二次衬砌结构拱顶存在空洞或裂缝的数值模拟[J].公路隧道,2006,No 3(总55):11~13.
    [105]彭跃,王桂林,张永兴等.衬砌背后空洞对在役隧道结构安全性影响研究[J].地下空间与工程学报,2008,4(6):1101~1104.
    [106]彭跃.在役城市隧道支护结构安全性评价[D].重庆:重庆大学土木工程学院,2007.
    [107]房营光,方引晴.城市地下工程安全性问题分析及病害防治方法[J].广东工业大学学报,2001,18(3):1~5.
    [108]Parviz Soroushian, Mohamed Elzafraney、Ali Nossoni Specimen preparation and image processing and analysis techniques for automated quantification of concrete microcracks and voids[J]. Cement and Concrete Research.2003.33:1949-1962.
    [109]E.Ringot. A.Bascoul. About the analysis of microcracking in concrete [J]. Cement and Concrete Composites.2001.23:261~266.
    [110]A. Ammouche, D. Breysse, H. Hornain, et al. A new image analysis technique for the quantitative assessment of microcracks in cement—based materials[J]. Cement and Concrete Research.2000,30:25~35.
    [111]A. Ammouche, J. Riss, D. Breyse, et al. Image analysis for the automated study of microcracks in concrete[J]. Cement and Concrete Composites.2001,23:267~278.
    [112]耿飞,解建光,钱春香.图像分析技术对混凝土裂缝的定量评价[J].混凝土,2005(5):78~80,94.
    [113]耿飞,钱春香.图像分析技术在混凝土塑性收缩裂缝定量测试与评价中的应用研究[J].东南大学学报(自然科学版),2003,33(6):773~776.
    [114]Liu Zhiwei, etc. A tunnel crack detection and classification system based on image processing. Proceedings of SPIE-The International Society for Optical Engineering. 2002,4664:145~152
    [115]冯晓燕.隧道病害分级和衬砌裂损整治技术研究[D]:[硕士学位论文].北京:北方交通大学,2002.
    [116]李治国,张玉军.衬砌开裂隧道的稳定性分析及治理技术[J].现代隧道技术,2004,41(1):26~31,40.
    [117]中华人民共和国住房和城乡建设部.地下工程防水技术规范(GB50108-2008)[S].北京:中国计划出版社,2001
    [118]高鹤江,刘修炜.铁路桥隧病害检查观测方法[M].北京:中国铁道出版社,1987
    [119]高鹤江,蔡洪谟.铁路桥隧养护简明手册[M].北京:中国铁道出版社,1994
    [120]中华人民共和国铁道部.铁路桥隧建筑物劣化评定标准隧道(TB/T2820.2-1999).北京:铁道出版社,1999
    [121]罗鑫.公路隧道健康状态诊断方法及系统的研究[D].同济大学博士学位论文,2007
    [122]张伟平,张誉,刘亚芹.混凝土中钢筋锈蚀的电化学检测方法[J].工业建筑,1998,28(12).
    [123]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [124]刘銮友,陈年和.钢筋锈蚀检测中新技术和仪器的应用[J].徐州建筑职业技术学院学报,2002,2(4):20~22.
    [125]龚洛书,柳春圃.混凝上的耐久性及其防护修补(第1版)[M].北京:中国建筑工业出版社,1990
    [126]K. Tuutti. Corrosion of steel in concrete, Sweden,1982
    [127]Mangat P S, Limbachiya M C. Effect of initial curing on chloride diffusion in concrete repair materials[J]. Cement and Concrete Research,1999 (9)
    [128]李振东,李辉,王健.地铁隧道支护系统的数值模拟研究[J].地下空间,2004, 24(3):19~22.
    [129]史世雍,梅世龙,杨志刚.隧道顶部溶洞对围岩稳定性的影响分析[J].地下空间,2005,1(5):698~716.
    [130]宋瑞刚,张顶立.“接触问题”引起的隧道病害分析[J].中国地质灾害与防治学报,2004(4):69~72,81.
    [131]中华人民共和国行业标准编写组.铁路隧道设计规范(TB10003—2005)[S]北京:中国铁道出版社,2001.
    [132]中华人民共和国行业标准编写组.铁路隧道施工规范(TB10204—2002)[S].北京:中国铁道出版社,2002.
    [133]J.A.Hudson岩石力学原理,岩石力学与工程学报,1989,8(3):252~268
    [134]HOEK E. BROWN E T Practical estimates of roc k mass strength [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165~ 1186
    [135]李世辉.隧道支护设计新论[M].北京:铁道出版社,1999
    [136]陈守煌.大系统模糊优化单元系统理论[J].系统工程理论与实践,1994(1):1~10
    [137]张琳琳.重大水工混凝土结构健康诊断综合分析理论和方法[D].河海大学硕士学位论文,南京,2003
    [138]王晓明.高速公路服役隧道结构可靠性分析与后评估研究[D].东北大学博士论文,沈阳,2007
    [139]汪浩,马达.层次分析标度评价与新标度方法[J].系统工程理论与实践,1993,13(5):24~26
    [140]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990
    [141]侯岳衡,沈德家.指数标度及其与几种标度的比较[J].系统工程理论与实践,1995,15(10):43~46
    [142]熊立,梁裸,王国华.层次分析法中数字标度的选择与评价方法研究[J].系统工程理论与实践,2005,25(3):72~79
    [143]唐元义,胡清峰,骆有德.层次分析法的一种新标度法[J].鄂州大学学报,2005,12(6):40~41,48
    [144]石建,郭跃华.基于指数标度的层次分析法及其应用[J].南通工学院学报:自然科学版,2004,3(4):4~7
    [145]吕跃进,张维,曾雪兰.指数标度与1-9标度互不相容及其比较研究[J].工程数学学报,2003,20(8):77~81
    [146]何金平,李珍照,施玉群.大坝结构实测性态综合评价中的权重问题[J].武汉大学学报(工学版),2001,34(3):13~17
    [147]廖文来.大坝安全巡视检查信息综合评价方法研究[D].武汉大学硕士学位论文,武汉,2005
    [148]关宝树.隧道工程施工要点集[M].人民交通出版社,2003
    [149]王春梅.日本公路隧道的恶化状况及防治对策[J].世界隧道,1997,6:29~33
    [150]Iwasaki A, Todoroki A, Sugiya T, et al. Damage diagnosis for SHM of existing civil structure with statistical diagnostic method. Proceedings of the SPIE-The International Society for Optical Engineering,2004,5394(1):411 ~418
    [151]Kazuaki K, Minoru K, Tsutomu T et al. Structure and construction reinforcement method using thin steel panels. Nippon Steel Technical Report,2005,92: 45-50
    [152]Neaupane K M, Adhikari N R. Prediction of tunneling-induced ground movement with the multi-layer perception. Tunnelling and Underground Space Technology, 2006,21(2):151 ~159
    [153]Suwansawat SEinstein H H. Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling. Tunnelling and Underground Space Technology,2006 21(2):133-150
    [154]徐林生,王新平.通渝隧道围岩变形的神经网络预测[J].公路,2004,No 3,145~148
    [155]李明,陈洪凯.危岩主控结构面智能显现机理研究[J].重庆建筑大学学报,2008,30(2),103-107,112
    [156]重庆公路工程检测中心.重庆市”八一”隧道试验检验报告[R].重庆,2005.9
    [157]重庆公路工程检测中心.重庆市“向阳”隧道试验检验报告[R].重庆,2005.9
    [158]韩常领,夏才初,卞跃威等.六甲洞隧道健康状态的模糊综合评价[J].公路,2008,7,250~254
    [159]Zadeh L A. Fuzzy Seyts. Information and control,1965,8(3):338 ~ 353
    [160]张涵浮,何正嘉.模糊诊断原理及应用[M].西安:西安交通大学出版社,1992
    [161]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998
    [162]陈守煜.复杂水资源系统优化模糊识别理论与应用[M].长春:吉林大学出版社,2002.
    [163]陈水利,李敬功,王向公.模糊集理论及其应用[M].北京:科学出版社,2005:10~50
    [164]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版社.2004
    [165]彭祖赠,孙玉.模糊(Fuzzy)数学及其应用[M].武汉:武汉大学出版社.2002
    [166]杜栋,庞庆华.现代综合评价方法与案例精选[M].北京:清华大学出版社,2005. 57~189
    [167]钮晓鸣.带置信因子的模糊综合评判[J].系统工程理论方法应用,1997,6(2);71~75
    [168]刘首文,冯尚友.对环境质量的模糊综合评价模型中算子“∧,∨”的研究[J].环境科学与技术,1996,(02):4~7,17
    [169]陈守煜,伏广涛,周惠成,王国利.含水层脆弱性模糊分析评价模型与方法[J].水利学报,2002,(7):23~30
    [170]王道勇,模糊综合评判的失效与处理[J].工科数学,1994,10(1):45~49
    [171]杨树滩,夏自强.模糊数学在水资源紧缺程度评价中的应用研究[J].长江科学院院报,2005,(2):25~27.
    [172]王海涌,刘丽艳,郑丽英.模糊综合评价法在城市公交线网评价中应用[J].兰州交通大学学报,2004,(6):69~73.
    [173]陈雯.第三方物流客户服务绩效的灰色模糊综合评价模型[J].模糊系统与数学,2007,(2):149~154.
    [174]周庆忠.油料装备设计方案的灰色模糊综合评价[J].农业机械学报,2003,(1):23~26
    [175]顾吟,杨建宏,梁之坚.城市隧道运行管理模糊综合评价方法[J].市政技术,2006,24(5),311~313,316
    [176]贺志勇,张娟,王存宝,等.高速公路隧道安全性的综合评价[J].华南理工大学学报(自然科学版),2008,36(2):58~63
    [177]罗玉屏,高桂风,武红丽.公路隧道交通安全模糊评价体系研究[J].石家庄铁道学院学报,2006,19(3):75~79
    [178]杜益文,韩直,杭力,等.公路隧道安全模糊评价方法[J].公路交通技术,2006(4):120~123
    [179]刘彤,谢永利,李宁军.祈家大山隧道病害治理方案数值模拟研究[J].公路,2005(8):284~287
    [180]许宏科,王维敏,王世伟.高速公路隧道运营管理模糊综合评价[J].西安建筑科技大学学报(自然科学版),2005,37(3):381~385
    [181]张志霞,陈永锋.层次模糊决策模型在公路交通网综合评价中的应用[J].西安建筑科技大学学报,2004,36(1):75~78
    [182]黄波,吴江敏.运营隧道状态的综合评价[J].世界隧道,2000,1(1):58~60
    [183]李晓英,彭立敏,黄娟.铁路隧道健康状态模糊评价体系研究[J].采矿技术,2008,8(5):54~56
    [184]汪培庄.模糊集合论及其应用[M].上海:上海科技出版社,1983
    [185]陈宝峰,王以廉.动态模糊综合评价法及其应用[J].北京农业工程大学学报,1991,11(3):22~24
    [186]陈守煜.工程可变模糊集理论与模型—模糊水文水资源学数学基础[J].大连理工大学学报.2005,45(2):308~312
    [187]陈守煜,李敏.基于可变模糊集理论的水资源可再生能力评价模型[J].水利学报,2006,37(4):431~435
    [188]陈守煌.水资源与防洪系统可变模糊集理论与方法[M].大连:大连理工大学出版社,2005
    [189]彭补拙,窦贻俭,张燕.用动态的观点进行环境综合质量评价.中国环境科学,1996,16(1):16~19
    [190]袁大祥,严四海.论动态安伞评价[J].中国安全科学学报.2003,13(5):38~40
    [191]孙志翱,金保升,周山明,等.动态模糊综合评价在烟气脱硫技术优选中的应用[J].锅炉技术,2007,38(3):72~76
    [192]许开立,陈宝智,陈全.安全等级特征量及其计算方法[J].中国安全科学学报,1999,9(6):6~11
    [193]陈守煌.大系统模糊优化单元系统理论[J].系统工程理论与实践,1994(1):1~10
    [194]王璐,庞皓,何平.一种新的动态综合评价模型及应用[J].统计与决策,2006,(24):28~30
    [195]韩伯鲤,陈霞龄,宋一乐,等.岩体相似材料的研究[J].武汉水利电力学院学报,1997,30(2):6~9
    [196]韩伯鲤,张文昌.新型地质力学模型材料(MIB)[J].武汉水利电力学院学报,1983,(1):11~17
    [197]袁文忠.相思理论与静力学模型试验[M].成都:西南交通大学出版社,1998
    [198]曾亚武,赵震英.地下洞室模型试验研究[J].岩石学与工程学报,2001,20(增):1745~1749
    [199]顾大钊.相似材料和相似模型[M].徐州:中国矿业大学出版社,1995.
    [200]吴钮应.岩体结构面的模拟研究[[J].煤炭学报1997(2)
    [201]催广心.相似理论与模型研究[J].江苏中国矿业大学出版社,1990
    [202]林韵梅.实验岩石力学[M].北京:煤炭工业出版社,1984
    [203]Jacoby.WR, Schmeling, H.Convection experiments and driving mechanism [J].Geol. Rundsch,1981, (2):207-230.
    [204]aliens J. Plate tectonic model for Indian ocean "intraplate" deformation[J]. T -ectonophysics,1986,132(1)
    [205]徐挺.相似方法及其应用[M].北京:机械工业出版社,1995.
    [206]龚召熊.地质力学模型材料试验研究[J].长江水利水电科学研究院报,1984,10(1):32~46
    [207]彭海明,彭振斌, 韩金田,等.岩性相似材料研究[J].广东土木与建筑,2002,12(12):13~17
    [208]李明;陈洪凯.隧道健康动态评价模型与应用[J].重庆大学学报2011,34(2):142~148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700