用户名: 密码: 验证码:
功能填料对聚偏氟乙烯基复合材料微观结构和介电性能影响机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子工业的快速发展,需要高介电常数的材料以满足电子元件的高性能化,小型化需求。陶瓷材料具有较高的介电常数,然而难于加工成型且生产耗能较大。高分子材料容易加工成型,且具有良好的击穿强度,但是介电常数较低。研究者期望制备出一种聚合物基高介电常数复合材料以满足实际需求。向聚合物中引入陶瓷粒子以及导电粒子是实现聚合物基高介电常数复合材料的两种主要手段。然而大量的研究结果表明,简单得变换复合材料中填料以及基体材料的种类难以制备出具有优异介电性能的聚合物复合材料。通过改变复合材料的微观结构,进而改善复合材料的介电性能,被认为是该领域的发展方向。然而其中涉及的复合材料的微观结构与介电性能的关系亟待进一步的深入研究。本文采用具有较高介电常数的聚合物材料聚偏氟乙烯(PVDF)作为基体,通过向聚合物基体中加入特定表面处理的功能填料,制备聚合物基高介电常数复合材料。主要研究填料表面改性对复合材料微观结构和介电性能的影响规律,结合电介质物理理论,分析了影响复合材料介电性能的物理机制。具体研究内容如下:
     (1)对BaTiO3(BT)粒子的表面进行羟基化处理,采用溶液法制备出BT/PVDF复合材料。结果表明,与使用未改性的BT粒子填充的复合材料相比,使用改性BT粒子填充的复合材料的断面中孔洞减少,并且对应的损耗峰向高温方向位移,证明羟基化处理使得复合材料中的填料粒子与基体具有更好的结合性。这种良好的结合性使得复合材料的介电性能具有较好的温度稳定性以及频率稳定性,同时使其损耗因子也有所降低。复合材料界面结合性的提高归结于填料粒子与PVDF基体之间形成的氢键。
     (2)为了降低复合材料的损耗因子,利用原位聚合的方法在多壁碳纳米管(MWNTs)的表面上包覆了一层电导率较低的本征态聚苯胺(EB),制备出具有核-壳结构的功能填料MEB。与MWNTs/PVDF复合材料相比,MEB/PVDF复合材料具有较小的损耗因子、较低的电导率以及较大介电常数,这都由于MEB所具有的核-壳结构引起。Raman光谱证明PVDF分子与填料粒子之间存在相互作用,这种相互作用降低了PVDF分子的运动能力,使得复合材料表现出较好的温度稳定性。
     (3)为了降低复合材料的逾渗阈值,采用了二维纳米材料石墨烯(RGO)及其改性粒子作为填料来制备高介电复合材料。通过将氧化石墨在EB溶液之中还原,得到改性RGO粒子(记为REB)。材料的接触角测试以及沉降实验表明,REB粒子更容易在溶剂中分散,并且与PVDF的极性更加接近。介电性能测试表明,与RGO/PVDF复合材料相比,REB/PVDF复合材料在低频下具有较大的介电常数以及较小的损耗因子,并且具有较小的逾渗阈值。
     (4)将BT以及REB粒子同时加入到PVDF聚合物基体中制备出三相复合材料,以进一步改善材料的介电性能。结果表明随着填料浓度的上升,复合材料的介电常数变大。增加BT粒子的浓度可以使得复合材料的出现逾渗现象,表明向复合材料中同时加入BT与REB粒子能够产生协同作用。与REB/PVDF复合材料相比,BT-REB/PVDF复合材料具有更大的介电常数和更小的损耗因子。
The rapid development of the electronics industry needs high dielectricconstant materials to meet the needs of electronic components with highperformance and miniaturization. Ceramic materials have high dielectricconstant, but its high process energy consumption, complex molding processand large density limit their applications. Many kinds of polymer materialsusually have high dielectric breakdown strength and they are easy to process,but their dielectric constant is small. As a result, researchers hope to fabricatea kind of polymer based composites to meet the demand of the practicalapplication. Introducing inorganic particles with high dielectric constant orconductive particles into the polymer matrix is the two most important way torealize the polymer matrix high-dielectric-constant composites. Manyresearchs have proved it is difficult to realize excellent dielectric properties byjust merely change the kinds of filler and polymer matrix in the composites.Chang the microstructure of the composite is a promising way to improve thedielectric properties of the composites. Better understand the relationship between the microstructure and the dielectric properties is badly needed. Inthis thesis, polyvinylidene fluoride (PVDF) is employed as the polymer matrixbecause of its high dielectric constant. Conductive particles and inorganicparticles with its surface be modified were introduced into the polymer matrixto prepare the composites. This study focuses on the influence of interface andmicrostructure on the dielectric constant in the composite. The specificinformation is given as follows:
     (1) Hydroxylated the surface of barium titanate (BT) particles andfabricated the BT/PVDF composite by solution method. Results showcompared with the composites filled with crude BT, composites filled withmodified BT particles have less void observed in SEM image of the fracturedcross section. At same time, the loss tangent peak of the composites filled withmodified BT move to a high temperature. Both above phenomenons provesthe improved the compatibility between the BT particles and PVDF matrix.Moreover, the improved junction between the filler and polymer matrix endowthe composites with weaker frequency dependence and temperaturedependence, and the loss tangent of the composites also decreased. It isbelieved the formation of the hydrogen bonds between the BT particles are thereasons for the changes.
     (2) Multi-walled carbon nanotubes (MWNTs) with emeraldine base (EB)coating on its surface was realized by in situ polymerization. This filler, denoted as MEB, have a core-shell structure. Compared with MWNTs/PVDFcomposites, MEB/PVDF composites could achieved lower loss factor,smallerconductivity and larger dielectric constant. It is believed the existing ofinsulation shell on the surface of the MWNTs is the reason for the improvedthe dielectric properties of the composites. Raman spectra proved theinteraction between the PVDF molecular and the fillers. The interaction lowerthe mobility of the PVDF molecular and weaker the temperature dependenceof the dielectric constant of the composites
     (3) In order to low the percolation threshold, reduced graphene oxide(RGO), a kind of two-dimension nano fillers, was empolyed as the filler. Wesuccessfully coated reduced the graphene oxide (RGO) with EB, and the fillerwas denoted as REB. The water contact angle and the sedimentation test showthe REB could well dispersed in the solution and have better compatibilitywith the PVDF matrix. The dielectric properties shows the REB/PVDFcomposites have a lower percolation threshold than that of the RGO/PVDFcomposites.
     (4) BT and REB fillers were introduced into the polymer matrix together.Results show increasing the filer consentration could increase the dielectricconstant of the composites. The addition of BT particles within the compositescould lead the percolation phenomenon in the composites. It is believed thereis synergistic effect show in the composites. Compared the REB/PVDF composites, BT-REB/PVDF have a larger dielectric constants.
引文
[1] Sebastian MT,Jantunen H, Polymer–Ceramic Composites of0–3Connectivity for Circuits inElectronics: A Review[J]. International Journal of Applied Ceramic Technology2010,7:415-434
    [2]赵孔双.介电谱方法及应用[M].北京:化学工业出版社,2008.3-8
    [3]包兴,胡明.电子器件导论.北京理工大学出版社:2001.5-15
    [4]方俊鑫,殷之文.电介质物理学学[M].北京:科学出版社,1989.16-34
    [5] Kasap SO, Principles of Electronic mMaterials and Devices. McGraw-Hill New York:2006
    [6] Lewis T, Nanometric dielectrics[J]. IEEE T. Diellect. El. In.1994,1:812-825
    [7] Barber P,Balasubramanian S,Anguchamy Y,Gong S,Wibowo A,Gao H,Ploehn HJ,Zur Loye HC,Polymer composite and nanocomposite dielectric materials for pulse power energy storage[J].Materials2009,2:1697-1733
    [8] Dang ZM, Zhang YH, Tjong SC. Dependence of dielectric behavior on the physical property offillers in the polymer-matrix composites[J]. Synth. Met.2004,146:79-84
    [9] Murugaraj P, Mainwaring D, Mora-Huertas N. Dielectric enhancement in polymer-nanoparticlecomposites through interphase polarizability[J]. J. Appl. Phys.2005,98:054304
    [10] Nan CW. Comment on “Effective dielectric function of a random medium”[J]. Phys. Rev. B2001,63:176201
    [11] Banno H. Theoretical equations for dielectric, piezoelectric and elastic properties of flexiblecomposite consisting of polymer and ceramic powder of two different materials[J].Ferroelectrics1989,95:111-115
    [12] Nan CW. Physics of Inhomogeneous Inorganic Materials[J]. Prog. Mater. Sci.1993,37:1-116
    [13] Ang C, Yu Z, Guo R,Bhalla A. Calculation of dielectric constant and loss of two-phasecomposites[J]. J. Appl. Phys.2003,93:3475
    [14] Vo HT, Shi FG. Towards model-based engineering of optoelectronic packaging materials:dielectric constant modeling[J]. Microelectron. J.2002,33:409-415
    [15] Fan BH, Zha JW, Wang DR, Zhao J, Dang ZM. Experimental study and theoretical prediction ofdielectric permittivity in BaTiO3/polyimide nanocomposite films [J]. Appl. Phys. Lett.2012,100:092903
    [16] Rao Y, Qu J, Marinis T, Wong C. A precise numerical prediction of effective dielectric constantfor polymer-ceramic composite based on effective-medium theory[J]. IEEE T. Compon. Pack. T2000,23:680-683
    [17] Yoon DH, Zhang J, Lee BI. Dielectric constant and mixing model of BaTiO3composite thickfilms[J]. Mater. Res. Bull.2003,38:765-772
    [18] Dang ZM, Xie D, Shi CY. Theoretical prediction and experimental study of dielectric propertiesin poly (vinylidene fluoride) matrix composites with micronanosize BaTiO3filler[J]. Appl.Phys. Lett.2007,91:222902
    [19] Lestriez B, Maazouz A, Gerard J, Sautereau H, Boiteux G, Seytre G, Kranbuehl DE. Is theMaxwell–Sillars–Wagner model reliable for describing the dielectric properties of a core–shellparticle–epoxy system?[J]. Polymer1998,39:6733-6742
    [20] Tuncer E, Sauers I, James DR, Ellis AR, Paranthaman MP, Aytu T, Sathyamurthy S, L More K,Li J, Goyal A. Electrical properties of epoxy resin based nano-composites[J]. Nanotechnology2007,18:025703
    [21] Nan CW, Shen Y, Ma J. Physical properties of composites near percolation[J]. Annu. Rev.Mater. Res.2010,40:131-151
    [22]吴其晔.高分子凝聚态物理及其进展[M]:华东理工大学出版社,2006.247-296
    [23] Mamunya E, Davidenko V, Lebedev E. Percolation conductivity of polymer composites filledwith dispersed conductive filler[J]. Polym. Compos.1995,16:319-324
    [24] Yu J, Huang X, Wu C, Jiang P. Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites[J]. IEEE T. Diellect. El. In.2011,18:478-484
    [25] Tang H, Ehlert GJ, Lin Y, Sodano HA. Highly Efficient Synthesis of GrapheneNanocomposites[J]. Nano Lett.2011,12:84-90
    [26] Pecharromun C, Moya JOS. Experimental evidence of a giant capacitance ininsulator-conductor composites at the percolation threshold[J]. Adv. Mater2000,12:294-297
    [27] Hsiang HI, Lin KY, Yen FS, Hwang CY, Effects of particle size of BaTiO3powder on thedielectric properties of BaTiO3/polyvinylidene fluoride composites[J]. J. Mater. Sci.2001,36:3809-3815
    [28] Krohns S, Lunkenheimer P, Kant C, Pronin A, Brom H, Nugroho A, Diantoro M, Loidl A.Colossal dielectric constant up to gigahertz at room temperature[J]. Appl. Phys. Lett.2009,94:122903
    [29] Lam K, Chan H, Luo H, Yin Q, Yin Z, Choy C. Dielectric properties of65PMN-35PT/P(VDF-TrFE)0-3composites[J]. Microelectron. Eng.2003,66:792-797
    [30] Pan J, Li K, Chuayprakong S, Hsu T, Wang Q. High-temperature poly (phthalazinone etherketone) thin films for dielectric energy storage[J]. ACS Appl. Mater. Interfac.2010,2:1286-1289
    [31] Kapadia H, Cole H, Saia R, Durocher K. Evaluating the need for integrated passivesubstrates[J]. Advancing Microelectronics1999,26:12-17
    [32] Ogitani S, Bidstrup-Allen SA, Kohl PA. Factors influencing the permittivity of polymer/ceramiccomposites for embedded capacitors[J]. IEEE T. Adv. Pack2000,23:313-322
    [33] Qi L, Lee BI, Chen S. Samuels WD,Exarhos GJ, High-dielectric-constant silver-epoxycomposites as embedded dielectrics[J]. Adv. Mater.2005,17:1777-1781
    [34] Rao Y, Ogitani S,Kohl P,Wong C, Novel polymer–ceramic nanocomposite based on highdielectric constant epoxy formula for embedded capacitor application[J]. J. Appl. Polym. Sci.2002,83:1084-1090
    [35] Rao Y, Wong CP. Material characterization of a high-dielectric-constant polymer–ceramiccomposite for embedded capacitor for RF applications[J]. J. Appl. Polym. Sci.2004,92:2228-2231
    [36] Kakimoto M, Takahashi A, Tsurumi T, Hao J, Li L,Kikuchi R,Miwa T,Oono T,Yamada S,Polymer-ceramic nanocomposites based on new concepts for embedded capacitor[J]. MaterialsScience and Engineering: B2006,132:74-78
    [37] Ramesh S, Shutzberg BA, Huang C, Gao J, Giannelis EP. Dielectric nanocomposites for integralthin film capacitors: materials design, fabrication and integration issues[J]. IEEE T. Adv. Pack2003,26:17-24
    [38] Xu J, Wong M, Wong C. In Super high dielectric constant carbon black-filled polymercomposites as integral capacitor dielectrics[A]. Electronic Components and TechnologyConference[C]. IEEE:2004;536-541.
    [39] Xu J. Dielectric Nanocomposites for High Performance Embedded Capacitors in OrganicPrinted Circuit Boards[M]. Harvard: Boston,2006.
    [40]李杰,韦平,汪根林,江平开.高介电复合材料及其电性能的研究[J].绝缘材料2003,5:3-6
    [41] Dang ZM, Xia YJ, Zha JW, Yuan JK, Bai J. Preparation and dielectric properties of surfacemodified TiO2/silicone rubber nanocomposites[J]. Mater. Lett.2011:
    [42] Pelrine R, Kornbluh R, Kofod G. High‐Strain Actuator Materials Based on DielectricElastomers[J]. Adv. Mater.2000,12:1223-1225
    [43] Su J, Xu TB, Zhang S, Shrout TR, Zhang Q. An electroactive polymer-ceramic hybrid actuationsystem for enhanced electromechanical performance[J]. Appl. Phys. Lett.2004,85:1045
    [44] L we C, Zhang X, Kovacs G. Dielectric elastomers in actuator technology[J]. Adv. Eng. Mater.2005,7:361-367
    [45] Bar-Cohen Y. Electroactive polymers as artificial muscles: A review[J]. J. Spacecraft Rckets2002,39:822-827
    [46] Yang D, Tian M, Dong Y, Liu H,Yu Y, Zhang L. Disclosed dielectric and electromechanicalproperties of hydrogenated nitrile–butadiene dielectric elastomer[J]. Smart Materials andStructures2012,21:035017
    [47] Huang C, Zhang Q, Bhattacharya K. All-organic dielectric-percolative three-componentcomposite materials with high electromechanical response[J]. Appl. Phys. Lett.2004,84:4391
    [48] Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles[J].Macromol. Rapid Commun.2010,31:10-36
    [49] Das-Gupta D, Doughty K. Polymer-ceramic composite materials with high dielectricconstants[J]. Thin Solid Films1988,158:93-105
    [50] Li J, Seok SI, Chu B, Dogan F, Zhang Q, Wang Q. Nanocomposites of ferroelectric polymerswith TiO2nanoparticles exhibiting significantly enhanced electrical energy density[J].Advanced Materials2009,21:217-221
    [51] Gallone G, Carpi F, De Rossi D, Levita G, Marchetti A. Dielectric constant enhancement in asilicone elastomer filled with lead magnesium niobate-lead titanate[J]. Materials Science andEngineering: C2007,27:110-116
    [52] Tuncer E, Sauers I, James DR, Ellis AR, Duckworth RC. Nanodielectric system for cryogenicapplications: Barium titanate filled polyvinyl alcohol[J]. IEEE Transactions on Dielectrics andElectrical Insulation,2008,15:236-242
    [53] Dang ZM, Xu HP, Wang HY. Significantly enhanced low-frequency dielectric permittivity inthe BaTiO3/poly (vinylidene fluoride) nanocomposite[J]. Appl. Phys. Lett.2007,90:012901
    [54] Dang ZM, Yao SH, Yuan JK, Bai J. Tailored dielectric properties based on microstructurechange in BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites[J]. J.Phys. Chem. C2010:13204-13209
    [55] Dang ZM, Yu YF, Xu HP, Bai J. Study on microstructure and dielectric property of theBaTiO3/epoxy resin composites[J]. Compos. Sci. Technol.2008,68:171-177
    [56] Dang Z, Shen Y, Fan L, Cai N, Nan C, Zhao S. Dielectric properties of carbon fiber filledlow-density polyethylene[J]. J. Appl. Phys.2003,93:5543
    [57] Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q. A dielectric polymer withhigh electric energy density and fast discharge speed[J]. Science2006,313:334-336
    [58] Dang ZM, Nan CW. Dielectric properties of LTNO ceramics and LTNO/PVDF composites[J].Ceram. Int.2005,31:349-351
    [59] Wei B, Daben Y. Dielectric and piezoelectric properties of0-3composite film in PCM/PVDFand PZT/PVDF[J]. Ferroelectrics1994,157:427-430
    [60] Wei T, Jin C, Zhong W, Liu JM. High permittivity polymer embedded with Co/ZnO core/shellnanoparticles modified by organophosphorus acid[J]. Appl. Phys. Lett.2007,91:222907
    [61] Yuan JK, Dang ZM, Yao SH, Zha JW, Zhou T, Li ST, Bai J. Fabrication and dielectric propertiesof advanced high permittivity polyaniline/poly (vinylidene fluoride) nanohybrid films with highenergy storage density[J]. J. Mater. Chem.2010,20:2441-2447
    [62] Dagdeviren C, Papila M. Dielectric behavior characterization of a fibrous-ZnO/PVDFnanocomposite[J]. Polymer Composites2010,31:1003-1010
    [63] Choi HW, Heo YW, Joon-Hyung L, Kim JJ, Hee-Young L, Park ET, Chung YK. Effects of Niparticle size on dielectric properties of PMMA-Ni-BaTiO3composites[J]. IntegratedFerroelectrics2007,87:85-93
    [64] Cho SD, Lee JY, Hyun JG, Paik KW. Study on epoxy/BaTiO3composite embedded capacitorfilms (ECFs) for organic substrate applications[J]. Mater. Sci. Eng. B2004,110:233-239
    [65] Polizos G, Tomer V, Manias E, Randall C. Epoxy-based nanocomposites for electrical energystorage. II: Nanocomposites with nanofillers of reactive montmorillonite covalently-bondedwith barium titanate[J]. J. Appl. Phys.2010,108:074117
    [66] Shri Prakash B, Varma K. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxycomposites[J]. Compos. Sci. Technol.2007,67:2363-2368
    [67] Liang S, Chong SR, Giannelis EP. In Barium titanate/epoxy composite dielectric materials forintegrated thin film capacitors[A]. Electronic Components&Amp; Technology Conference[C].IEEE:1998,171-175.
    [68] Elimat Z. AC Electrical Properties of Epoxy/Silicon Carbide Whiskers Composites Coated withTiO2and Poly (divinylbenzene)[J]. J. Reinf. Plast. Compos.2010,29:331-342
    [69] Dang ZM, Lin YQ, Xu HP, Shi CY, Li ST, Bai J. Fabrication and dielectric characterization ofadvanced BaTiO3/polyimide nanocomposite films with high thermal stability[J]. Adv. Funct.Mater.2008,18:1509-1517
    [70] Tanaka T, Kozako M, Fuse N, Ohki Y. Proposal of a multi-core model for polymernanocomposite dielectrics[J]. IEEE T. Diellect. El. In.2005,12:669-681
    [71] Zha JW, Dang ZM, Zhou T, Song HT, Chen G. Electrical properties of TiO2-filled polyimidenanocomposite films prepared via an in situ polymerization process[J]. Synth. Met.2010,160:2670-2674
    [72] Devaraju NG, Lee BI. Dielectric behavior of three phase polyimide percolativenanocomposites[J]. J. Appl. Polym. Sci.2006,99:3018-3022
    [73] Hamciuc E, Hamciuc C, Olariu M. Thermal and electrical behavior of polyimide/silica hybridthin films[J]. Polym. Eng. Sci.2010,50:520-529
    [74] Chen G, Davies A. The influence of defects on the short-term breakdown characteristics andlong-term dc performance of LDPE insulation[J]. IEEE T. Diellect. El. In.2000,7:401-407
    [75] Wilson SA, Maistros GM, Whatmore RW. Structure modification of0-3piezoelectricceramic/polymer composites through dielectrophoresis[J]. J. Phys. D: Appl. Phys.2005,38:175
    [76] Brosseau C, Queffelec P, Talbot P. Microwave characterization of filled polymers[J]. J. Appl.Phys.2001,89:4532-4540
    [77] Mazdiyasni K, Brown L. Microstructure and Electrical Properties of Sc2O3-Doped,Rare-Earth-Oxide-Doped, and Undoped BaTiO3[J]. Journal of the American Ceramic Society1971,54:539-543
    [78] Amaral F, Rubinger C, Henry F, Costa L, Valente M, Barros-Timmons A. Dielectric propertiesof polystyrene-CCTO composite[J]. J. Non-Cryst. Solids2008,354:5321-5322
    [79] Ying KL, Hsieh TE. Sintering behaviors and dielectric properties of nanocrystalline bariumtitanate[J]. Mater. Sci. Eng. B2007,138:241-245
    [80] Chanmal C, Jog J. Dielectric relaxations in PVDF/BaTiO3nanocomposites[J]. Exp. Polym. Lett.2008,2:294-301
    [81] Wang G. Enhanced dielectric properties of three-phase-percolative composites based onthermoplastic-ceramic matrix (BaTiO3+PVDF) and ZnO radial nanostructures[J]. ACS Appl.Mater. Interfac.2010,2:1290-1293
    [82] Dang ZM, Wang HY, Xu HP. Influence of silane coupling agent on morphology and dielectricproperty in BaTiO3/polyvinylidene fluoride composites[J]. Appl. Phys. Lett.2006,89:112902
    [83] Dang ZM, Wang HY, Zhang YH, Qi JQ. Morphology and dielectric property of homogenousBaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosizedBaTiO3[J]. Macromol. Rapid Commun.2005,26:1185-1189
    [84] Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR, Perry JW. Phosphonicacid-modified barium titanate polymer nanocomposites with high permittivity and dielectricstrength[J]. Adv. Mater.2007,19:1001-1005
    [85] Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li J,Calame JP, Perry JW.High energy density nanocomposites based on surface-modified BaTiO3and a ferroelectricpolymer[J]. ACS nano2009,3:2581-2592
    [86] Subramanian M, Li D, Duan N, Reisner B, Sleight A. High dielectric constant in ACu3Ti4O12and ACu3Ti3FeO12phases[J]. J. Solid State Chem.2000,151:323-325
    [87] Thomas P, Dwarakanath K, Varma K, In situ synthesis and characterization ofpolyaniline-CaCu3Ti4O12nanocrystal composites[J]. Synth. Met.2009,159:2128-2134
    [88] Stefanescu EA, Tan X, Lin Z, Bowler N, Kessler MR. Multifunctional PMMA-Ceramiccomposites as structural dielectrics[J]. Polymer2010,51:5823-5832
    [89] Sinclair DC, Adams TB, Morrison FD, West AR. CaCuTiO: One-step internal barrier layercapacitor[J]. Appl. Phys. Lett.2002,80:2153
    [90] Arbatti M, Shan X, Cheng ZY. Ceramic–polymer composites with high dielectric constant[J].Adv. Mater.2007,19:1369-1372
    [91] Fothergill J. Estimating the cumulative probability of failure data points to be plotted on weibulland other probability paper[J]. IEEE T. Diellect. El. In.1990,25:489-492
    [92] Dang ZM, Zhou T, Yao SH, Yuan JK, Zha JW, Song HT, Li JY, Chen Q, Yang WT, Bai J.Advanced calcium copper titanate/polyimide functional hybrid films with high dielectricpermittivity[J]. Adv. Mater.2009,21:2077-2082
    [93] Ni L, Chen XM. Dielectric relaxations and formation mechanism of giant dielectric constantstep in CaCuTiO ceramics[J]. Appl. Phys. Lett.2007,91:122905
    [94] Ramajo L, Ramírez M, Bueno P, Reboredo M, Castro M. Differences between the dielectricproperties of CaCu3Ti4O12-EPOXY and BaTiO3-epoxy composites[J]. Congreso SAM2007,4:1240
    [95] Dang ZM, Zha JW, Yu Y, Zhou T, Song HT, Li ST. Microstructure and dielectriccharacterization of micro-nanosize co-filled composite films with high dielectric permittivity[J].IEEE T. Diellect. El. In.2011,18:1518-1525
    [96] Yang W, Yu S, Sun R, Du R. Nano-and microsize effect of CCTO fillers on the dielectricbehavior of CCTO/PVDF composites[J]. Acta Mater.2011:5593-5602
    [97] Fan BH, Zha JW, Wang D, Zhao J, Dang ZM. Size-dependent low-frequency dielectricproperties in the BaTiO3/poly (vinylidene fluoride) nanocomposite films[J]. Applied PhysicsLetters2012,100:012903
    [98] Dang ZM,Wu JP,Xu HP,Yao SH,Jiang MJ,Bai J. Dielectric properties of upright carbon fiberfilled poly (vinylidene fluoride) composite with low percolation threshold and weaktemperature dependence[J]. Appl. Phys. Lett.2007,91:072912
    [99] Dang ZM, Wang L, Yin Y, Zhang Q. Giant dielectric permittivities in functionalizedcarbon-nanotube/electroactive-polymer nanocomposites[J]. Adv. Mater.2007,19:852-857
    [100] Deng Y, Li N, Wang Y, Zhang Z, Dang Y, Liang J. Enhanced dielectric properties of low densitypolyethylene with bismuth sulfide used as inorganic filler[J]. Mater. Lett.2010,64:528-530
    [101] Huang X, Jiang P, Kim C. Electrical properties of polyethylene/aluminum nanocomposites[J]. J.Appl. Phys.2007,102:124103
    [102] Dang ZM, Lin YH, Nan CW. Novel ferroelectric polymer composites with high dielectricconstants[J]. Adv. Mater.2003,15:1625-1629
    [103] Dang ZM, Wu JB, Fan LZ, Nan CW. Dielectric behavior of Li and Ti co-doped NiO/PVDFcomposites[J]. Chem. Phys. Lett.2003,376:389-394
    [104] Panda M, Srinivas V, Thakur A. On the question of percolation threshold in polyvinylidenefluoride/nanocrystalline nickel composites[J]. Appl. Phys. Lett.2008,92:132905
    [105] Xu J, Wong C. Low-loss percolative dielectric composite[J]. Appl. Phys. Lett.2009,87:082907
    [106] Dang ZM, Peng B, Xie D, Yao SH, Jiang MJ, Bai J. High dielectric permittivitysilver/polyimide composite films with excellent thermal stability[J]. Appl. Phys. Lett.2008,92:112910
    [107] Lu J, Moon KS, Xu J, Wong C. Synthesis and dielectric properties of novel high-K polymercomposites containing in-situ formed silver nanoparticles for embedded capacitorapplications[J]. J. Mater. Chem.2006,16:1543-1548
    [108] Zois H, Apekis L, Mamunya YP. Dielectric properties and morphology of polymer compositesfilled with dispersed iron[J]. J. Appl. Polym. Sci.2003,88:3013-3020
    [109] Li YJ, Xu M, Feng JQ, Dang ZM. Dielectric behavior of a metal-polymer composite with lowpercolation threshold[J]. Appl. Phys. Lett.2006,89:072902
    [110] Pothukuchi S, Li Y, Wong C. Development of a novel polymer–metal nanocomposite obtainedthrough the route of in situ reduction for integral capacitor application[J]. J. Appl. Polym. Sci.2004,93:1531-1538
    [111] Sarasqueta G, Choudhury KR, So F. Organic/inorganic nanocomposites for high dielectricconstant materials[J]. Appl. Phys. Lett.2008,93:123305
    [112] Yuan JK, Li WL, Yao SH, Lin YQ, Sylvestre A, Bai J. High dielectric permittivity and lowpercolation threshold in polymer composites based on SiC-carbon nanotubes micro/nanohybrid[J]. Appl. Phys. Lett.2011,98:2901
    [113] Dang ZM, Fan LZ, Shen Y, Nan CW. Study on dielectric behavior of a three-phase CF/(PVDF+BaTiO3) composite[J]. Chem. Phys. Lett.2003,369:95-100
    [114] Cai D, Song M. Recent advance in functionalized graphene/polymer nanocomposites[J]. J.Mater. Chem.2010,20:7906-7915
    [115] He F, Lau S, Chan HL, Fan J. High dielectric permittivity and low percolation threshold innanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates[J]. Adv.Mater.2009,21:710-715
    [116] Fan Z, Luo G, Zhang Z, Zhou L, Wei F. Electromagnetic and microwave absorbing properties ofmulti-walled carbon nanotubes/polymer composites[J]. Mater. Sci. Eng. B2006,132:85-89
    [117] Jiang MJ, Dang ZM, Xu HP. Giant dielectric constant and resistance-pressure sensitivity incarbon nanotubes/rubber nanocomposites with low percolation threshold[J]. Appl. Phys. Lett.2007,90:042914
    [118] Jiang MJ, Dang ZM, Xu HP. Enhanced electrical conductivity in chemically modified carbonnanotube/methylvinyl silicone rubber nanocomposite[J]. Eur. Polym. J.2007,43:4924-4930
    [119] Jiang MJ, Dang ZM, Xu HP, Yao SH, Bai J. Effect of aspect ratio of multiwall carbon nanotubeson resistance-pressure sensitivity of rubber nanocomposites[J]. Appl. Phys. Lett.2007,91:072907
    [120] Jiang MJ, Dang ZM, Yao SH, Bai J. Effects of surface modification of carbon nanotubes on themicrostructure and electrical properties of carbon nanotubes/rubber nanocomposites[J]. Chem.Phys. Lett.2008,457:352-356
    [121] Landi BJ, Raffaelle RP, Heben MJ, Alleman JL, VanDerveer W, Gennett T. Single wall carbonnanotube-nafion composite actuators[J]. Nano Lett.2002,2:1329-1332
    [122] Park IS,Kim KJ,Nam JD,Lee J,Yim W, Mechanical, dielectric, and magnetic properties of thesilicone elastomer with multi‐walled carbon nanotubes as a nanofiller[J]. Polym. Eng. Sci.2007,47:1396-1405
    [123] Lin Y, Zhou B, Fernando KAS, Liu P, Allard LF, Sun YP. Polymeric carbon nanocompositesfrom carbon nanotubes functionalized with matrix polymer[J]. Macromolecules2003,36:7199-7204
    [124] Wu J, Kong L. High microwave permittivity of multiwalled carbon nanotube composites[J].Appl. Phys. Lett.2004,84:4956
    [125] Yao S, Yuan J, Zhou T, Dang ZM, Bai J. Stretch-Modulated Carbon Nanotube Alignment inFerroelectric Polymer Composites: Characterization of the Orientation State and Its Influenceon the Dielectric Properties[J]. J. Phys. Chem. C2011,115:20011-20017
    [126] Yao SH, Dang ZM, Jiang MJ, Xu HP, Bai J. Influence of aspect ratio of carbon nanotube onpercolation threshold in ferroelectric polymer nanocomposite[J]. Appl. Phys. Lett.2007,91:212901
    [127] Yao SH, Dang ZM, Xu HP, Jiang MJ, Bai J. Exploration of dielectric constant dependence onevolution of microstructure in nanotube/ferroelectric polymer nanocomposites[J]. Appl. Phys.Lett.2008,92:082902
    [128] Li JY. Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giantelectrostriction[J].Phys.Rev. Lett.2003,90:217601
    [129] Huang C, Zhang Q, Li JY, Rabeony M. Colossal dielectric and electromechanical responses inself-assembled polymeric nanocomposites[J]. Appl. Phys. Lett.2005,87:182901-182901-3
    [130] Huang C, Zhang Q, Su J. High-dielectric-constant all-polymer percolative composites[J]. Appl.Phys. Lett.2003,82:3502
    [131] Huang C, Zhang QM. Fully functionalized high-dielectric-constant nanophase polymers withhigh electromechanical response[J]. Adv. Mater.2005,17:1153-1158
    [132] Wang H, Hao Q, Yang X, Lu L, Wang X. Graphene oxide doped polyaniline forsupercapacitors[J]. Electrochem. Commun.2009,11:1158-1161
    [133] Wang JW, Shen QD, Yang CZ, Zhang QM. High dielectric constant composite of P (VDF-TrFE)with grafted copper phthalocyanine oligomer[J]. Macromolecules2004,37:2294-2298
    [134] Bouanga CV, Fatyeyeva K, Baillif PY, Bardeau JF, Khaokong C, Pilard JF, Tabellout M. Studyof dielectric relaxation phenomena and electrical properties of conductive polyaniline basedcomposite films[J]. Journal of Non-Crystalline Solids2010,356:611-615
    [135] Wang JW, Wang Y, Wang F, Li SQ, Xiao J, Shen QD. A large enhancement in dielectricproperties of poly (vinylidene fluoride) based all-organic nanocomposite[J]. Polymer2009,50:679-684
    [136] Zhang Q, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C. An all-organic composite actuatormaterial with a high dielectric constant[J]. Nature2002,419:284-287
    [137] Bobnar V, Levstik A, Huang C, Zhang Q. Distinctive contributions from organic filler andrelaxorlike polymer matrix to dielectric response of CuPc-P (VDF-TrFE-CFE) composite[J].Phys. Rev. Lett.2004,92:47604
    [138] Shen Y, Lin Y, Li M, Nan CW. High dielectric performance of polymer composite films inducedby a percolating interparticle barrier layer[J]. Adv. Mater.2007,19:1418-1422
    [139] Kohlmeyer RR, Javadi A, Pradhan B, Pilla S, Setyowati K, Chen J, Gong S. Electrical anddielectric properties of hydroxylated carbon nanotube-elastomer composites[J]. J. Phys. Chem.C2009,113:17626-17629
    [140] Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH. Fundamentals, processes and applicationsof high-permittivity polymer-matrix composites[J]. Prog. Mater Sci.2011:660-723
    [1] Xu J, Wong CP. High dielectric constant SU8composite photoresist for embedded capacitors[J].J. Appl. Polym. Sci.2007,103:1523-1528
    [2] Xu J, Moon KS, Pramanik P, Bhattacharya S, Wong C. Optimization of epoxy-barium titanatenanocomposites for high performance embedded capacitor components[J]. IEEE T. Compon.Pack. T2007,30:248-253
    [3] Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH. Fundamentals, processes and applications ofhigh-permittivity polymer-matrix composites[J]. Prog. Mater Sci.2011:660-723
    [4] Rao Y, Wong CP. Material characterization of a high-dielectric-constant polymer–ceramiccomposite for embedded capacitor for RF applications[J]. J. Appl. Polym. Sci.2004,92:2228-2231
    [5] Rao Y, Ogitani S, Kohl P, Wong C. Novel polymer–ceramic nanocomposite based on highdielectric constant epoxy formula for embedded capacitor application[J]. J. Appl. Polym. Sci.2002,83:1084-1090
    [6] Das-Gupta D, Doughty K. Polymer-ceramic composite materials with high dielectric constants[J].Thin Solid Films1988,158:93-105
    [7] Arbatti M, Shan X, Cheng ZY. Ceramic–polymer composites with high dielectric constant[J].Adv. Mater.2007,19:1369-1372
    [8] Hsiang HI, Lin KY, Yen FS, Hwang CY. Effects of particle size of BaTiO3powder on thedielectric properties of BaTiO3/polyvinylidene fluoride composites[J]. J. Mater. Sci.2001,36:3809-3815
    [9] Amaral F, Rubinger C, Henry F, Costa L, Valente M, Barros-Timmons A. Dielectric properties ofpolystyrene-CCTO composite[J]. J. Non-Cryst. Solids2008,354:5321-5322
    [10] Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn HJ, Zur LoyeHC. Polymer composite and nanocomposite dielectric materials for pulse power energystorage[J]. Materials2009,2:1697-1733
    [11] Dang ZM, Xia B, Yao SH, Jiang MJ, Song HT, Zhang LQ, Xie D. High-dielectric-permittivityhigh-elasticity three-component nanocomposites with low percolation threshold and low dielectricloss[J]. Appl. Phys. Lett.2009,94:042902
    [12] Zhang Q, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C. An all-organic composite actuatormaterial with a high dielectric constant[J]. Nature2002,419:284-287
    [13] Zhang S, Zhang N, Huang C, Ren K, Zhang Q. Microstructure and Electromechanical Propertiesof Carbon Nanotube/Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)Composites[J]. Adv. Mater.2005,17:1897-1901
    [14] Yuan JK, Yao SH, Dang ZM, Sylvestre A, Genestoux M, Bai J. Giant Dielectric PermittivityNanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in PolyvinylideneFluoride Matrix through an Enhanced Interfacial Interaction[J]. J. Phys. Chem. C2011:5515-5521
    [15] Yuan JK, Li WL, Yao SH, Lin YQ, Sylvestre A, Bai J. High dielectric permittivity and lowpercolation threshold in polymer composites based on SiC-carbon nanotubes micro/nanohybrid[J]. Appl. Phys. Lett.2011,98:032901
    [16] Panda M, Srinivas V, Thakur A. On the question of percolation threshold in polyvinylidenefluoride/nanocrystalline nickel composites[J]. Appl. Phys. Lett.2008,92:132905
    [17] Dang ZM, Nan CW. Dielectric properties of LTNO ceramics and LTNO/PVDF composites[J].Ceram. Int.2005,31:349-351
    [18] Jung HM, Kang JH, Yang SY, Won JC, Kim YS. Barium titanate nanoparticles with diblockcopolymer shielding layers for high-energy density nanocomposites[J]. Chem. Mater.2009,22:450-456
    [19] Lee J, Ko Y, Kim J. Effect of poly (amic acid)-treated BaTiO3on the dielectric and mechanicalproperties of BaTiO3/polyimide composites[J]. Macromol. Res.2010,18:200-203
    [20] Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li J, Calame JP, Perry JW.High energy density nanocomposites based on surface-modified BaTiO3and a ferroelectricpolymer[J]. ACS nano2009,3:2581-2592
    [1] Qi L, Lee BI, Chen S. Samuels WD,Exarhos GJ, High-dielectric-constant silver-epoxycomposites as embedded dielectrics[J]. Adv. Mater.2005,17:1777-1781
    [2] Wang L, Dang ZM. Carbon nanotube composites with high dielectric constant at low percolationthreshold[J]. Appl. Phys. Lett.2005,87:042903
    [3] Dang ZM, Wang L, Yin Y, Zhang Q. Giant dielectric permittivities in functionalizedcarbon-nanotube/electroactive-polymer nanocomposites[J]. Adv. Mater.2007,19:852-857
    [4] Lu J, Moon KS, Xu J, Wong C. Synthesis and dielectric properties of novel high-K polymercomposites containing in-situ formed silver nanoparticles for embedded capacitorapplications[J]. J. Mater. Chem.2006,16:1543-1548
    [5] Zhang S, Zhang N, Huang C, Ren K, Zhang Q. Microstructure and Electromechanical Propertiesof Carbon Nanotube/Poly (vinylidene fluoride—trifluoroethylene—chlorofluoroethylene)Composites[J]. Adv. Mater.2005,17:1897-1901
    [6] Zheng W, Wong SC. Electrical conductivity and dielectric properties of PMMA/expandedgraphite composites[J]. Compos. Sci. Technol.2003,63:225-235
    [7] Yuan JK, Yao SH, Dang ZM, Sylvestre A, Genestoux M, Bai J. Giant Dielectric PermittivityNanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in PolyvinylideneFluoride Matrix through an Enhanced Interfacial Interaction[J]. J. Phys. Chem. C2011,115:5515-5521
    [8] Yu J, Huang X, Wu C, Jiang P. Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites[J]. IEEE T. Diellect. El. In.2011,18:478-484
    [9] Kohlmeyer RR, Javadi A, Pradhan B, Pilla S, Setyowati K, Chen J, Gong S. Electrical anddielectric properties of hydroxylated carbon nanotube-elastomer composites[J]. J. Phys. Chem.C2009,113:17626-17629
    [10] Zois H, Apekis L, Mamunya YP. Dielectric properties and morphology of polymer compositesfilled with dispersed iron[J]. J. Appl. Polym. Sci.2003,88:3013-3020
    [11] Psarras G, Manolakaki E, Tsangaris G. Dielectric dispersion and ac conductivity in--Ironparticles loaded--polymer composites[J]. Composites Part A: Applied Science andManufacturing2003,34:1187-1198
    [12] Huang C, Zhang Q, Bhattacharya K. All-organic dielectric-percolative three-componentcomposite materials with high electromechanical response[J]. Appl. Phys. Lett.2004,84:4391
    [13] Shen Y, Lin Y, Li M, Nan CW. High dielectric performance of polymer composite films inducedby a percolating interparticle barrier layer[J]. Adv. Mater.2007,19:1418-1422
    [14] Yao S, Yuan J, Zhou T, Dang ZM, Bai J. Stretch-Modulated Carbon Nanotube Alignment inFerroelectric Polymer Composites: Characterization of the Orientation State and Its Influence onthe Dielectric Properties[J]. J. Phys. Chem. C2011,115:20011-20017
    [15] Dang ZM, Wu JP, Xu HP, Yao SH, Jiang MJ, Bai J. Dielectric properties of upright carbon fiberfilled poly (vinylidene fluoride) composite with low percolation threshold and weak temperaturedependence[J]. Appl. Phys. Lett.2007,91:072912
    [16] Dang ZM, Fan LZ, Shen Y, Nan CW. Study on dielectric behavior of a three-phase CF/(PVDF+BaTiO3) composite[J]. Chem. Phys. Lett.2003,369:95-100
    [17] Jeong J, Jeon S, Lee T, Park J, Shin J, Alegaonkar P, Berdinsky A, Yoo J. Fabrication ofMWNTs/nylon conductive composite nanofibers by electrospinning[J]. Diamond Relat. Mater.2006,15:1839-1843
    [18] Allaoui A, Bai S, Cheng HM, Bai J. Mechanical and electrical properties of a MWNT/epoxycomposite[J]. Compos. Sci. Technol.2002,62:1993-1998
    [19] Zhu BK, Xie SH, Xu ZK, Xu YY. Preparation and properties of the polyimide/multi-walledcarbon nanotubes (MWNTs) nanocomposites[J]. Compos. Sci. Technol.2006,66:548-554
    [20] Konyushenko EN, Stejskal J, Trchova M, Hradil J, Kovarova J, Prokes J, Cieslar M, Hwang JY,Chen KH, Sapurina I. Multi-wall carbon nanotubes coated with polyaniline[J]. Polymer2006,47:5715-5723
    [1] Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites[J].Polymer2010:
    [2] Gomez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A. Graphene-conducting polymernanocomposite as novel electrode for supercapacitors[J]. J. Power Sources2011,196:4102-4108
    [3] Hamilton IP, Li B, Yan X, Li L. Alignment of colloidal graphene quantum dots on polarsurfaces[J]. Nano Lett.2011:
    [4] Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A. Electricfield effect in atomically thin carbon films[J]. Science2004,306:666
    [5] Mishra AK, Ramaprabhu S. Functionalized graphene-based nanocomposites for supercapacitorapplication[J]. Journal of Physical Chemistry C2011,115:14006-14013
    [6] Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F. Preparation of a graphenenanosheet/polyaniline composite with high specific capacitance[J]. Carbon2010,48:487-493
    [7] Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM.Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization forhigh-performance flexible electrode[J]. ACS nano2009,3:1745-1752
    [8] Peres N, Guinea F, Neto AHC. Electronic properties of disordered two-dimensional carbon[J].Phys. Rev. B2006,73:125411
    [9] Peres N, Guinea F, Castro Neto A. Electronic properties of two-dimensional carbon[J]. Annals ofPhysics2006,321:1559-1567
    [10] Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD,Nguyen SBT, Ruoff RS. Graphene-based composite materials[J]. Nature2006,442:282-286
    [11] Kuilla T,Bhadra S,Yao D,Kim NH,Bose S,Lee JH, Recent advances in graphene based polymercomposites[J]. Prog. Polym. Sci.2010,35:1350-1375
    [12] Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular-level dispersion ofgraphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Adv.Funct. Mater.2009,19:2297-2302
    [13] Hao Q, Wang H, Yang X, Lu L, Wang X. Morphology-controlled fabrication of sulfonatedgraphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigationof their electrochemical properties[J]. Nano Research2011,4:323-333
    [14] Hong W, Xu Y, Lu G, Li C, Shi G. Transparent graphene/PEDOT-PSS composite films as counterelectrodes of dye-sensitized solar cells[J]. Electrochem. Commun.2008,10:1555-1558
    [15] Polini M, Asgari R, Borghi G, Barlas Y, Pereg-Barnea T, MacDonald A. Plasmons and the spectralfunction of graphene[J]. Phys. Rev. B2008,77:081411
    [16] Rochefort A, Wuest JD. Interaction of substituted aromatic compounds with graphene[J].Langmuir2008,25:210-215
    [17] Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM. Diazonium functionalization ofsurfactant-wrapped chemically converted graphene sheets[J]. JACS2008,130:16201-16206
    [18] Si Y, Samulski ET. Synthesis of water soluble graphene[J]. Nano Lett.2008,8:1679-1682
    [19] Matsuo Y, Nishino Y, Fukutsuka T, Sugie Y. Introduction of amino groups into the interlayer spaceof graphite oxide using3-aminopropylethoxysilanes[J]. Carbon2007,45:1384-1390
    [20] Yu J, Huang X, Wu C, Jiang P. Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites[J]. IEEE T. Diellect. El. In.2011,18:478-484
    [21] Ansari S, Giannelis EP. Functionalized graphene sheet—Poly (vinylidene fluoride) conductivenanocomposites[J]. J. Polym. Sci., Part B: Polym. Phys.2009,47:888-897
    [22] Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang Y. What is the choice for supercapacitors:graphene or graphene oxide?[J]. Energy&Environmental Science2011,4:2826-2830
    [23] Yao SH,Dang ZM,Xu HP,Jiang MJ,Bai J, Exploration of dielectric constant dependence onevolution of microstructure in nanotube/ferroelectric polymer nanocomposites[J]. Appl. Phys.Lett.2008,92:082902
    [24] Dang ZM, Xia B, Yao SH, Jiang MJ, Song HT, Zhang LQ, Xie D. High-dielectric-permittivityhigh-elasticity three-component nanocomposites with low percolation threshold and low dielectricloss[J]. Appl. Phys. Lett.2009,94:042902
    [25] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen SBT,Ruoff RS. Preparation and characterization of graphene oxide paper[J]. Nature2007,448:457-460
    [26] Bai H, Xu Y, Zhao L, Li C, Shi G. Non-covalent functionalization of graphene sheets bysulfonated polyaniline[J]. Chem. Commun.2009,13:1667-1669
    [27] Kang SM, Park S, Kim D, Park SY, Ruoff RS, Lee H. Simultaneous reduction and surfacefunctionalization of graphene oxide by mussel-inspired chemistry[J]. Adv. Funct. Mater.2011,1:108-112
    [1] Sebastian MT, Jantunen H. Polymer-ceramic composites of0-3connectivity for circuits inelectronics: a review[J]. Int. J. Appl. Ceram. Technol.2010,7:415-434
    [2] Lee J, Ko Y, Kim J. Effect of poly (amic acid)-treated BaTiO3on the dielectric and mechanicalproperties of BaTiO3/polyimide composites[J]. Macromol. Res.2010,18:200-203
    [3] Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ,Marder SR, Li J, Calame JP, Perry JW. Highenergy density nanocomposites based on surface-modified BaTiO3and a ferroelectric polymer[J].ACS nano2009,3:2581-2592
    [4] Jung HM, Kang JH, Yang SY, Won JC, Kim YS. Barium titanate nanoparticles with diblockcopolymer shielding layers for high-energy density nanocomposites[J]. Chem. Mater.2009,22:450-456
    [5] Yuan JK, Yao SH, Dang ZM, Sylvestre A, Genestoux M, Bai J. Giant Dielectric PermittivityNanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in PolyvinylideneFluoride Matrix through an Enhanced Interfacial Interaction[J]. J. Phys. Chem. C2011,115:5515-5521
    [6] He F, Lau S, Chan HL, Fan J. High dielectric permittivity and low percolation threshold innanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates[J]. Adv.Mater.2009,21:710-715
    [7] Dang ZM, Wang L, Yin Y, Zhang Q. Giant dielectric permittivities in functionalizedcarbon-nanotube/electroactive-polymer nanocomposites[J]. Adv. Mater.2007,19:852-857
    [8] Shri Prakash B, Varma K. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxycomposites[J]. Compos. Sci. Technol.2007,67:2363-2368
    [9] Dang ZM, Xia B, Yao SH, Jiang MJ, Song HT, Zhang LQ, Xie D. High-dielectric-permittivityhigh-elasticity three-component nanocomposites with low percolation threshold and low dielectricloss[J]. Appl. Phys. Lett.2009,94:042902
    [10] Dang ZM, Fan LZ, Shen Y, Nan CW. Study on dielectric behavior of a three-phase CF/(PVDF+BaTiO3) composite[J]. Chem. Phys. Lett.2003,369:95-100
    [11] Choi HW, Heo YW, Joon-Hyung L, Kim JJ, Hee-Young L, Park ET, Chung YK. Effects of Niparticle size on dielectric properties of PMMA-Ni-BaTiO3composites[J]. IntegratedFerroelectrics2007,87:85-93
    [12] Huang C, Zhang QM, Bhattacharya K. All-organic dielectric-percolative three-componentcomposite materials with high electromechanical response[J]. Appl. Phys. Lett.2009,84:4391-4393
    [13] Dang ZM, Yao SH, Yuan JK, Bai J. Tailored dielectric properties based on microstructure changein BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites[J]. J. Phys.Chem. C2010,114:13204-13209
    [14] McCarthy KT, Arnason SB, Hebard AF. Frequency-dependent interface capacitance ofAl–AlO–Al tunnel junctions[J]. Appl. Phys. Lett.1999,74:302-304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700