用户名: 密码: 验证码:
面向瓶颈路段的城市交通信号控制动态优化方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号控制是调节城市交通流的重要手段之一,对于缓解交通拥堵、确保交通流的正常、有序运行具有重要意义。目前,常用的信号控制技术主要根据进口道的静态属性(几何尺寸、渠划方案等)和动态属性(流量等)优化节点信号配时参数,解决交叉口的安全、效率和公平性问题,对促进世界各国城市交通管理水平的提升发挥了重要作用。然而,传统的信号控制技术主要适用于非饱和状态,且没有考虑上下游路段之间的相互影响,过饱和状态下信号控制技术的研究尚处于起步阶段。随着城市交通拥堵问题的日益加剧,很多节点的交通流运行经常处于过饱和状态,甚至部分路段的排队长度接近或等于路段长度,引起排队上溯现象的发生,形成路段“瓶颈”,严重制约路网交通流的整体运行效率。为了有效预防排队上溯现象的发生、减少交通拥堵状态的时空波动,城市路网的信号控制方案应尽可能实施区域协调控制,且在区域协调控制方案优化中应充分考虑瓶颈路段的约束;同时,为了减少排队上溯对上游交叉口乃至整个区域交通流所产生的负面影响,必须准确、实时的识别或预测排队上溯,并在保证区域交通流运行效率的基础上,通过配时参数优化快速消散路段“瓶颈”。为了适应当今复杂的城市交通形势,本文以瓶颈路段约束下的城市交通信号控制动态优化方法为核心,着重研究考虑交通流运行特性的单点信号控制方法、瓶颈路段约束下区域增容控制方法、排队上溯识别方法、瓶颈状态识别方法以及排队消散信号优化方法等,并根据以上内容在如下五个方面开展了重点研究。
     (1)考虑交通流运行特性的单点交叉口信号控制方法无信号交叉口通常是制约城市路网交通流运行效率的薄弱环节,当无信号交叉口满足特定条件时应考虑将其改为信号控制。本部分首先分析无信号交叉口非优先车流的运行效率以及信号控制交叉口所有机动车流的运行效率,并以交叉口交通流的整体运行效率最优为决策依据,确定无信号交叉口改用信号控制的临界流量条件;其次,分析不同交通状态下的单点信号控制策略,以优化时段内所有路段的平均承载车辆数之和最小为优化目标,提出一种进出口道综合效率最优的配时参数优化方法,为准饱和状态下城市交通流的区域协调控制提供基础。
     (2)路段瓶颈约束下的区域增容控制信号优化方法分析准饱和状态下的区域协调控制目标,提出区域增容控制的控制策略并建立相应的目标函数表达式;同时,以上下游路段交通流的相互影响为基础,提出一种区域拓扑结构影响下的路段承载车辆数动态演化模型;以单位时间内的区域输出流量最大为优化目标,以相位最大绿灯时长和最小绿灯时长为约束,建立节点相位绿信比优化模型;考虑路段上下游车辆的驶入及驶离规律,描述相邻节点之间的最佳相位差动态优化过程,为准饱和和高饱和状态下的区域协调控制提供基础。
     (3)基于上游断面信息的排队上溯识别方法分析流量、速度和时间占有率的相互关系,推导适用于所有交通流状态的时间占有率估算模型,提出一种基于上游断面信息的排队上溯识别方法;利用动力学方程,修正传统的交通波模型,进而确定表征排队上溯现象发生的周期时间占有率阈值;最后,利用VISSIM仿真数据,以误判率为指标,验证本方法对排队上溯现象的识别精度,并分析检测器位置和大型车辆比例对误判率的影响,说明本方法对排队上溯识别精度的稳定性。
     (4)基于瓶颈路段断面信息的瓶颈状态识别方法首先,提出滚动时间占有率的基本概念并介绍其统计方法;其次,基于不同车型的有效车身长度、自由流速度和拥挤速度,确定排队检测器位置可能处于畅通状态和拥堵状态的时间占有率阈值,并通过VISSIM仿真分别得到未过饱和和过饱和状态下的时间占有率数据;最后,采用Johson曲线将原始的时间占有率数据转化为标准的正态数据,并利用质量控制图的基本思想确定瓶颈触发及瓶颈结束的条件阈值,为瓶颈控制方案的实施提供一种理论前提。
     (5)面向单点瓶颈的排队消散信号参数优化方法分析单点瓶颈控制的基本策略和控制流程,并基于排队上溯识别方法和瓶颈状态识别方法,提出瓶颈路段上下游交叉口的配时参数优化方法及控制方式之间的平滑过渡方法;利用VISSIM仿真数据,评价两类瓶颈控制方法的控制效果。
     最后,对论文的研究进展及主要成果进行总结,并提出研究过程中存在的主要问题以及下一步需要探索内容。
Traffic signal control is an important means to regulate urban traffic flow, reduce congestion,and it also can ensure the operation of traffic flow normally and orderly. The traditional signalcontrol signal timing methods considers the optimization of dynamic traffic flow in urban streetnetwork. It can improve the safety of the intersection, the operation efficiency and fairness of thenetworks; and it also can promote the improvement of the level of urban traffic management inthe world observably. However, the traditional signal control system is mainly applied tounsaturation condition, without considering the interaction between the traffic streams upstreamand downstream. The literature is limited regarding methods of signal timing underoversaturation conditions. With traffic congestion continuing to grow in urban areas, a growingnumber of signalized intersections are operated under oversaturated condition frequently, and thequeue length of some roads even close to the link length during peak periods, which leads tospillovers. The role of spillovers in city street network is very significant, and it is already knownfor example that spillovers can lead to gridlock on ring roads and other network with closed loop.In order to prevent the occurrence of spillovers and reduce the spatial and temporal fluctuationsof the traffic congestion status, area-wide cooperation control should be implemented in urbanstreet networks; meanwhile, it is necessary to identify and dissipate spillovers accurate andtimely, so as to avoid the negative influence either in complex urban systems or at intersections.In order to adapt to the complex urban traffic situation recently, this paper takes the dynamicoptimization of the traffic signal timing in urban street networks as the core, considering theinfluence of bottleneck. The emphases of the paper include signal timing for an isolatedintersection with the influence of bottlenecks, area-wide cooperation compatibilization control,identification menthods of spillovers, and signal timing optimization for spillovers dissipation.According to the contents mentioned above, this paper will mainly discuss the following fiveparts.
     1. Optimization method of signal timing for isolated intersection sonsidering the operationalcharacteristics of traffic flow Firstly, the operating efficiency of non-priority traffic atunsignalized intersections and the average vehicular dealy at signalized intersection is analyzed,and the critical traffic volume for signal installation is determined from the veiwpoint of theoperation efficiency of the intersection. Then, signal control strategies under different trafficconditions are discussed, and the optimization idea that minimizing the number of vehicles in all approach lanes within the optimization horizon is proposed, taking the comprehensive efficiencyof all approaches lanes as the optimization objective. This research may provide a new theoryreference for determining the signal timing parameters especially when the intersection includesbottlenecks.
     (2) Signal timing for area-wide compatibilization with the influence of bottleneck. Theobjective of signal control under nearly saturated condition is analyzed firstly, and the controlstrategy and objective function are proposed. Based on the interaction of the upper and downtraffic flows, the calculation method of the number of vehicles in one special lane at thebeginning of one cycle is advanced with the influence of network topology. With the idea thatminimizing the number of vehicles in all approach lanes within the optimization horizon as theoptimizationobject, the optimization method of spilt for all signals is proposed consider therestriction of maximum and minimum green time. Combineing the rules of output and input forsections, the dynamic evolution process of optimization offset is described, which could supply abasis for coordination control under high saturation conditions.
     (3) Spillovers identificition in urban street networks based on upstream fixed traffic data thispart provides a calculation method for the occupancy per cycle under different traffic conditions,based on the relationship between the three basic traffic flow parameters, speed, traffic flow, anddensity; and then presents a method to identify spillovers in an urban street network based onupstream fixed detector data, using occupancy per cycle as the determination index; This partalso introduces traffic wave models modified by a kinematic equation, and determine thethreshold of occupancy, which characterizes the appearance of spillovers; The accuracy andusability of the new method are verified by VISSIM simulation, using the ratio of misjudgmentas the evaluation index. Finally, the precision stability of the spillover identification method isanalyzed
     (4) Spillovers identificition in urban street networks with the traffic data at bottleneck this partpresents a determination method of threshold for bottleneck state in urban street network basedon queue detector data, using ocupancy per cycle as the determination index. The threshold ofoccupancy for congested condition could be determined combining with the different effectivevehicle lengths. The data of rolling time occupancy under unsaturated and saturation states isobtained with VISSIM simulation, and a new array using the minimum of successive occupancyis achieved with different positive integers as the interval. Considering processing of vehiclespassing through the queue detertor as a production process, the rolling time occupancy could beregarded as the corresponding products, which obeys non-normal distribution; these dataproduced by the non-normal process could be transformated to normal ones by Johson curve family, and the upper bound with different interval was determined with the basic idea of qualitycontrol; contrast analysis the occupancy threshold and the upper (lower) bounds with differentinterval, the trigger and termination conditions for bottleneck control are deceided.
     (5) signal timing optimization for spillovers dissipation bottleneck control strategy andcontrol manner is analyzed firstly, and the signal timing optimization methods for spilloversdissipation are proposed based on the results of part3and4; meawhile, smooth transition meansbetween bottleneck and conventional control projects is provided, and the two methods areevaluated by VISSIM simulation.
     In the last, the main progress and achievement of this dissertation are summarized, andthecontents and problems which need to perfect and explore further more in the study areputforward.
引文
[1]陆化普,王建伟,李江平等.城市交通管理评价体系[M].北京:人民交通出版社,2003.
    [2]陈昱光.城市道路交通瓶颈信号控制方法研究[D].长春:吉林大学硕士学位论文,2008.
    [3]管满泉.从道路因素分析城市交通拥堵的成因和对策[J].道路交通与安全,2005,5(2):88-92.
    [4] Hunt P. B., Robertson D. L., Bretherton R. D.. The SCOOT on-line traffic signaloptimization technique[J]. Traffic Engineering and Control,1982,23(4):190-192.
    [5] Walmsley J.. The practical implementation of SCOOT traffic control systems[J]. TrafficEngineering and Control,1982,23(4):196-199.
    [6] Coifman, B., Beymer, D., McLauchlan, P., and Malik, J.. A real-time computer vision systemfor vehicle tracking and traffic surveillance[J]. Transportation Research Part C,1998,6(4):271-288.
    [7] Hunt P. B., Robertson D. L., and Bretherton R. D.. SCOOT: A traffic responsive method ofcoordinating signals[R]. Report LR1014, TRRL, Crowthorne, Berkshire, England,1981.
    [8] Robertson D. I., Bretherton R. D.. Optimizing networks of traffic signals in real time-theSCOOT method[J]. IEEE Transactions on Vehicular Technology,1991,40(1):11-15.
    [9] Martin P. T., Hockaday S. M.. SCOOT-an Update[J]. ITE Journal,1995,65(1):44-48.
    [10]Sims A. G. and Dobinson K. W.. The Sydney coordinated adaptive traffic (SCAT) systemphilosophy and benefits[J]. IEEE Transactions on Vehicular Technology,1980,29(2):130-137.
    [11]Luk J. Y. K., Sims A. G., Lowrie P. R.. SCATS-application and field comparison with aTRANSYT-optimized fixed time system[C]. IEEE International Conference on Road TrafficSignal,1982:22-38.
    [12]Lowrie P. R.. The Sydney coordinated adaptive traffic system: principles, methodology,algorithms[C]. International Conference on Road Traffic Signal. London: Institution of ElectricalEngineers,1982:67-70.
    [13]Sims A. G. and Finlay A. B.. SCATS: splits and offsets simplified(SOS)[J]. ARRBProceedings.1984,12:138-152.
    [14]Mirchandani P. B. and Head K. L.. A real-time traffic signal control system: architecturealgorithm and analysis[J]. Transportation Research Part C,2001,9:415-432.
    [15]Head K. L. and Mirchandani P. B.. Final report—RHODES project: phaseⅡ(A)[R]. ReportFHWA-AZ94-383, Arizona Department of Transportation, Phoenix,1994.
    [16]Head K L, Mirchandani P B, Shelby S. The RHODES prototype: a description and someresults[C]. the77thAnnual Meeting of Transportation Research Board, Washington, D. C.,1998.
    [17]S. Sen and K. L. Head. Controlled optimization of phases at an intersection [J].Transportation Science,1997,31:5-17.
    [18]王殿海,金盛,宋现敏,汪志涛.城市混合交通控制设计理念与方法[J].城市交通,2008,6(2):16-22.
    [19]吴兵,李晔,杨佩昆,史其信.交通管理与控制[D].北京:人民交通出版社,2009.
    [20]Federal Highway Administrator. FED MUTCD2000-2001Manual on Uniform TrafficControl Devices [S].US: Department of Transportation,2000.
    [21]中国国家标准化管理委员会.GB14886-2006道路交通信号灯设置与安装规范[S].北京:中国标准出版社,2006.
    [22]张树升,张晓燕.无信号交叉口冲突与延误的研究[J].西安公路学院学报,1989,7(3):61-68.
    [23]杨晓光,蒲文静,龙亮.基于交通冲突分析的交叉口机动车信号灯设置[J].同济大学学报(自然科学版),2005,33(12):1596-1599.
    [24]王殿海,马东方,陈永恒.主支路交叉口设置信号的临界流量[J].西南交通大学学报,2009,44(05):759-763.
    [25]马东方,王殿海,杨希锐等.有限优先下交叉口信号设置的临界流量依据[J].东南大学学报:自然科学版,2010,40(4):860-865.
    [26]马东方.交叉口信号设置基本依据研究[D].长春:吉林大学硕士学位论文,2009.
    [27]孙迪.路段行人信号设置依据研究[D].长春:吉林大学硕士学位论文,2009.
    [28]马东方,王殿海,宋现敏等. T型交叉口信号设置临界流量的确定方法[J].华南理工大学学报:自然科学版,2011,39(10):105-110.
    [29]杨锦冬,杨东援.城市信号控制交叉口信号周期时长优化模型[J].同济大学学报(自然科学版),2001,29(7):789-794.
    [30]Alan J. Miller. Settings for Fixed-Cycle Traffic Signals[J]. Operational Research Society,1963,14(4):373-386.
    [31]Akcelik, Rahmi. Comments on the application of queuing theory to delays at signals[J].Australian Road Research,1990,20(3):53-61.
    [32]Highway Capacity Manual[R]. National Research Council, Washtion, D.C,2000.
    [33]徐立群,吴聪,杨兆升.信号交叉口通行能力计算方法[J].交通运输工程学报,2001,1(1):82-85.
    [34]顾怀中,王炜.交叉口交通信号配时模拟退火全局收敛算法[J].东南大学学报,1998,28(3):68-72.
    [35]C.K. Wong, S.C. Wong. Lane-based optimization of signal timings for isolated junctions [J].Transportation Research Part B,2003,37:63–84.
    [36]田丰,边婷婷.基于自适应遗传算法的交通信号配时优化[J].计算机仿真,2010,27(6):305-308.
    [37]肖业伟,黄辉先,王宸昊.基于蚁群算法的交叉路口多相位信号配时优化[J].计算机工程与应用,2008,44(19):241-244.
    [38]Gazis, D.C. Optimal control of a system of oversaturated intersections[J]. OperationsResearch,1964,12:815–831.
    [39]Abu-Lebdeh, G., Benekohal, R.. Design and evaluation of dynamic traffic managementstrategies for congested conditions [J]. Transportation Research Part A,2003,37(2):109–127.
    [40]Michalopoulos,P.G., G.Stephanopoulos. Optimal control of oversaturatedintersections:theoretical and practical considerations[J]. Traffic Engineering and Control,1978,19(5):216-221.
    [41]Chang,T.-H., Lin,J.-T.. Optimal signal timing for an oversaturated intersection[J].Transportation Research, Part B,2000,34:471-491.
    [42]Abu-Lebdeh, G. and Benekohal, R. F. Signal Coordination and arterial capacity inoversaturated conditions[J]. Journal of the Transportation Research Board,2000,1727:68-76.
    [43]Park, B., Messer, C. J., Urbanik, T. Enhanced genetic algorithm for signal timingoptimization of oversaturated intersections[J]. Journal of the Transportation Research Board,2000,1727:32-41.
    [44] Z.K. Khatib, G.A. Judd. Control strategy for oversaturated signalized intersections[C]. the80th Annual Meeting of Transportation Research Board, Washington, DC,2001.
    [45]Papageorgiou, M., Diakaki, C., Dinopoulou, V., Kotsialos, A., et al. Review of road trafficcontrol strategies [J]. Proceedings of the IEEE,2003,91(12):2043-2067.
    [46]Chang,T.-H., Sun G-Y,. Modeling and optimization of an oversaturated signalized network[J]. Transportation Research, Part B,2004,38:687-707.
    [47]Yue Liu, Gang-Len Chang. An arterial signal optimization model for intersectionsexperiencing queue spillback and lane blockage [J]. Transportation Research Part C,2010,18:130–144.
    [48]Aboudolas K, et al. A rolling-horizon quadratic-programming approach to the signal controlproblem in large-scale congested urban road networks [J]. Transportation Research Part C,2010,18(5):680-694.
    [49]Li,M.T, A.C.Gan,. Signal timing optimization for oversaturated networks usingTRANSYT-7F[J]. Journal of the Transportation Research Record,1999,1683:118-126.
    [50]Celikoglu H B. A dynamic network loading process with explicit delay modeling [J].Transportation Research Part C,2007,15(5):279-299.
    [51]Halim Ceylan M G H B,. Traffic signal timing optimization based on genetic algorithmapproach, including drivers’ routing[J]. Transportation Research Part B,2004,38:329-342.
    [52]Cai C, Wong C K, and Benjamin. Adaptive traffic signal control using approximate dynamicprogramming [J]. Transportation Research Part C,2009,17(5):456-474.
    [53]杨佩昆.城市交通管理与控制[M].北京:人民交通出版社,1995.
    [54]关伟,申金升等.公交优先的信号控制策略研究[J].系统工程学报,2001,16(3):177-181.
    [55]宋现敏.城市交叉口信号协调控制方法研究[D].长春:吉林大学博士论文,2008.
    [56]Gartner, N.H., Little, J.D.C., Gabbay, H.. Optimization of traffic signal settings by mixedinteger linear programming. Part I: the network coordination problem[J]. Transportation Science,1975,9:321–343.
    [57]Little, J.D.C., Kelson, M.D., Gartner, N.H.. MAXBAND: a program for setting signals onarterials and triangular networks[J]. Transportation Research Record,1981,795:40–46.
    [58]Cohen, S.L., Liu, C.C., The bandwidth-constrained TRANSYT signal optimizationprogram[J]. Transportation Research Record,1986,1057:1-7.
    [59]Gartner, N.H., Assmann, S.F., Lasaga, F.L., Hou, D.L.. A multi-band approach to arterialtraffic signal optimization[J]. Transportation Research Part B,1991,25(1):55-74.
    [60]Chaudhary, N.A., Messer, C.J., PASSER-IV: a program for optimizing signal timing in gridnetworks[C].72thAnnual Meeting of the Transportation Research Board, Washington, DC,1993.
    [61]Wong, S.C.. A lane-based optimization method for minimizing delay at isolatedsignal-controlled junctions[J]. Journal of Mathematical Modeling and Algorithms,2003,2:379-406.
    [62]Robertson, D.I.. TRANSYT: a traffic network study tool[R]. RRL Report LR253, RoadResearch Laboratory, England,1969.
    [63]Wallace, C.E., Courage, K.G., Reaves, D.P., Shoene, G.W., Euler, G.W., Wilbur, A..TRANSYT-7F User’s Manual: Technical Report[R]. University of Florida, Gainesville, FL.,1988.
    [64]Wong, S.C.. Group-based optimization of signal timings using the TRANSYT trafficmodel[J]. Transportation Research Part B,1996,30(3):217-244.
    [65]Robertson, D.I., Bretherton, R.D.. Optimizing networks of traffic signals in real-time: theSCOOT method[J]. IEEE Transactions on Vehicular Technology,1991,40:11-15.
    [66]Lowrie, P.. The Sydney coordinated adaptive control system-principles, methodology,algorithms[C]. IEEE Conference Publication,1982.
    [67]Gartner, N., OPAC: a demand-responsive strategy for traffic signal control[J]. Journal ofTransportation Research Record,1983,906:75-81.
    [68]Mirchandani, P., Head, L.. A real-time traffic signal control system: architecture, algorithms,and analysis[J]. Transportation Research Part C,2001,9:415-432.
    [69]D’Ans, G.C., Gazis, D.C.. Optimal control of oversaturated store and forward transportationnetworks[J]. Transportation Science,1976,10:1-19.
    [70]Papageorgiou, M.. An integrated control approach for traffic corridors[J]. TransportationResearch Part C,1995,3:19-30.
    [71]Kashani, H.R., Saridis, G.N.. Intelligent control for urban traffic systems[J]. Automatics,1983,19:191-197.
    [72]Wu, J., Chang, G.L.. An integrated optimal control and algorithm for commutingcorridors[J]. International Transactions on Operations Research,1999,6:39-55.
    [73]Van den Berg, A., Hegyi, B., De Schutter, Hellendoorn, J.. A macroscopic traffic flowmodel for integrated control of freeway and urban traffic networks[C].42nd IEEE InternationalConference on Decision and Control, Hawaii,2003, pp.2774-2779.
    [74]Yu, X.H., Recker, W.W.. Stochastic adaptive control model for traffic signal systems[J].Transportation Research Part C,2006,14:263-282.,
    [75]Lo, H., Chang, E., Chan, Y.. Dynamic network traffic control[J]. Transportation ResearchPart A,2001,35:721-744.
    [76]Michalopoulos, P.G., Stephanopolos, G.. Oversaturated signal system with queue lengthconstraints-I[J]. Transportation Research,1977,11:413-421.
    [77]Michalopoulos, P.G., Stephanopolos, G.. Optimal control of oversaturated intersections:theoretical and practical considerations[J]. Traffic Engineering and Control,1978, pp.216-221.
    [78]Abu-Lebdeh, G., Benekohal, R.F.. Development of a traffic and queue managementprocedure for oversaturated arterials[J]. Journal of Transportation Research Record,1997,1603:119-127.
    [79]Girianna, M., Benekohal, R.F.. Using genetic algorithms to design signal coordination foroversaturated networks[J]. Journal of Intelligent Transportation Systems,2004,8(2):117-129.
    [80]Abu-Lebdeh, G., Chen, H., Benekohal, R.F.. Modeling traffic output for design of dynamicmulti-cycle control in congested conditions[J]. Journal of Intelligent Transportation Systems,2007,11(1):25-40.
    [81]Binning, J.C., Burtenshaw, G., Crabtree, M.. TRANSYT13User Guide[R]. TransportResearch Laboratory, UK,2008.
    [82]Newell, G.F.. A simplified theory on kinematic wave in highway traffic, Part I: Generaltheory; Part II: Queuing at freeway bottlenecks; Part III: Multi-destination flows[J].Transportation Research Part B,1993,27(4):281-314.
    [83]Gazis, D.C., Herman, R.. The moving and ‘phantom’ bottleneck[J]. Transportation Science,1992,26(3):223-229
    [84]Newell, G.F.. A moving bottleneck[J]. Transportation Research Part B,1998,32(8):531-537.
    [85]Daganzo, C.F., Laval, J.A.. Moving bottlenecks: A numerical method that converges inflows[J]. Transportation Research Part B,2005,39(10):855-863.
    [86]Ni, D.H., Leonard, J.D.. A simplified kinematic wave model at a merge bottleneck[J].Applied Mathematical Modeling,2005,29(11):1054-1072.
    [87]王殿海,景春光,曲昭伟.交通波理论在交叉口交通流分析中的应用[J].中国公路学报,2002,15(01):93-96.
    [88]Jiang, R., Wu, Q.S., Wang, B.H.. Cellular automata model simulating traffic interactionsbetween on-ramp and main road[J]. Physical Review E,2002,66(3):036104.
    [89]Jia, B., Jiang, R., Wu, Q.S.. The traffic behaviors near an off-ramp in the cellular automatontraffic model[J]. Physical Review E,2004,69(5):056105.
    [90]贾斌,高自友,李克平,李新刚.基于元胞自动机的交通系统建模与模拟[M].北京:科学出版社,2007.
    [91]DJ Quinn. A revier of queue mangement strategies[J]. Traffic Engineering and Control,1992,33(11):600-605.
    [92]杨晓光,付晶燕.短连线交叉口群通行能力计算方法研究[J].交通与计算机,2006,24(2):27-30.
    [93]刘小明,郑淑晖,钟剑,张杰.交通瓶颈下相序设置对路口交通状况影响分析[J].公路交通科技,2008,25(7):122-127.
    [94]樊宏哲.交叉口协调控制相位差优化方法研究[D].吉林大学硕士学位论文,2007.
    [95]赵莹莹.瓶颈交叉口信号控制方法研究[D].吉林大学硕士学位论文,2011.
    [96]孙辉.排队长度约束下的瓶颈交叉口协调控制方法研究[D].成都:西南交通大学硕士论文,2010.
    [97]杨少辉.城市快速路系统交通瓶颈形成、扩散特性及控制方法研究[D].长春:吉林大学博士论文,2006.
    [98]LONG JianCheng, GAO ZiYou, REN HuaLing, LIAN AiPing. Urban traffic congestionpropagation and bottleneck identification[J]. Science in China Series F: Information Sciences,2008,51(7):948-964.
    [99]Chang, Jinil, Bertoli, Bryan et al. New signal control optimization policy for oversaturatedarterial systems [C].88thAnnual Meeting of Transportation Research Board, Washington, D. C,2010.
    [100] Wu X.K, Liu H.X, Gettman D. Identification of oversaturated intersections usinghigh-resolution traffic signal data[J]. Transportation Research Part C,2010,18(4):626-638.
    [101] Geroliminis, Nikolaos, Skabardonis, A. Queue spillovers in city street networks withsignal-controlled intersections[C].88thAnnual Meeting of Transportation Research Board,Washington, D. C,2010.
    [102] Geroliminis, N., Skabardonis, A. Identification and analysis of queue spillovers in citystreet networks[J]. Journal of Intelligent Transportation Systems,2011,12(4):1107-1115.
    [103]李文权,王炜.无信号交叉口主车流服从移位负指数分布下支路多车型混合车流的通行能力[J].系统工程理论及实践,2001,2:122-128.
    [104]王殿海.交通流理论[M].北京:人民交通出版社,2002.
    [105] Brilon W, Koenig R, Troutback RJ. Useful estimation procedures for critical gaps[J].Transportation Research Part A,1999,33(3-4):161-186.
    [106]高海龙,王炜,刘秉轩,项彦彦.中国典型地区无信号交叉口临界间隙调查[J].东南大学学报(自然科学版),2000,30(03):100-103.
    [107] Hagring O. Estimation of critical gaps in two major streams[J]. Transportation ResearchPart B,2000,34(4):293-313.
    [108] Polus A, Shmueli S. Entry capacity at roundabouts and impact of waiting times[J]. Roadand Transport Research,1999,8(3):43-54.
    [109] Moshe A.P, Abishai P, Moshe L. A decision model for gap acceptance and capacity atintersections[J].Transportation Research Part B,2002,36(7):649–663.
    [110] Gartner N, Messer C J, Rathi A K. Monograph on traffic flow theory [M]. The FederalHighway Administration(THWA),1996.
    [111] Chevallier Estelle, Leclercq Ludovic. A macroscopic theory for unsignalizedintersection [J]. Transportation Research Part B,2007,41(10):1139-1150.
    [112] Troutbeck RJ, Kako Soichiro. Limited priority merge at unsignalized intersections [J].Transportation Research Part A,1999,33(3-4):291-304.
    [113] Wu N. Determination of capacity at all-way stop-controlled intersections [J]. Journal ofTransportation Research Record,2000,17(10):205-214.
    [114] Brilon, W., N.Wu. Capacity at unsignalized intersections derived by conflict technique[J]. Journal of Transportation Research Record,2001,1776:82-90.
    [115] Brilon, W., T. Miltner. Capacity at intersections without traffic signals [J]. Journal ofTransportation Research Record,2005,1920:32-40.
    [116]全永燊.城市交通控制[M].北京:人民交通出版社,1989.
    [117] Courage, K. G., Papapanou, P.P. Estimation of delay at traffic-actuated signals [J].Journal of Transportation Research Record,1977,630:17-21.
    [118] Haiyuan Li, Wei Deng, Zong Tian et.al. Capacities of unsignalized intersections undermixed vehicular and non-motorized traffic condition [J]. Journal of Transportation ResearchRecord,2009,2130:129-137.
    [119] Webster, F V. Traffic Signals[R]. London: Road Research Laboratory,1966.
    [120] Mariagrazia Dotoli, Maria Pia Fanti, Carlo Meloni. A signal timing plan formulation forurban traffic control [J]. Control Engineering Practice,2006,14:1297-1311.
    [121] Barisone, A., Giglio, D., Minciardi, R., Poggi, R. A Macroscopic Traffic model forreal-time optimization of signalized urban areas[C]. The41th IEEE Conference on Decision andControl, Las Vegas, Nevada USA,2002:900-903.
    [122]周明,孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社,1999.
    [123]席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708.
    [124]刘国华,包宏,李文超.用MATLAB实现遗传算法程序[J].计算机应用研究,2001,4(3):49-53.
    [125]张卫华,陆化普,石琴等.公交优先的信号交叉口配时优化方法[J].交通运输工程学报,2004,4(3):49-53.
    [126] Li Xiu-gang, Li Guo-qiang, Pang Su-seng, et al. Signal timing of intersections usingintegrated optimization of traffic quality, emissions and fuel consumption: a note [J].Transportation Research Part D,2004,9(5):401-407.
    [127]景超.行人过街交通特性研究[D].长春:吉林大学博士学位论文,2007.
    [128]邵春福,李娟,赵熠,董春娇.行人交通的视频检测方法综述[J].交通运输系统工程与信息,2008,8(4):23-29.
    [129] Liu, H., et al.. Real-time estimation of arterial travel time under congested conditions[J].Transportmetrica,2010,1-18.
    [130] Takaba, S., et al.. Estimation and measurement of travel time by vehicle detectors andlicense plate readers[C]. Proceedings of Vehicle Navigation and Information SystemsConference, Michigan, USA, IEEE,1991,2:257-267.
    [131]张和生,张毅,胡东成.路段平均行程时间估计方法[J].交通运输工程学报,2008,8(1):89-96.
    [132]何兆成,赵建明,王镇波,韦清波.城市信号控制路网中的路段行程时间估计方法[J].交通运输工程学报,2008,8(4):95-98.
    [133]杨晓光,林瑜等.信号控制交叉口公共汽车优先信号确定方法研究[J].中国公路学报,2001,14(9):101-105.
    [134]裴玉龙,蒋贤才.饱和交通状态下的绿信比优化及其应用研究[J].哈尔滨工业大学学报,2005,37(11):1549-1502.
    [135] Denos C. Gazis. Traffic Theory[M]. New York: Kluwer Academic Publisher,2002.Herman R, Prigogine I. A two-fluid approach to town traffic[J]. Science,1979,204(4389):148-151.
    [136] Richards P I. Shock waves on the highway[J]. Operations Research,1956,(4):42-51.
    [137]杨少辉.固定式配时车辆延误与排队长度计算模型研究[D].长春:吉林大学硕士学位论文,2003.
    [138]姚荣涵,曲昭伟,王殿海.基于运动学方程的停车波模型[J].吉林大学学报(工学版),2007,37(5):1049-1052.
    [139]曲昭伟,王殿海,姚荣涵.信号交叉口起动波的运动学模型[J].吉林大学学报(工学版),2008,38(2):268-272.
    [140] Yeo, H. and Skabardonis, A.. Oversaturated freeway flow algorithms[R]. Draft FinalReport, NGSIM Program, University of Califronia, Berkeley,2007.
    [141]马建全,李广杰,徐佩华等.基于拉丁方抽样及K-S检验的边坡可靠性分析[J].岩土力学,2011,33(7):2153-2156.
    [142] Frank J. Massey, Jr. The Kolmogorov-Smirnov test for goodness of fit[J]. Journal of theAmerican Statistical Association,1951,46(253):68-78.
    [143] Hubert W. Lilliefors. On the Kolmogorov-Smirnov test for the exponential distributionwith mean unknown[J]. Journal of the American Statistical Association,1969,64(325):387-389.
    [144]袁卫等.统计学[M].北京:高等教育出版社,2006.
    [145]栗红强.城市交通控制信号配时参数优化方法研究[D].长春:吉林大学博士学位论文,2004.
    [146] Hellinga, B. R. Improving Freeway Speed Estimates From Single-loop Detectors[J].Journal of Transportation Engineering,2002,128(1):58-67.
    [147]周黎明.质量控制技术[M].广州:广东经济出版社,2003.
    [148] Farnum N R. Using Johnson curves to describe nonnormal process data[J]. QualityEngineering,1996,9(2):329-336.
    [149] Johnson NL. System of frequency curves generated by methods of translation[J].Biometrika,1949,36:149-176.
    [150] Chou Youn-min. Transforming non-normal data to normality in statistical processcontrol[J]. Journal of Quality Technology,1998,30(2):133-141.
    [151] Buka c J. Fitting SBcurves using symmetrical percentile point[J]. Biometrika,1972,59:688-690.
    [152] S J F, SSS. The Johnson system: select and parameter estimation[J]. Technimetrics,1980,22:239-246.
    [153] Bowman K O, Shenton L R. SBand SUdistributions fitted by percentiles: A generalcriterion [J]. Communications in Statiscs-Simulation and Computation,1989,18:1-13.
    [154] Owen D B, Li H. The starship for point estimates and confidence intervals on a meanand for percentiles [J]. Communication in Satistic-Simulation and Computation,1998,17:325-341.
    [155] Helmut Schneider, William J Kasperski. Control charts for skewed and censored data[J].Quality Engineering,1995,8(2):263-274.
    [156] Henze, N.,. An approximation to the limit distribution of the Epps-Pulley test statisticfor normality[J]. Merika,1990,37:7-18.
    [157] Fan Ye, Yunlong Zhang. Vehicle type-specific headway analysis using freeway trafficdata.[J]. Journal of Transportation Research Record,2009,2124:222-230.
    [158](CJJ37-90).城市道路设计规范[S].中华人民共和国建设部,1991.
    [159] Abishai Polus, M., Sitvanit Shmueli Lazar, Mashe Livneh, M.. Critical gap as a functionof waiting time in determining roundabout capacity[J]. Journal of Transportation Engineering,2003,129(5):504-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700