用户名: 密码: 验证码:
模块组合多电平变换器(MMC)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子技术的飞速发展,多电平变换器及其控制技术的研究正逐渐成为高压大功率电力应用领域的研究热点。模块组合多电平变换器(MMC)以其独特的结构优势,克服了传统多电平变换器的不足,同时在高压电力系统的电能质量问题尤其是负序问题治理方面具有良好的潜力。本文围绕MMC的关键技术、装置系统设计及其在电能质量领域的应用进行了深入细致的研究。
     论文首先分析了MMC的环流特性及影响环流的关键因素,建立了MMC的环流模型,研究结果表明环流无法完全消除,可通过改进控制策略的方法抑制其中的电压控制分量;相间环流的存在表明MMC可通过公共直流母线实现三相电网之间的有功和无功能量交换,这是MMC实现负序电流平衡应用的理论基础。在分析MMC环流模型基础上,提出了一种通用环流抑制策略,可有效抑制环流对桥臂电流、共模电压和公共直流母线电流低频振荡的影响。接着,论文研究了MMC系统关键参数的谐波解析式,提出一种基于改进型开关函数的谐波抑制策略,能有效抑制桥臂电流中的低次谐波分量,降低对桥臂电感的滤波要求。推导了MMC的数学模型,分析了电流解耦控制原理,为进一步研究MMC的动态和稳态运行特性提供了依据。
     论文研究了适于MMC特点的脉冲调制技术。对直流电压控制开环条件下多载波正弦脉宽调制技术及脉冲移相技术应用于MMC的输出特性对比研究表明,载波移相SPWM技术更适合于MMC的控制。研究了一种双调制波载波移相SPWM技术(DM-CPS-SPWM)及其在MMC中的具体实现方法,并提出一种载波循环分布的载波层叠SPWM(CD-ROT-SPWM)技术,实现了有功能量在功率单元中的近似平均分配。
     论文研究了MMC的直流电容电压控制策略。提出了两种无需外加直流供电电源的预充电控制方案,解决了MMC直流电容电压的同步初始化问题。分析了引起直流电容电压不平衡的根本原因,研究了一种基于自身平衡控制算法的直流电容电压控制策略。仿真和实验结果表明该控制方法具有良好的稳态和动态特性,实现了直流电容电压的稳定平衡控制。
     论文同时研究了MMC装置系统设计和实现中的关键问题。分析了MMC主电路参数的设计原则,开发了两套MMC样机实验系统及一套基于DSP和FPGA的数字化主从式控制系统。
     最后,论文完成了MMC在电能质量治理领域的研究实例。研究了基于MMC的STATCOM装置(M-STATCOM)的电路结构、工作原理和控制方案;确定了负序平衡应用下M-STATCOM的容量需求;仿真和实验结果表明,M-STATCOM不仅可实现感性/容性无功发生功能,也可实现对包括负序、无功和谐波在内的电能质量问题的综合治理,进一步验证了本文提出的控制策略的有效性和可行性。
With the rapid development of power electronics technology, multilevel converter and its control strategies is becoming one of the hot spots in the field of high-voltage and/or high-power applications. Modular multilevel converter (MMC), features with the characteristics such as high modularity, low generation of harmonics, etc, is one of the next-generation multilevel PWM converters intended for medium-or high-voltage utility grid without line-frequency transformers. So the study on some key issues of MMC, experimental system design and its application in power quality controls, especially for the negative-sequence balancing, has been conducted in depth in this dissertation.
     By controlling the role of circulating current as current controlled voltage source (CCVS), the circulating current model of MMC was proposed. Analysis of the key factors affecting the circulating current shows that circulating currents cannot be completely eliminated, but can only be suppressed by means of control. The existing of the phase-to-phase circulating current component, which produced by redistributing the active power among three phases through the common dc-bus, shows that MMC is suitable for the need to achieve negative-sequence balancing applications. Based on the circulating current model, a universal circulating current suppressing strategy has been proposed and adopted for improving the power quality of leg current, suppressing the common-mode voltage and the low frequency oscillation appeared in the common dc-bus current.
     Detailed DC capacitor voltage has been developed using the switching functions concept. Moreover, a harmonic elimination technique based on the modified switching function is applied for suppressing the low-order harmonics in leg currents, which will further reduce the leg inductor requirement. On the basis of derivation of its accurate mathematical model, the current decoupling control theory is proposed, which provides the theorial fundamental for the further research on the steady-state and dynamic-state performance of MMC.
     The carrier phase-shifted SPWM (CPS-SPWM) is more suitable for MMC control compared with other multi-carrier SPWM techniques. So, this dissertation proposes a double-modulation CPS-SPWM (DM-CPS-SPWM) according to the output characteristics of MMC, and the implementation of DM-CPS-SPWM in MMC has been explained in detail. Moreover, a new power banlance control schemes of carrier disposition SPWM (CD-ROT-SPWM) technology based on carrier rotating diposition concept is proposed. The new CD-ROT-SPWM technology ensures the output power balance among different power units.
     Two pre-charging control methods without any external DC voltage sources are proposed to solve the DC capacitor voltage initialization issue. By analyzing of the key factors of the DC capacitor voltage imbalance phenomenon, a combination of the individual voltage control and the averaging voltage control strategy is proposed for DC capacitor voltages balancing control, which steady-and dynamic-state performance is verified by both the subsequent simulation and experimental results.
     Based on the analysis of the design principles of the main circuit component parameters, two sets of experimental prototypes and a set of DSP and FPGA-based digital master-slave control system have been designed and constructed. Representative experiments have been carried out on the experimental prototypes, and the testing results have verified the research work in this dissertation.
     The concept of M-STATCOM is introduced firstly. The study on the working principle and control scheme under two different conditions are conducted. Simulation and experimental results show that M-STATCOM can not only be controlled in static var generating condition for reactive power regulation purpose, but also be suitable for the comprehensive compensation of all the power quality problems such as negative-sequence balancing, reactive power compensation and harmonics suppression. M-STATCOM shows good prospects in electrical traction lines, medium-or high-voltage power distribution system, etc.
引文
[1]Joerg Dorn, Hartmut Huang, Dietmar Retzmann. Novel Voltage-Sourced Converters for HVDC and FACTS Applications[C]. CIGRE Symposium. Osaka, Japan,2007:314-321.
    [2]S. Allebrod, R. Hamerski, R. Marquardt. New transformerless, scalable Modular Multilevel Converters for HVDC-transmission[C]. Power Electronics Specialists Conference (PESC). Rhodes, Greece,2008:174-179.
    [3]H. Akagi. The state-of-the-art of power electronics in Japan[J]. IEEE Transactions on Power Electronics.1998.13(2):345-356.
    [4]K. Fujii, K. Kunomura, K. Yoshida, A. Suzuki, S. Konishi, M. Daiguji, K. Baba. STATCOM Applying Flat-Packaged IGBT's Connected in Series[J]. Power Electronics, IEEE Transactions on.2005.20(5):1125-1132.
    [5]李庚银,吕鹏飞,李光凯,周明.轻型高压直流输电技术的发展与展望[J].电力系统自动化.2003.27(4):77-81.
    [6]N. Flourentzou, V. G. Agelidis, G. D. Demetriades. VSC-Based HVDC Power Transmission Systems:An Overview[J]. IEEE Transactions on Power Electronics.2009.24(3):592-602.
    [7]B. Gemmell, J. Dorn, D. Retzmann, D. Soerangr. Prospects of multilevel VSC technologies for power transmission[C]. Transmission and Distribution Conference and Exposition. Chicago, USA,2008:1-16.
    [8]B. R. Andersen, L. Xu, P. J. Horton, P. Cartwright. Topologies for VSC transmission[J]. Power Engineering Journal.2002.16(3):142-150.
    [9]R. Marquardt, A. Lesnicar. New Concept for High Voltage-Modular Multilevel Converter[C]. Power Electronics Specialists Conference (PESC). Aachen, Germany,2004
    [10]Hartmut Huang. Multilevel Voltage-Sourced Converters for HVDC and FACTS Applications[C]. Cigre, SC B4 2009 Bergen Colloquium. Bergen, Norway,2009:1-8.
    [11]F. Z. Peng, J. W. McKeever, D. J. Adams. A power line conditioner using cascade multilevel inverters for distribution systems[J]. IEEE Transactions on Industry Applications.1998.34(6): 1293-1298.
    [12]Xu Shukai, Song Qiang, Zhu Yongqiang, Liu Wenhua. Development of a D-STATCOM prototype based on cascade inverter with isolation transformer for unbalanced load compensation[C]. IEEE International Conference on Industrial Technology,2005:1051-1056.
    [13]李建林.载波相移级联H桥型多电平变流器及其在有源电力滤波器中的应用研究[博十学位论文].杭州:浙江大学,2005.
    [14]王立乔.错时采样空间矢量调制技术研究[博十学位论文].杭州:浙江大学,2003.
    [15]李建林,王立乔,刘兆燊,张仲超.一种新型的组合变流器错时采样空间矢量调制技术分析[J].中国电机工程学报.2004.24(1):142-246.
    [16]梁旭,刘文华,陈建业,王仲鸿.基于多重化逆变器的静止无功发生器直流侧电流分析[J].电[:技术学报.2000.15(1):52-56.
    [17]M. Hagiwara, H. Akagi. Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters[J]. IEEE Transactions on Power Electronics.2009.24(7):1737-1746.
    [18]F. Z. Peng. A generalized multilevel inverter topology with self voltage balancing[J]. IEEE Transactions on Industry Applications.2001.37(2):611-618.
    [19]J. Rodriguez, Lai Jih-Sheng, F. Z. Peng. Multilevel inverters:a survey of topologies, controls, and applications [J]. IEEE Transactions on Industrial Electronics.2002.49(4):724-738.
    [20]A. Nabae, I. Takahashi, H. Akagi. A New Neutral-Point-Clamped PWM Inverter[J]. IEEE Transactions on Industry Applications.1981. IA-17(5):518-523.
    [21]Yuan Xiaoming, H. Stemmler, I. Barbi. Self-balancing of the clamping-capacitor-voltages in the multilevel capacitor-clamping-inverter under sub-harmonic PWM modulation[J]. IEEE Transactions on Power Electronics.2001.16(2):256-263.
    [22]L. Xu, V. G. Agelidis. Active capacitor voltage control of flying capacitor multilevel converters[J]. IEE Proceedings -Electric Power Applications.2004.151(3):313-320.
    [23]J. Rodriguez, S. Bernet, Wu Bin, J. O. Pontt, S. Kouro. Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives [J]. IEEE Transactions on Industrial Electronics.2007.54(6):2930-2945.
    [24]K. Corzine, Y. Familiant. A new cascaded multilevel H-bridge drive[J]. IEEE Transactions on Power Electronics.2002.17(1):125-131.
    [25]L. Maharjan, S. Inoue, H. Akagi. A Transformerless Energy Storage System Based on a Cascade Multilevel PWM Converter With Star Configuration[J]. IEEE Transactions on Industry Applications.2008.44(5):1621-1630.
    [26]孙建军,张振环,刘会金,陈允平.基于级联型逆变器的中压有源电力滤波器滞环电流矢量控制[J].中国电机工程学报.2005.25(23):86-90.
    [27]K. V. Patil, R. M. Mathur, J.Jiang, S. H. Hosseini. Distribution system compensation using a new binary multilevel voltage source inverter[J]. IEEE Transactions on Power Delivery. 1999.14(2):459-464.
    [28]陈阿莲,何湘宁,吴洪洋,赵荣祥.基于基本单元串并(并-串)思想生成多电平变换器拓扑的方法[J].电工技术学报.2004.19(2):41-46.
    [29]G. P. Adam, O. Anaya-Lara, G. Burt, S. J. Finney, B. W. Williams. Comparison between Two VSC-HVDC transmission technologies:Modular and neutral point clamped multilevel converter[C].35th Annual Conference on IEEE Industrial Electronics Society (IECON). Porto, Portugal,2009:277-282.
    [30]M. Saeedifard, R. Iravani. Dynamic Performance of a Modular Multilevel Back-to-Back HVDC System[J]. IEEE Transactions on Power Delivery.2010.25(4):2903-2912.
    [31]G.P.Adam, O. Anaya-Lara, G. Burt, J. McDonald. Transformerless STATCOM based on a five-level modular multilevel converter[C].13th European Conference on Power Electronics and Applications (EPE). Barcelona, Spain,2009:1-10.
    [32]M. Hagiwara, R. Maeda, H. Akagi. Control and Analysis of the Modular Multilevel Cascade Converter Based on Double-Star Chopper-Cells (MMCC-DSCC)[J]. IEEE Transactions on Power Electronics.2011.26(6):1649-1658.
    [33]F. Z. Peng, Jih-Sheng Lai. Dynamic performance and control of a static VAr generator using cascade multilevel inverters[J]. IEEE Transactions on Industry Applications.1997.33(3): 748-755.
    [34]F. Z. Peng, Wang Jin. A universal STATCOM with delta-connected cascade multilevel inverter[C]. IEEE Power Electronics Specialists Conference (PESC),2004:3529-3533.
    [35]A. Alesina, M. Venturini. Solid-state power conversion:A Fourier analysis approach to generalized transformer synthesis[J]. IEEE Transactions on Circuits and Systems.1981.28(4): 319-330.
    [36]M. Glinka, R. Marquardt. A New Single Phase AC/AC-Multilevel Converter For Traction Vehicles Operating On AC Line Voltage[C]. European Conference on Power Electronics and Applications (EPE). Toulouse, France,2003
    [37]A. Lesnicar, R. Marquardt. A new modular voltage source inverter topology[C]. European Conference on Power Electronics and Applications (EPE). Toulouse, France,2003:1-10.
    [38]M. Glinka. Prototype of multiphase modular-multilevel-converter with 2 MW power rating and 17-level-output-voltage[C]. Power Electronics Specialists Conference (PESC). Aachen, Germany,2004:2572-2576.
    [39]M. Hagiwara, H. Akagi, K. Nishimura. A Medium-Voltage Motor Drive With a Modular Multilevel PWM Inverter[J]. IEEE Transactions on Power Electronics.2010.25(7): 1786-1799.
    [40]Rainer Marquardt, Anton Lesnicar, Jurgen Hildinger. Modulares Stromrichterkonzept fur Netzkupplungsanwendung bei hohen Spannungen[C]. ETG-Fachtagung. Bad Nauheim, Germany,2002:1-7.
    [41]A. Lesnicar, R. Marquardt. An innovative modular multilevel converter topology suitable for a wide power range[C]. IEEE Bologna Power Tech Conference. Bologna, Italy,2003:1-6.
    [42]M. Glinka, R. Marquardt. A new AC/AC multilevel converter family[J]. IEEE Transactions on Industrial Electronics.2005.52(3):662-669.
    [43]杨晓峰,孙浩,支刚,郑琼林.双星型模块组合型多电平变换器的PWM控制策略[J].电力电子.2010(2):14-19,25.
    [44]Kurt Friedrich. Modern HVDC PLUS application of VSC in Modular Multilevel Converter topology[C]. IEEE International Symposium on Industrial Electronics (ISIE). Bari, Italy,2010: 3807-3810.
    [45]Dietmar Retzmann. HVDC PLUS-Innovative Multilevel Technology for Power Transmission[R],2009
    [46]Ding Guanjun, Tang Guangfu, He Zhiyuan, Ding Ming. New technologies of voltage source converter (VSC) for HVDC transmission system based on VSC[C]. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, USA,2008:1-8.
    [47]屠卿瑞,徐政,郑翔,管敏渊.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术.2010.36(2):547-552.
    [48]Antonios Antonopoulos, Lennart Angquist, Hans-Peter Nee. On dynamics and voltage control of the Modular Multilevel Converter[C].13th European Conference on Power Electronics and Applications (EPE). Barcelona, Spain,2009:1-10.
    [49]M. Hagiwara, R. Maeda, H. Akagi. Theoretical analysis and control of the modular multilevel cascade converter based on double-star chopper-cells (MMCC-DSCC)[C].9th International Power Electronics Conference (IPEC). Sapporo, Japan,2010:2029-2036.
    [50]M. Hagiwara, R. Maeda, H. Akagi. Negative-sequence reactive-power control by the modular multilevel cascade converter based on double-star chopper-cells (MMCC-DSCC)[C]. IEEE Energy Conversion Congress and Exposition (ECCE). Atlanta, USA,2010:3949-3954.
    [51]Qingrui Tu, Zheng Xu, Jing Zhang. Circulating current suppressing controller in modular multilevel converter[C].36th Annual Conference on IEEE Industrial Electronics Society (IECON). Phoenix, USA,2010:3198-3202.
    [52]L. Angquist, A. Antonopoulos, D. Siemaszko, K. Ilves, M. Vasiladiotis, H. P. Nee. Inner control of modular multilevel converters- an approach using open-loop estimation of stored energy[C]. International Power Electronics Conference (IPEC). Sapporo, Japan,2010:21-24.
    [53]Tu Qingrui, Xu Zheng, Hongyang Huang, Zhang Jing. Parameter design principle of the arm inductor in modular multilevel converter based HVDC[C]. International Conference on Power System Technology (POWERCON). Hangzhou, China,2010:1-6.
    [54]Guan Minyuan, Xu Zheng, Li Huijie. Analysis of DC voltage ripples in modular multilevel converters[C]. International Conference on Power System Technology (POWERCON). Hangzhou, China,2010:1-6.
    [55]丁冠军,汤广福,丁明,贺之渊.新型多电平电压源换流器模块的拓扑机制与调制策略[J].中国电机工程学报.2009.29(36):1—8.
    [56]Qiang Li, Zhiyuan He, Guangfu Tang. Investigation of the Harmonic Optimization Approaches in the New Modular Multilevel Converters [C]. Asia-Pacific Power and Energy Engineering Conference (APPEEC). Chengdu, China,2010:1-6.
    [57]管敏渊,徐政,屠卿瑞,潘伟勇.模块化多电平换流器型直流输电的调制策略[J].电力系统自动化.2010.34(2):48-52.
    [58]Fainan Hassan, Will Crookes, Roger Critchley. Optimized stair-case modulation for modular grid connected converters[C]. IEEE International Symposium on Industrial Electronics (ISIE). Bari, Italy,2010:3820-3825.
    [59]Ke Li, Chengyong Zhao. New Technologies of Modular Multilevel Converter for VSC-HVDC Application[C]. Asia-Pacific Power and Energy Engineering Conference (APPEEC). Chengdu, China,2010:1-4.
    [60]管敏渊,徐政,潘伟勇,屠卿瑞.最近电平逼近调制的基波谐波特性解析计算[J].高电 压技术.2010.36(5):1327—1332.
    [61]S. Sirisukprasert. Lai Jih-Sheng, Liu Tian-Hua. Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters[J]. IEEE Transactions on Industrial Electronics.2002.49(4):875-881.
    [62]宋强,刘文华,陈远华.多电平逆变器载波调制与空间矢量调制的等效关系[J].电力系统自动化.2004.28(19):36-41.
    [63]刘钟淇,宋强,刘文华.新型模块化多电平变流器的控制策略研究[J].电力电子技术.2009.43(10):5-7,18.
    [64]李强,贺之渊,汤广福,司德亮,郑斌毅,殷志良.新型模块化多电平换流器空间矢量脉宽调制方法[J].电力系统自动化.2010.34(22):75-79,123.
    [65]P. F. Seixas, M. A. Severo Mendes, P. Donoso-Garcia, A. M. N. Lima. A space vector PWM method for three-level voltage source inverters[C]. IEEE Applied Power Electronics Conference and Exposition (APEC). New Orleans, USA,2000:549-555.
    [66]E. Solas, G. Abad, J. A. Barrena, A. Carear, S. Aurtenetxea. Modulation of Modular Multilevel Converter for HVDC application[C].14th International Power Electronics and Motion Control Conference (EPE-PEMC). Ohrid, Macedonia,2010:84-89.
    [67]G. S. Konstantinou, V. G. Agelidis. Performance evaluation of half-bridge cascaded multilevel converters operated with multicarrier sinusoidal PWM techniques[C]. IEEE Conference on Industrial Electronics and Applications. Xi'an China,2009:3399-3404.
    [68]周京华,李正熙.多载波水平调制策略的谐波分析及数字化实现[J].电气传动.2008.38(12):27-32.
    [69]J. M. Perez de Andres, J. Dorn. Prospects of VSC Converters for Transmission System Enhancement[C]. Power Generation Industry and Exhibition (POWER-GEN Europe). Madrid,Spain,2007
    [70]孙浩.模块组合多电平变换器(MMC)的控制策略研究[硕士学位论文].北京:北京交通大学,2010.
    [71]丁冠军,丁明,汤广福,贺之渊.新型多电平VSC子模块电容参数与均压策略[J].中国电机工程学报.2009.29(30):1—6.
    [72]刘钊,刘邦银,段善旭,康勇,史晏军,陈仲伟.链式静止同步补偿器的直流电容电压平衡控制[J].电机工程学报.2009.29(30):7-12.
    [73]D. J. Hanson, M. L. Woodhouse, C. Horwill, D. R. Monkhouse. M. M. Osborne. STATCOM: a new era of reactive compensation [J]. Power Engineering Journal.2002.16(3):151-160.
    [74]H. Akagi, S. Inoue, T. Yoshii. Control and Performance of a Transformerless Cascade PWM STATCOM With Star Configuration[J]. IEEE Transactions on Industry Applications.2007. 43(4):1041-1049.
    [75]J. A. Barrena, L. Marroyo, M. A. R. Vidal, J. R. T. Apraiz. Individual Voltage Balancing Strategy for PWM Cascaded H-Bridge Converter-Based STATCOM[J]. IEEE Transactions on Power Electronics.2008.55(1):21-29.
    [76]G. P. Adam, O. Anaya-Lara, G. M. Burt, D. Telford, B. W. Williams, J. R. Mcdonald. Modular multilevel inverter:Pulse width modulation and capacitor balancing technique[J]. IET Power Electronics.2010.3(5):702-715.
    [77]M. Hagiwara,H. Akagi. PWM control and experiment of modular multilevel converters[C]. Power Electronics Specialists Conference (PESC). Rhodes, Greece,2008:154-161.
    [78]杨晓峰,王晓鹏,范文宝,郑琼林.模块组合多电平变换器的环流模型研究[J].电工技术学报.2011.26(5):21—27.
    [79]C. Oates. A methodology for developing 'Chainlink' converters[C].13th European Conference on Power Electronics and Applications (EPE). Barcelona, Spain,2009:1-10.
    [80]王姗姗,周孝信,汤广福,贺之渊,滕乐天,刘隽.模块化多电平电压源换流器的数学模型[J].中国电机工程学报.2011.31(24):1—8.
    [81]王奎,李永东,郑泽东.新型模块化多电平变换器电容电压波动规律及抑制方法[J].电工技术学报.2011.26(5):8—14.
    [82]屠卿瑞,徐政,管敏渊,郑翔,张静.模块化多电平换流器环流抑制控制器设计[J].电 力系统自动化.2010.34(18):57-61,83.
    [83]姜艳姝,刘宇,徐殿国,赵洪.PWM变频器输出共模电压及其抑制技术的研究[J].中国电机工程学报.2005.25(9):47-53.
    [84]张兴,童诚,杨淑英,谢震.基于双空间矢量调制的双级矩阵变换器共模电压抑制研究[J].中国电机工程学报.2010.30(18):33-38.
    [85]何必,林桦,张晓锋,甄洪斌.电流控制型矩阵变换器抑制共模电压控制策略[J].中国电机工程学报.2007.27(25):90-96.
    [86]刘洪臣,陈希有,冯勇,邢海军,马向前.双电压合成矩阵变换器共模电压的研究[J].中国电机工程学报.2004.24(12):182-186.
    [87]刘洪臣,陈希有,沈涛,冯勇.用于抑制矩阵变换器共模电压的零输出换相策略[J].中国电机工程学报.2005.25(3):29-32.
    [88]M. Hagiwara, K. Nishimura, H. Akagi. A modular multilevel PWM inverter for medium-voltage motor drives[C]. IEEE Energy Conversion Congress and Exposition (ECCE). California, USA,2009:2557-2564.
    [89]Marc Hiller, Dietmar Krug, Rainer Sommer, Steffen Rohner. A new highly modular medium voltage converter topology for industrial drive applications[C].13 th European Conference on Power Electronics and Applications (EPE). Barcelona, Spain,2009:1-10.
    [90]Disha Dinesh Jaya. Control of an Induction Motor fed from a Modular Multilevel Converter[Master Dissertation]. Stockholm, Sweden:Royal Institute of Technology (KTH), 2009.
    [91]Arthur J. Korn, Manfred Winkelnkemper, Peter Steimer. Low output frequency operation of the Modular Multi-Level Converter[C]. IEEE Energy Conversion Congress and Exposition (ECCE). Atlanta, USA,2010:3993-3997.
    [92]刘钟淇,宋强,刘文华.基于模块化多电平变流器的轻型直流输电系统[J].电力系统自动化.2010.34(2):53-58.
    [93]管敏渊,徐政.模块化多电平换流器型直流输电的建模与控制[J].电力系统自动化.2010.34(19):64-68.
    [94]郭捷,江道灼,周月宾,胡鹏飞,梁一桥.交直流侧电流分别可控的模块化多电平换流器控制方法[J].电力系统自动化.2011.35(7):42-47.
    [95]周京华,杨振,苏彦民.多电平逆变器多载波PWM调制策略的研究[J].电气传动.2005.35(1):23-27.
    [96]侯世英,万江,郑含博.单相五电平逆变器的多载波PWM方法分析[J].电力自动化设备.2007.27(9):67-70.
    [97]V. G. Agelidis, M. Calais. Application specific harmonic performance evaluation of multicarrier PWM techniques[C].29th Annual IEEE Power Electronics Specialists Conference, 1998:172-178.
    [98]G. Carrara, S. Gardella, M. Marchesoni, R. Salutari, G. Sciutto. A new multilevel PWM method:a theoretical analysis[J]. IEEE Transactions on Power Electronics.1992.7(3): 497-505.
    [99]薄保中,刘卫国,罗兵.单元串联多电平逆变器PWM方法比较研究[J].电力自动化设备.2004.24(2):84-87.
    [100]李建林,李晶,王立乔,赵栋利,张仲超,许洪华.CPS-SPWM在级联型有源电力滤波器中的应用[J].电力系统自动化.2006.30(9):64-68.
    [101]S. R. Bowes, T. Davies. Microprocessor-based development system for PWM variable-speed drives[J].IEE Proceedings-Electric Power Applications.1985.132(1):18-45.
    [102]B. P. McGrath, D. G. Holmes. Sinusoidal PWM of multilevel inverters in the overmodulation region[C]. IEEE 33rd Annual Power Electronics Specialists Conference,2002:485-490.
    [103]Lai Jih-Sheng, F. Z. Peng. Multilevel converters-a new breed of power converters[J]. IEEE Transactions on Industry Applications.1996.32(3):509-517.
    [104]王鸿雁,陈阿莲,邓焰,赵荣祥,何湘宁.基于控制自由度组合的多电平逆变器载波PWM控制方法[J].中国电机工程学报.2004.24(1):131-135.
    [105]王鸿雁,张超,王小峰,邓焰,何湘宁.基于控制自由度组合的多电平PWM方法及其理论分析[J].中国电机工程学报.2006.26(6):42-48.
    [106]张仲超,方强.组合变流器相移SPWM技术研究[J].电力电子技术.1997.32(2):9-11.
    [107]Z. Zhang, J. Kuang, X. Wang, B. T. Ooi. Force commutated HVDC and SVC based on phase-shifted multi-converter modules[J]. IEEE Transactions on Power Delivery.1993.8(2): 712-718.
    [108]Peng Fangzheng, Lai Jih-Sheng, J. W. McKeever, J. VanCoevering. A multilevel voltage-source inverter with separate DC sources for static VAr generation[J]. IEEE Transactions on Industry Applications.1996.32(5):1130-1138.
    [109]Song Qiang, Liu Wenhua, Yuan Zhichang. Multilevel Optimal Modulation and Dynamic Control Strategies for STATCOMs Using Cascaded Multilevel Inverters[J]. IEEE Transactions on Power Delivery.2007.22(3):1937-1946.
    [110]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2005.
    [111]刘涛,朱凌,石新春.基于CPLD的级联型多电平变频装置控制方法[J].电力电子技术.2005.39(1):58-60.
    [112]合众达电子.SEED-DEC28335用户指南(Rev.A)[M]北京合众达电子技术有限责任公司,2008
    [113]黄华,杨振宇,倪喜军,赵剑锋.基于FPGA的级联型逆变器的脉冲发生器的实现[J].电力系统保护与控制.2008-36(17):62-66.
    [114]Texas Instruments. Four-channel, simultaneous sampling, fast,14-bit ADC AD7865[M],1999: 19.
    [115]S. Figarado, T. Bhattacharya, G. Mondal, K. Gopakumar. Three-level inverter scheme with reduced power device count for an induction motor drive with common-mode voltage elimination[J]. IET Power Electronics.2008.1(1):84-92.
    [116]高强,徐殿国.PWM逆变器输出端共模与差模电压dv/dt滤波器设计[J].电工技术学报.2007.22(1):79-84.
    [117]Liang Yiqiao, C. O. Nwankpa. A new type of STATCOM based on cascading voltage-source inverters with phase-shifted unipolar SPWM[J]. IEEE Transactions on Industry Applications. 1999.35(5):1118-1123.
    [118]A. L. P. de Oliveira, C. E. Tiburcio, M. N. Lemes, D. Retzmann. Prospects of Voltage-Sourced Converters (VSC) applications in power transmission systems[C]. IEEE Conference of the Andean Council (ANDESCON). Bogota, Colombia,2010:1-4.
    [119]R. Marquardt. Modular Multilevel Converter:An universal concept for HVDC-Networks and extended DC-Bus-applications[C].9th International Power Electronics Conference (IPEC). Sapporo, Japan,2010:502-507.
    [120]Andreja Rasic. Performance Analysis of the Voltage Source Converter based Back-to-back Systems in Medium-voltage Networks[Doctor Dissertation],2010.
    [121]刘隽,贺之渊,何维国,包海龙,季兰兰.基于模块化多电平变流器的柔性直流输电技术[J].电力与能源.2011.1(1):33-38.
    [122]刘钟淇,宋强,刘文华.采用MMC变流器的VSC-HVDC系统故障态研究[J].电力电子技术.2010.44(9):69-71.
    [123]于德政.基于模块化多电平变流器结构的HVDC Light;系统的研究[硕士学位论文].合肥:合肥工业大学,2009.
    [124]M. Bina, H. Mohammadi. A Transformerless Medium-Voltage STATCOM Topology based on Extended Modular Multilevel Converters[J]. IEEE Transactions on Power Electronics.2010. PP(99):1.
    [125]沈斐,王娅岚,刘文华,梁旭,韩英铎.大容量STATCOM主电路结构的分析和比较[J].电力系统自动化.2003.27(8):59-65.
    [126]S. Yonetani, Y. Kondo, H. Akagi, H. Fujita. A 6.6-kV Transformerless STATCOM Based on a Five-Level Diode-Clamped PWM Converter:System Design and Experimentation of a 200-V 10-kVA Laboratory Model[J]. IEEE Transactions on Industry Applications.2008.44(2): 672-680.
    [127]B. Han, S. Baek. H. Kim. Static synchronous series compensator based on cascaded H-bridge inverter[J]. Electric Power Systems Research.2003.5(2):63-72.
    [128]R. E. Betz, B. J. Cook, T. J. Summers, A. Bastiani, S. Shao, K. Willis. Design and development of an 11kV H-bridge multilevel STATCOM[C]. Australasian Universities Power Engineering Conference,2007:1-6.
    [129]Hirofumi Akagi, Edson Hirokazu Watanabe, Mauricio Aredes. Instantaneous Power Theory and Applications to Power Conditioning[M]. Hoboken:John Wiley & Sons, Inc.,2007.
    [130]Hirofumi Akagi, Yoshihira Kanazawa, Akira Nabae. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components[J]. IEEE Transactions on Industry Applications.1984. IA-20(3):625-630.
    [131]戴瑜兴,张义兵,陈际达.检测单相系统谐波电流和无功电流的一种新方法[J].电工技术学报.2004.19(2):93-97,19.
    [132]戴朝波,林海雪,雷林绪.两种谐波电流检测方法的比较研究[J].中国电机工程学报.2002.22(1):80-84.
    [133]周柯,罗安,夏向刚,赵伟.一种改进的ip-iq谐波检测方法及数字低通滤波器的优化设计[J].中国电机工程学报.2007.27(34):96-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700