用户名: 密码: 验证码:
水滑石类化合物及其多级核壳结构复合材料负载金催化剂的制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载型纳米金催化剂在不饱和醛/酮化合物选择性加氢、选择性醇氧化等许多重要的化学反应中表现出独特的催化特性,使其成为当前催化研究领域的热点。载体除了具有固载纳米金粒子的作用外,由于金属-载体相互作用使其对纳米金颗粒的粒径分布、氧化态、形貌等具有重要的影响,并且在反应过程中表现出与金粒子之间的协同效应。水滑石类化合物,又称层状双羟基复合金属氧化物(LayeredDouble Hydroxide,简写为LDH),由于其具有层板金属元素的可调控性及本征碱性,近年来作为一种新型催化剂载体受到人们的广泛关注。本论文以提高纳米金催化剂的催化性能、实现纳米金催化剂的方便回收及循环再利用的绿色催化为目标,首次设计合成了三种独特的LDH基功能化载体,继而负载纳米金粒子制得系列尺寸、形貌可控的高性能纳米金催化剂。采用XRD、SEM/TEM/HRTEM/STEM、ICP、BET、H_2-TPR及XPS等方法系统研究了催化剂的晶体结构、组成和形貌,考察催化剂在,-不饱和醛加氢以及醇氧化反应中的催化性能,探讨金与载体之间的相互作用机制及催化剂结构与催化性能之间的协同关联。论文的主要结果和创新点如下:
     (1)以共沉淀法制备了系列具有可还原过渡金属Fe原子级高分散的三元LDH载体Mg_2Fe_xAl_(1-x)-LDH。采用修饰的沉积-沉淀法将纳米金粒子负载于该三元LDH载体上制得了系列粒子尺寸为40~100nm的Au/Mg_2Fe_xAl_(1-x)-LDH催化剂。研究发现,载体尺寸变化对负载金粒子尺寸分布无明显影响。然而,载体层板中高分散的Fe对Au粒子尺寸表现出限域效应,随着Fe含量增加,Au粒子尺寸逐渐由9nm减至5nm。与载体Mg_2Fe_xAl_(1-x)-LDH相比,催化剂中的Fe~(3+)还原成Fe~(2+)及Fe0的温度分别降低的了280℃和100℃,表明存在强的金-载体电子相互作用,使得负载金催化剂载体上的Fe~(3+)被部分还原,并且使催化剂表面具有更多的Au~(3+)。将该催化剂直接应用于肉桂醛加氢反应中,表现出较高的催化加氢活性和肉桂醇选择性,其中Au/Mg_2Fe_(0.8)Al_(0.2)-LDH显示出最高的加氢活性和肉桂醇选择性,与其较小的金粒子尺寸(5nm)和最强的金-载体相互作用吻合。同时,较低的催化剂预处理温度因有利于保持较高的Au~(3+)/Au~0比而显示更高的活性。可以确认Au~(3+)为该催化体系加氢的活性中心,Fe~(2+)的存在很可能稳定了催化剂中的Au~(3+)活性中心。
     (2)利用γ-Al_2O_3表面Al源,以硝酸镁和硝酸铁为Mg源和Fe源,在550μm的球形γ-Al_2O_3成型载体表面原位取向生长Mg(Fe)Al-LDH纳米晶壳层薄膜对其修饰,首次得到一种结构化的微米级球形多级核壳结构复合载体γ-Al_2O_3@Mg(Fe)Al-LDH。通过沉积-沉淀法在该载体上负载纳米金粒子,首次得到直径为550μm的多级结构微球型负载金催化剂γ-Al_2O_3@Mg(Fe)Al-LDH@Au。金粒子与Mg(Fe)Al-LDH壳层薄膜修饰层中Fe~(3+)的电子相互作用使得Fe~(3+)被部分还原为Fe~(2+),并且金粒子中的活性组分Au~(3+)的含量随壳层中Fe含量的增加逐渐增加,该催化剂的肉桂醛加氢活性和不饱和醇的选择性明显增高。反应时间的延长和压力的升高有利于加氢活性的提高,但不饱和醇选择性基本保持不变。温度升高有利于肉桂醛转化率的增大,但使得C=C(C~(δ+)–C~(δ-))键与金粒子间较弱的相互作用进一步减弱,导致肉桂醇的选择性增加。该结构化多级核壳微球型催化剂仅通过沉降即可实现方便有效的分离回收。
     (3)通过一步共沉淀法首次在具有超顺磁特性、尺寸均一的Fe_3O_4纳米球(450nm)表面取向生长MgAl-LDH壳层,得到一种蜂巢状形貌的多级核壳结构磁性复合物载体Fe_3O_4@MgAl-LDH。通过沉积-沉淀法在该Fe_3O_4@MgAl-LDH复合物壳层MgAl-LDH纳米晶上负载纳米金颗粒,得到直径约为650nm的球形多级核壳结构磁性纳米金催化剂Fe_3O_4@MgAl-LDH@Au。其壳层MgAl-LDH的含量为64wt%,厚约20nm、宽约100nm的MgAl-LDH纳米晶片垂直于Fe_3O_4表面由内而外交错生长。活性组分纳米金粒子主要分布于交错的MgAl-LDH纳米晶的边位和交接位,其平均粒径为7nm。催化剂经还原处理后,以分子O_2为氧化剂,无需添加碱助剂条件下,苯乙酮的收率高于99%。该催化剂良好的催化性能归因于载体壳层MgAl-LDH上碱性位与活性组分零价纳米金的协同作用。同时该催化剂较强的比饱和磁化强度(49.2emu·g~(-1))使其在反应结束后可通过外加磁场方便回收,重复使用5次后活性没有明显降低,是一种高效绿色催化剂。
     (4)调变壳层LDH层板组成,首次得到系列含有过渡金属Ni、Cu的多级核壳结构磁性纳米金催化剂Fe_3O_4@MAl-LDH@Au (M=Ni、CuMg)。垂直于Fe_3O_4表面交错取向生长的NiAl-LDH纳米晶片厚约20nm、宽约60nm,其晶粒尺寸明显小于MgAl-LDH(100nm)和CuMgAl-LDH(100nm),因而其比表面积最大(98.1m~2·g~(-1))。Fe_3O_4@NiAl-LDH@Au催化剂具有较Fe_3O_4@MgAl-LDH@Au和Fe_3O_4@CuMgAl-LDH@Au体系更为致密的LDH壳层,导致其比饱和磁化强度(41.8emu·g~(-1))与Fe_3O_4@CuMgAl-LDH@Au(52.2emu·g~(-1))相比稍低。平均粒径为7nm的金粒子多分布于LDH纳米晶的边位和角位。Fe_3O_4@NiAl-LDH@Au催化剂壳层中Ni-OH与纳米金粒子的协同作用使其醇氧化性能明显高于Fe_3O_4@MgAl-LDH@Au和Fe_3O_4@CuMgAl-LDH@Au体系。该催化剂在无溶剂条件下表现出较高的1-苯乙醇氧化活性(TOF:2,760h~(-1)),并且适用于多种底物的一级醇和二级醇类化合物的催化选择性氧化。
In the last few years, supported gold particles have attracted growinginterest owing to their unusual and somewhat unexpected catalyticproperties in many important reactions, such as hydrogenation of α, β-unsaturated carbonyl compounds and selective oxidation of alcohols. Thenature of the support, the size and chemical state of Au particles arebelieved to be pivotal in determining the catalytic behavior of thesupported Au catalysts. Collaborative effect between gold and supportinduces the high catalytic activity. Hydrotalcite-like compounds, alsoknown as layered double hydroxides (LDH), have recently reattractedprofound interest as a unique support due to cationic tunability andintrinsic basicity of the brucite-like layer. In the present thesis, threespecial kind of LDH-based functionalized support materials have beendesigned and assembled for loading Au catalysts with controlled size,morphology and catalytic activities aiming at enhancing catalyticproperty and realizing green catalysis of nanogold catalysts in terms of facile recovery and efficiently recycling. The crystal structure,composition and morphology of the catalysts are systematically studiedusing XRD, SEM/TEM/HRTEM/STEM, ICP, BET, H_2-TPR and XPSmethods. The catalysts were evaluated in the liquid-phase hydrogenationof cinnamaldehyde and aerobic oxidation of alcohols. The gold-supportinteraction mechanism and structure-property relationship were discussed.The main results and innovations are shown as follows.
     (1) A series of ternary LDH support materials Mg_2Fe_xAl_(1-x)-LDH withhighly dispersed reducible Fe~(3+)cations have been prepared by acoprecipitation step. Then using a modified deposition-precipitation (DP)method, a series of gold nanocatalysts Au/Mg_2Fe_xAl_(1-x)-LDH were obtaiedwith diameter from40to100nm. The characterization results illustratethat the dimension of the support show less influence on the average Auparticle size, however, the average Au particle size decreased from9nmto5nm with increasing Fe contents, ascribing to the confinement effectof the highly dispersed iron cations in ternary LDH supports. Upon theH_2-TPD results, the peak temperatures related to the reduction of Fe~(3+)toFe~(2+)and Fe~0, respectively, downshift by280oC and100oC comparedwith the corresponding supports, implying a strong gold–supportelectronic effect. The highest hydrogenation activity of Au/Mg_2Fe_(0.8)Al_(0.2)-LDH can be linked with its smallest Au particles (5nm) and the strongestAu-support electronic effect. Meanwhile, high activity was observed on the catalyst pretreated at low temperature because of holding highAu~(3+)/Au0ratio over the LDH support with proper amount of iron highlydispersed. The interaction between gold and Mg_2Fe_xAl_(1-x)-LDH causes animportant population of positively charged Au~(3+)probably stablized byreduced iron species Fe~(2+).
     (2) A novel microsized hierarchical core-shell type gold nanocatalystγ-Al_2O_3@Mg(Fe)Al-LDH@Au was firstly fabricated via a facilesynthesis method. Firstly, a microsized core-shell composite support hasbeen prepared by in situ growing Mg(Fe)Al-LDH on the surface ofspherical γ-Al_2O_3(550μm) using urea as precipitant. Then the Aunanoparticles were effectively supported on thus-formed supportγ-Al_2O_3@Mg(Fe)Al-LDH by a DP method. A detailed analysis of thecatalyst structure is provided. Particular attention is paid to thegold-support interaction effect and percentage of Au~(3+)species in gold,which play vital roles in the hydrogenation activity and selectivity ofunsaturated alcohol. The increase of reaction time, temperature andpressure led to high catalytic activity but the unchanged selectivity of theunsaturated alcohol. The novel hierarchical core-shell gold nanocatalystscan be easily recovered by simple sedimentation.
     (3) A novel hierarchical core-shell structured magnetic goldnanocatalyst Fe_3O_4@MgAl-LDH@Au was firstly assembled via a facilesynthesis route. The direct coating of LDH plateletlike nanocrystals vertically oriented to the Fe_3O_4particles (450nm) surface leads to ahoneycomb like core-shell Fe_3O_4@MgAl-LDH nanosphere. By a DPmethod, a gold-supported magnetic catalyst Fe_3O_4@MgAl-LDH@Au hasbeen obtained. The MgAl-LDH coating shell (68wt%) is composed ofedge-curving lamella with a thickness of ca.20nm and a width of ca.100nm, growing from the magnetite core to the outer surface andperpendicular to the Fe_3O_4surface. Au nanoparticles are evenlydistributed on the edge and junction sites of the interlaced MgAl-LDHnanocrystals with a mean diameter of7.0nm. After pre-reduction, thecatalyst exhibited excellent activity for the oxidation of1-phenylethanol,due to both the intrinsic basicity of the support and synergetic effectbetween Au and support. The catalyst (49.2emu·g~(-1)) can be effectivelyrecovered by using an external magnetic field. Five runs have been testedfor the Au nanocatalysts after easy magnetic separation by using a magnet,and no deactivation of the catalyst has been observed.
     (4) Upon the synergetic effect of transition metal on gold catalystand the LDH composition tunability, a series of hierarchical core-shellstructured magnetic gold nanocatalyst Fe_3O_4@MAl-LDH@Au (M=Ni,CuMg) containing transition metal cations was firstly fabricated. Thelower saturation magnetization (Ms) of Fe_3O_4@NiAl-LDH@Au (41.8emu·g~(-1)) than the Fe_3O_4@CuMgAl-LDH@Au (52.2emu·g~(-1)) is mainlydue to the denser shell with a thickness of ca.60nm. The synergy between metallic Au nanoparticles and hydrotalcite supports does notonly involve the surface basic sites of the hydrotalcites but also includesNi-OH involved in alcohol dehydrogenation. Furthermore, we found thatthe Fe_3O_4@NiAl-LDH@Au via pre-reduction shows high activity for thesolvent-free oxidation of1-phenylethanol (TOF:2,760h~(-1)). The generalapplicability of Fe_3O_4@NiAl-LDH@Au for aerobic oxidation of alcoholswas further evaluated with extended substrate scope. The Fe_3O_4@NiAl-LDH@Au catalyst is not only effective for the oxidation of benzylicalcohols but also for less reactive cyclohexanol and linear aliphaticalcohols.
引文
[1] Bond G C, Sermon P A, Webb G, Buchanan D A, Wells P B. Hydrogenation over supportedgold catalysts[J]. J. Chem. Soc, Chem. Commun.,1973,444-445
    [2] Bond G C, Sermon P A. Gold catalysts for olefin hydrogenation[J]. Gold Bull,1973,6:102-105
    [3] Sermon P A, Bond G C, Wells P B. Hydrogenation of alkenes over supported gold[J]. J.Chem. Soc, Faraday Trans,1979,75:385-394
    [4] Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation ofcarbon-monoxide at a temperature far below0.DEG.C.[J]. Chem. Lett.,1987,2:405-408
    [5] Haruta M. Gold rush[J]. Nature,2005,437:1098-1099
    [6] Bond G C, Louis C, Thompson D T. Catalysis by gold[M]. Imperial College Press,2006
    [7] Haruta M, Yamada N, Kobayashi T. Gold catalysts prepared by coprecipitation forlow-temperature oxidation of hydrogen and of carbon monoxide[J]. J. Catal.,1989,115:301-309
    [8] Haruta M. Size-and support-dependency in the catalysis of gold[J]. Catal. Today,1997,36:153-166
    [9] Haruta M, Daté M. Advances in the catalysis of Au nanoparticles[J]. Appl. Catal. A,2001,222:427-437
    [10] Zanella R, Louis C, Giorgio S, Touroude R. Crotonaldehyde hydrogenation by goldsupported on TiO2: strueture sensitivity and mechanim[J]. J. Catal.,2004,223:328-339
    [11] Claus P. Heterogeneously catalysed hydrogenation using gold catalyst[J]. Appl. Catal. A,2005,291:222-229
    [12] Bus E, Miller J T, Bokhoven J A. Hydrogen chemisorptions on Al2O3-supported goldcatalysts[J]. J. Phys. Chem. B,2005,109:14581-14587
    [13] Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania withthe appearance of nonmetallic properties[J]. Science,1998,5383:1647-1650
    [14] Herzing A A, Kiely C J, Carley A F, Landon P, Hutchings G J. Identification of active goldnanoclusters on iron oxide supports for CO oxidation[J]. Science,2008,5894:1331-1335
    [15] Bond G C, Thompson D T. Gold-catalysed oxidation of carbon monoxide[J]. Gold Bull.,2000,33:41-51
    [16] Naknam P, Luengnaruemitchai A, Wongkasemjit S. Au/ZnO and Au/ZnO-Fe2O3preparedby deposition-precipitation and their activity in the preferential oxidation of CO[J]. EnergyFuels,2009,23:5084-5091
    [17] Schimpf S, Lucas M, Mohr C, Rodemerck U, Brückner A, Radnik J, Hofmeister H, Claus P.Supported gold nanoparticles: in-depth catalyst characterization and application inhydrogenation and oxidation reactions[J]. Catal. Today,2002,72:63-78
    [18] Radnik J, Mohr C, Claus P. On the origin of binding energy shifts of core levels ofsupported gold nanoparticles and dependence of pretreatment and material synthesis[J].Phys. Chem. Chem. Phys.,2003,5:172-177
    [19] Yan W, Petkov V, Mahurin S M, Overbury S H, Dai S, Powder XRD analysis and catalysischaracterization of ultra-small gold nanoparticles deposited on titania-modified SBA-15[J].Catal. Commun.,2005,6,404-408
    [20] Schubert M M, Hackenberg S, Veen A C V, Muhler M, Plzak V, Behm R J. CO oxidationover supported gold catalysts-“inert” and “active” support materials and their role for theoxygen supply during reaction[J]. J. Catal.,2001,197,113-122
    [21] Schwartz V, Mullins D R, Yan W, Chen B, Dai S, Overbury S H. XAS study of Ausupported on TiO2: Influence of oxidation state and particle size on catalytic activity[J]. J.Phys. Chem. B,2004,108:15782-15790
    [22] Yan W, Chen B, Mahurin S M, Dai S, Overbury S H. Brookite-supported highly stable goldcatalytic system for CO oxidation[J]. Chem. Commun.,2004,1918-1919
    [23] Fang W H, Chen J S, Zhang Q H, Deng W P, Wang Y. Hydrotalcite-supported gold catalystfor the oxidant-free dehydrogenation of benzyl alcohol: Studies on support and gold sizeeffects[J]. Chem. Eur. J.,2011,17:1247-1256
    [24] Sárkány A, Schay Z, Frey K, Széles é, Sajó I. Some features of acetylene hydrogenation onAu-iron oxide catalyst[J]. Appl. Catal. A,2010,380:133-141
    [25] Liu L Q, Qiao B T, Chen Z J, Zhang J, Deng Y Q. Novel chemoselective hydrogenation ofaromatic nitro compounds over ferric hydroxide supported nanocluster gold in the presenceof CO and H2O[J]. Chem. Commun.,2009,653-655
    [26] Huang J, Dai W L, Fan K N. Remarkable support crystal phase effect in Au/FeOxcatalyzedoxidation of1,4-butanediol to γ-butyrolactone[J]. J. Catal.,2009,266:228-235
    [27] Lenz J, Campo B C, Alvarez M, Volpe M A. Liquid phase hydrogenation of α,β-unsaturated aldehydes over gold supported on iron oxides[J]. J. Catal.,2009,267:50-55
    [28] Liu L Q, Qiao B T, Ma Y B, Zhang J, Deng Y Q, Ferric hydroxide supported gold subnanoclusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation,Dalton Trans.,2008,2542-2548.
    [29] Milone C, Ingoglia R, Schipilliti L. Selective hydrogenation of α, β-unsaturated ketone to α,β-unsaturated alcohol on gold supported iron oxide catalysts: role of the support[J]. J. Catal.,2005,236:80-90
    [30] Campo B, Petit C, Volpe M A. Hydrogenation of crotonaldehyde on different Au/CeO2catalysts[J]. J. Catal.,2008,254:71-78
    [31] Guzman J, Carrettin S, Fierro-Gonzalez J C, Hao Y L, Gates B C, Corma A. CO oxidationcatalyzed by supported gold: cooperation between gold and nanocrystalline rare-earthsupports forms reactive surface superoxide and peroxide species[J]. Angew. Chem. Int. Ed.2005,44:4778-4781
    [32] Guzman J, Carrettin S, Corma A. Spectroscopic evidence for the supply of reactive oxygenduring CO oxidation catalyzed by gold supported on nanocrystalline CeO2[J]. J. Am. Chem.Soc.,2005,127:3286-3287
    [33] Abad A, Concepcin P, Corma A, Garc H. A collaborative effect between gold and a supportinduces the selective oxidation of alcohols[J]. Angew. Chem. Int. Ed.,2005,44:4066-4069
    [34] Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Efficient aerobic oxidationof alcohols using a hydrotalcite-supported gold nanoparticle catalyst[J]. Adv. Synth. Catal.,2009,351:1890-1896
    [35] Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Supported goldnanoparticles as a reusable catalyst for synthesis of lactones from diols using molecularoxygen as an oxidant under mild conditions[J]. Green Chem.,2009,11:793-797
    [36] Mitsudome T, Noujima A, Mikami Y, Mizugaki T, Jitsukawa K, Kaneda K. Supported goldand silver nanoparticles for catalytic deoxygenation of epoxides into alkenes[J]. Angew.Chem. Int. Ed.,2010,49:5545-5548
    [37] Hutehings G J. New directions in gold catalysis[J]. Gold Bull,2004,37:3-11
    [38] Blick K, Mitrelias T D, Hargreaves J S, Hutehings G J, Joyner R W, Kiely C J, Wagner F E.Methane oxidation using Au/MgO catalysts[J]. Catal. Lett.,1998,50:211-218
    [39] Dobrosz I, Jiratova K, Pitchon V, Rynkowski J M. Effect of the preparation of supportedgold particles on the catalytic activity in CO oxidation reaction[J]. J. Mol. Catal. A,2005,1-2:187-197
    [40] Oh H S, Yang J H, Costello C K, Wang Y M, Bare S R, Kung H H, Kung M C. Selectivecatalytic oxidation of CO: Effect of chloride on supported Au catalysts[J]. J. Catal.,2002,2:375-386
    [41] Hutchings G J, Siddiqui M, Burrows A. High-activity Au/CuO–ZnO catalysts for theoxidation of carbon monoxide at ambient temperature[J]. J. Chem. Soc., Faraday Trans,1997,93:187-188
    [42] Roberts M W. Industrial developments(1950-1999)[J]. Catal. Lett.,2000,67:67-73
    [43] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. Low-temperatureoxidation of CO over gold supported on TiO2, alpha-Fe2O3, and Co3O4[J]. J. Catal.,1993,1:175-192
    [44] Kung H H, Kung M C, Costello C K. Supported Au catalysts for low temperature COoxidation[J]. J. Catal.,2003,216:425-432
    [45] Moreau F, Bond G C, Taylor A O. Gold on titania catalysts for the oxidation of carbonmonoxide: Control of pH during preparation with various gold contents[J]. J. Catal.,2005,1:105-114
    [46] Moreau F, Bond G C. Gold on titania catalysts: influence of some physicochemicalparameters on the activity and stability for the oxidation of cathon monoxide[J]. Appl. Catal.A,2006,302:110-117
    [47] Zanella R, Giorgio S, Shin C H, Henly C R, Louis C. Characterization and reaetivity in COoxidation of gold nanoparticles supported on TiO2prepared by deposition-precipitationwith NaOH and urea[J]. J. Catal.,2004,2:357-367
    [48] Zanella R, Giorgio S, Henry C R, Louis C. Alternative methods for the preparation of goldnanoparticles supported on TiO2[J]. J. Phys. Chem. B,2002,31:7634-7642
    [49] Zanella R, Delannoy L, Louis C. Mechanism of deposition of gold precursors onto TiO2during the preparation by cation adsorption and deposition-precipitation with NaOH andurea[J]. Appl. Catal. A,2005,1-2:62-72
    [50] Ivanova S, Petit C, Pitchon V. A new preparation method for the formation of goldnanoparticles on an oxide support[J]. Appl. Catal. A,2004,267:191-201
    [51] Lee S J, Gavriilidis A. Supported Au catalysts for low-temperature CO oxidation preparedby impregnation[J]. J. Catal.,2002,206:305-313
    [52] Xu Q, Kharas K C C, Datye A K. The preparation of highly dispersed Au/Al2O3by aqueousimpregnation[J]. Catal. Lett.,2003,85:229-235
    [53] Suo Z H, Weng Y G, Jin M S, Lu A H, Xu J G, An L D. Influence of gold solution pH valueand steeping treatment on CO oxidation reactivity over Au/Al2O3catalyst[J]. J. Chin. Catal.,2005,26:1022-1026
    [54] Lynsey McEwana, Melissa Juliusa, Stephen Robertsa, Jack C.Q. Fletchera, A review of theuse of gold catalysts in selective hydrogenation reactions, Gold Bulletin,2010,43:298-306
    [55] Stephen K. Hashmi, Graham J. Hutchings, Gold Catalysis, Angew. Chem. Int. Ed.,2006,45:7896-7936
    [56] Corma A, Serna P. Chemoselective hydrogenation of nitro compounds with supported goldcatalysts[J]. Science,2006,313:332-334
    [57] Blaser H U. A golden boost to an old reaction[J].2006,313:312-313
    [58] Chen B, Dingerdissen U, Krauter J G E, Rotgerink H G J L, Mobus K, Ostgard D J, PansterP, Riermeier T H, Seebald S, Tacke T, Trauthwein H, New developments in hydrogenationcatalysis particularly in synthesis of fine and intermediate chemieals[J]. Appl. Catal. B,2005,180:17-46
    [59] Milone C, Crisafulli C, Ingoglia R. A comparative study on the selective hydrogenation ofα,β-unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts[J].Catal. Today,2007,122:341-351
    [60] Visco A M, Neri F, Neri G, Donato A, Milone C, Galvagno S. X-ray photoelectronspectroscopy of Au/Fe2O3catalysts[J]. Phys. Chem. Chem. Phys.,1999,1:2869-2873
    [61] Milone C, Tropeano M L, Gulino G, Neri G, Ingoglia R, Galvagno S. Selective liquid phasehydrogenation of citral on Au/Fe2O3catalysts[J]. Chem. Commun.,2002,868-869
    [62] Milone C, Ingoglia R, Tropeano M L, Neri G, Galvagno S. First example of selectivehydrogenation of unconstrained α, β-unsaturated ketone to α,β-unsaturated alcohol bymolecular hydrogen[J]. Chem. Commun.,2003,868-869
    [63] Milone C, Ingoglia R, Pistone A, Neri G, Frusteri F, Galvagno S. Selective hydrogenation ofα, β-unsaturated ketones to α, β-unsaturated alcohols on gold-supported catalysts[J]. J.Catal.,2004,222:348-356
    [64] Mohr C, Hofmeister H, Claus P. The influence of real structure of gold catalysts in thepartial hydrogenation of acrolein[J]. J. Catal.,2003,213:86-94
    [65] Mohr C, Hofmeister H, Claus P. Identification of active sites in gold-catalyzedhydrogenation of acrolein[J]. J. Am. Chem. Soc.,2003,125:1905-1911
    [66] Claus P, Brulckner A, Mohr C, Hofmeister H. Supported gold nanoparticles from quantumdot to mesoscopic size scale: effect of electronic and structural properties on catalytichydrogenation of conjugated functional groups[J]. J. Am. Chem. Soc.,2000,122:11430-11439
    [67] Sheldon R A, Kochi J K. Metal-catalyzed oxidations of organic compounds: mechanisticprinciples and synthetic methodology including biochemical processes[M]. New York,1981
    [68] Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass intochemicals[J]. Chem. Rev.,2007,107:2411-2502
    [69] Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A,Watanabe M, Kiely C J, Knight D W, Hutchings G J. Solvent-rree oxidation of primaryalcohols to aldehydes using Au-Pd/TiO2catalysts[J]. Science,2006,311:362-365
    [70] Su F Z, Liu Y M, Wang L C, Cao Y, He H Y, Fan K N. Ga-Al mixed-oxide-supported goldnanoparticles with enhanced activity for aerobic alcohol oxidation[J]. Angew. Chem. Int.Ed.,2008,47:334-337
    [71] Zheng D F, Stueky G D. Promoting gold nanocatalysts in solvent-free selective aerobicoxidation of aleohols[J]. Chem. Commun.,2007,37:3862-3864
    [72] Fang W H, Zhang Q H, Chen J, Deng W P, Wang Y. Gold nanoparticles on hydrotalcites asefficient catalysts for oxidant-free dehydrogenation of alcoholsw[J]. Chem. Commun.,2010,46:1547-1549
    [73] Evans D G, Slade R C T. Structure aspects of layered double hydroxide[J]. Struct. Bond.,2006,119:1-87
    [74]段雪,张法智.插层组装与功能材料[M].化学工业出版社,2007
    [75] Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties andapplication[J]. Catal. Today,1991,11:173-301
    [76] Cavani F, Trifirò F, Vaccari A. Layered nanomaterials for green materials[J]. J. Mater.Chem.,2009,19:2553-2563
    [77] Li M, Wu Z S. A review of intercalation composite phase change material: Preparation,structure and properties[J]. Renew. Sust. Energ. Rev.,2012,16:2094-2101
    [78] Khan A I, Ragavan A, Fong B, Markland C, O’Brien M, Dunbar T G, Williams G R,O’Hare D. Recent developments in the use of layered double hydroxides as host materialsfor the storage and triggered release of functional anions[J]. Ind. Eng. Chem. Res.,2009,48:10196-10205
    [79] Xu Z P, Zhang J, Adebajo M O, Zhang H, Zhou C H. Catalytic applications of layereddouble hydroxides and derivatives[J]. Appl. Clay. Sci.,2011,53:139-150
    [80] Leroux F, Taviot-Gueho C. Fine tuning between organic and inorganic host structure: newtrend in layered double hydroxide hybrid assemblies[J]. J. Mater. Chem.,2005,15:3628-3642
    [81] Khan A I, O’Hare D. Intercalation chemistry of layered double hydroxides: recentdevelopments and applications[J]. J. Mater. Chem.,2002,12:3191-3198
    [82] Choy J H, Choi S J, Oh J M, Park T. Clay minerals and layered double hydroxides for novelbiological applications[J]. Appl. Clay. Sci.,2007,36:122-132
    [83] Cop B, Tichit D, Ribet S. Co/Ni/Mg/Al layered double hydroxides as precursors ofcatalysts for the hydrogenation of nitriles: Hydrogenation of acetonitrile[J]. J. Catal.,2000,189:117-128
    [84] Yuan Z L, Wang L N, Wang J H, Xia S X, Chen P, Hou Z Y, Zheng X M. Hydrogenolysis ofglycerol over homogenously dispersed copper on solid base catalysts[J]. Appl. Catal. B,2011,101:431-440
    [85] Wegrzyn A, Rafalska-lasocha A, Majda D. The influence of mixed anionic composition ofMg-Al hydrotalcites on the thermal decomposition mechanism based on in situ study[J]. J.Therm. Anal. Calorim.,2010,99:443-457
    [86] Chitrakar R, Makita Y, Sonoda A, Hirotsu T. Fe-Al layered double hydroxides in bromatereduction: Synthesis and reactivity[J]. J. Coll. Int. Sci.,2011,354:798-803
    [87] Zhang J, Li Y, Zhou J Z, Chen D, Qian G G. Chromium (VI) and zinc (II) waste waterco-treatment by forming layered double hydroxides: Mechanism discussion via twodifferent processes and application in real plating water[J]. J. Hazard. Mater.,2012,205-206:111-117
    [88] Chitrakar R, Sonoda A, Makita Y, Hirotsu T. Calcined Mg-Al layered double hydroxides foruptake of trace levels of bromate from aqueous solution[J]. Ind. Eng. Chem. Res.,2011,50:9280-9285
    [89] Xu Z P, Lu G Q. Hydrothermal synthesis of Layered Double Hydroxides (LDHs) frommixed MgO and Al2O3: LDH formation mechanism[J]. Chem. Mater.,2005,17:1055-1062
    [90] Sasai R, Wataru N, Matsumoto Y. Nitrate-ion-selective exchange ability of layered doublehydroxide consisting of MgIIand FeIII[J]. J. Hazard. Mater.,2012,215-216:311-314
    [91] Kameda T, Honda M, Yoshioka T. Removal of antimonate ions and simultaneous formationof a brandholzite-like compound from magnesium-aluminum oxide[J]. Sep. Purif. Technol.,2011,80:235-239
    [92] Fortner J D, Solenthaler C, Hughes J B, Puzrin A M, M. Pl tze. Interactions of clayminerals and a layered double hydroxide with water stable, nano scale fullerene aggregates(nC60)[J]. Appl. Clay Sci.,2012,55:36-43
    [93] Díez V K, Apesteguía C R, Di Cosimo J I. Effect of the chemical composition on thecatalytic performance of MgyAlOxcatalysts for alcohol elimination reactions[J]. J. Catal.,2003,215:220-233
    [94] Costa F R, Leuteritz A, Wagenknecht U, Landwehr M A, Jehnichen D, Haeussler L,Heinrich G. Alkyl sulfonate modified LDH: Effect of alkyl chain length on intercalationbehavior, particle morphology and thermalstability[J]. Appl. Clay Sci.,2009,44:7-14
    [95] Valente J S, Prince J, Maubert A M, Lartundo-Rojas L, Angel P, Ferrat G, Hernandez J G,Lopez-Salinas E. Physicochemical study of nanocapsular layered double hydroxidesevolution[J]. J. Phys. Chem. C.,2009,113:5547-5555
    [96] Zhao M Q, Zhang Q, Zhang W, Huang J Q, Zhang Y H, Su D S, Wei F. Embedded highdensity metal nanoparticles with extraordinary thermal stability derived from guest-hostmediated layered double hydroxides[J]. J. Am. Chem. Soc.,2010,132:14739-14741
    [97] Saber O, Hatano B, Tagaya H. Controlling of the morphology of Co-Ti-LDH[J]. Mater. Sci.Eng. C.,2005,25:462-471
    [98] Chitrakar R, Satoko T, Hosokawa J, Makita Y, Sonoda A, Ooi K, Hirotsu T. Uptakeproperties of phosphate on a novel Zr-modified MgFe-LDH(CO3)[J]. J. Coll. Int. Sci.,2010,349:314-320
    [99] Kamed T, Hoshi K, Yoshioka T. Uptake of Sc3+and La3+from aqueous solution usingethylenediaminetetraacetate-intercalated Cu-Al layered double hydroxide reconstructedfrom Cu-Al oxide[J]. Solid State Sci.,2011,13:366-371
    [100] Aimoz L, Taviot-Gue C, Churakov C S V, Chukalina M, Dahn R, Curti E, Bordet P, VespaM. Anion and cation order in Iodide-Bearing Mg/Zn-Al layered double hydroxides[J]. J.Phys. Chem. C,2012,116:5460-5475
    [101] Zhou Y S, Sun X M, Zhong K, Evans D G, Lin Y J, Duan X. Control of surface defects andagglomeration mechanism of layered double hydroxide nanoparticles[J]. Ind. Eng. Chem.Res.,2012,51:4215-4221
    [102] Zhao X F, Zhang Y C, Xu S L, Lei X D, Zhang F Z. Oriented CoFe2O4/CoO nanocompositefilms from layered double hydroxide precursor films by calcination: Ferromagneticnanoparticles embedded in an antiferromagnetic matrix for beating the superparamagneticlimit[J]. J. Phys. Chem. C,2012,116:5288-5294
    [103] Evans D G, Duan X. Preparation of layered double hydroxides and their applications asadditives in polymers, as precursors to magnetic materials and in biology and medicine[J].Chem. Comm.,2006:485-496
    [104] Zhao Y, Li F, Zhang R. Preparation of layered double hydroxide nanomaterials with auniform crystallite size using a new method involving separate nucleation and agingsteps[J]. Chem. Mater.,2002,14:4286-4291
    [105] Shao M F, Han J B, Wei M, Evans D G, Duan X. The synthesis of hierarchical Zn-Tilayered double hydroxide for efficient visible-light photocatalysis[J]. Chem. Eng. J.,2011,168:519-524
    [106] Inayat A, Klumpp M, Schwieger W. The urea method for the direct synthesis of ZnAllayered double hydroxides with nitrate as the interlayer anion[J]. Appl. Clay Sci.,2011,51:452-459
    [107] Kim J Y, Komarneni S, Parette R, Cannon F, Katsuki H. Perchlorate uptake by syntheticlayered double hydroxides and organo-clay minerals[J]. Appl. Clay Sci.,2011,51:158-164
    [108] Adachi-Pagano M, Forano C, Besse J P. Synthesis of Al-rich hydrotalcite-like compoundsby using the urea hydrolysis reaction-control of size and morphology[J]. J. Mater. Chem.,2003,13:1988-1993
    [109] Ogawa M, Kaiho H. Homogeneous Precipitation of Uniform Hydrotalcite Particles[J].Langmuir,2002,18:4240-4242
    [110] Li B, He J. Multiple effects of dodecanesulfonate in the crystal growth control andmorphosynthesis of Layered Double Hydroxides[J]. J. Phys. Chem. C,2008,112:10909-10917
    [111] Guo X X, Zhang F Z, Evans D G, Duan X. Layered double hydroxide films: synthesis,properties and applications[J]. Chem. Commun.,2010,46:5197-5210
    [112] Ding P, Li Z Z, Wang Q, Zhang X J, Tang S F, Song N, Shi L Y. In situ growth of layereddouble hydroxide films under dynamic processes: influence of metal cations[J]. Mater. Lett.,2012,77:1-3
    [113] Feng J T, Lin Y J, Evans D G, Duan X, Li D Q. Enhanced metal dispersion andhydrodechlorination properties of a Ni/Al2O3catalyst derived from layered doublehydroxides[J]. J. Catal.,2009,266:351-358
    [114] Feng J T, Ma X Y, Evans D G, Duan X, Li D Q. Enhancement of metal dispersion andselective acetylene hydrogenation catalytic properties of a supported Pd Ccatalyst[J]. Ind.Eng. Chem. Res.,2011,50:1947-1954
    [115] Ma X L, Zheng J H, Pang H X. Intercalation of Mg-Al layered double hydroxides byL-proline: synthesis and characterization[J]. Res. Chem. Intermed,2012,38:629-638
    [116] Stanimirova T, Kirov G. Cation composition during recrystallization of layered doublehydroxides from mixed (Mg, Al) oxides[J]. Appl. Clay. Sci.,2003,22:295-301
    [117] Zhao M Q, Zhang Q, Zhang W, Huang J Q, Zhang Y H, Su D S, Wei F. Embedded highdensity metal nanoparticles with extraordinary thermal stability derived from guest-hostmediated layered double hydroxides[J]. J. Am. Chem. Soc.,2010,132:14739-14741
    [118] Xu Z P, Zeng Q H, Lu G. Q, Yu A B. Inorganic nanoparticles as carriers for efficient cellulardelivery[J]. Chem. Eng. Sci.,2005,61:1027-1040
    [119] Choy J H, Choi S J, Oh J M, Park T. Clay minerals and layered double hydroxides for novelbiological applications[J]. Appl. Clay Sci.,2007,36:122-132
    [120] Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties andapplication[J]. Catal. Today,1991,11:173-301
    [121] Choy J H, Kwal S Y, Jeong Y J. Inorganic layered double hydroxides as nonviral vector[J].Angew. Chem. Int. Ed.,2000,39:4041-4045
    [122] Khan A I, O’Hare D. Intercalation chemistry of layered double hydroxides: recentdevelopments and applications[J]. J. Mater. Chem.,2002,12:3191-3198
    [123] Khan A I, Lei L, Norquist A J, O’Hare D. Intercalation and controlled release ofpharmaceutically active compounds from a layered double hydroxide[J]. Chem. Comm.,2001,2342-2343
    [124] Ambrogi V, Fardella G, Grandolini G. Intercalation compounds of hydrotalcite-like anionicclays with anti-inflammatory agents, I: intercalation and in vitro release of ibuprofen[J]. Int.J. Pharm.,2001,220:23-32
    [125] Ambrogi V, Fardella G, Grandolini G. Intercalation compounds of hydrotalcite-like anionicclays with anti-inflammatory agents, II: uptake of diclofenac for a controlled releaseformulation[J]. AAPS PharmSciTech,2002,3:77-82
    [126] Yang J H, Han Y S, Park M, Park T, Hwang S J, Choy J H. New inorganic-based drugdelivery system of indole-3-acetic-acid-layered metal hydroxide nanohybrids withcontrolled release rate[J]. Chem. Mater.,2007,19:2679-2685
    [127] Tyner K M, Schiffman S R, Giannelis E G. Nanobiohybrids as delivery vehicles forcamptothecin[J]. J. Control. Rel.,2004,95:501-514
    [128] Wang Z L, Wang E, Gao L, Xu L. Synthesis and properties of Mg2Al layered doublehydroxides containing5-fluorouracil[J]. J. Solid State Chem.,2005,178:736-741
    [129] Zhang H, Guo S H, Zou K, Duan X. High-temperature chemical and microstructuraltransformations of an organic-inorganic nanohybrid captopril intercalated Mg-Al layereddouble hydroxide[J]. Mater. Res. Bull.,2009,44:1062-1069
    [130] Zhang H, Zou K, Guo S H, Duan X. Nanostructural drug-inorganic clay composites:Structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layereddouble hydroxides[J]. J. Solid State Chem.,2006,179:1792-1801
    [131] Zou K, Zhang H, Duan X. Studies on the formation of5-aminosalicylate intercalated Zn-Allayered double hydroxides as a function of Zn/Al molar ratios and synthesis routes[J].Chem. Eng. Sci.,2007,62:2022-2031
    [132] Pan D K, Zhang H, Zhang T, Duan X. A novel organic-inorganic microhybrids containinganticancer agent doxifluridine and layered double hydroxides: Structure and controlledrelease properties[J]. Chem. Eng. Sci.,2010,65:3762-3771
    [133] Zhang H, Zou K, Sun H, Duan X. A magnetic organic-inorganic composite: Synthesis andcharacterization of magnetic5-aminosalicylic acid intercalated layered doublehydroxides[J]. J. Solid State Chem.,2005,178:3485-3493
    [134] Zhang H, Pan D K, Zou K, He J, Duan X. A novel core-shell structured magneticorganic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coatedon a magnesium ferrite core for magnetically controlled drug release[J]. J. Mater. Chem.,2009,19:3069-3077
    [135] Zhang H, Pan D K, Duan X. Synthesis, characterization, and magnetically controlledrelease Behavior of novel core-shell structural magnetic ibuprofen-intercalated LDHnanohybrids[J]. J. Phys. Chem. C,2009,113:12140-12148
    [136] Pan D K, Zhang H, Fan T, Chen J G, Duan X. Nearly monodispersed core-shell structuralFe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery andrelease[J]. Chem. Commun.,2011,47:908-910
    [137] He S, Zhao Y F, Wei M, Duan X. Preparation of oriented layered double hydroxide filmusing electrophoretic deposition and its application in water treatment[J]. Ind. Eng. Chem.Res.,2011,50:2800-2806
    [138] Ayala-Luis K B, Koch C B, Hansen H C B. Intercalation of linear C9-C16carboxylates inlayered FeII-FeIII-hydroxides (green rust) via ion exchange[J]. Appl. Clay Sci.,2010,48:334-341
    [139] Zhao Y F, He S, Wei M, Evans D G,Duan X. Hierarchical films of layered doublehydroxides by using a sol-gel process and their high adaptability in water treatment[J].Chem. Commun.,2010,46:3031-3033
    [140] Li F, Liu J J, Evans D G, Duan X. Stoichiometric synthesis of pure MFe2O4(M=Mg, Co,and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like)precursors[J]. Chem. Mater.,2004,16:1597-1602
    [141] Liu J J, Li F, Evans D G, Duan X. Stoichiometric synthesis of a pure ferrite from a tailoredlayered double hydroxide (hydrotalcite-like) precursor[J]. Chem. Commun.,2003,4:542-543
    [142] Yan D P, Lu J, Ma J, Wei M, Li S D, Evans D G, Duan X. Near-infrared absorption andpolarized luminescent ultrathin films based on sulfonated cyanines and layered doublehydroxide[J]. J. Phys. Chem. C.,2011,115:7939-7946
    [143] Yan D P, Lu J, Ma J, Wei M, Li S D, Evans D G, Duan X. Reversibly thermochromic,fluorescent ultrathin films with a supramolecular architecture[J]. Angew. Chem. Int. Ed.,2011,50:720-723
    [144] Wang X R, Lu J, Shi W Y, Li F, Wei M, Evans D G, Duan X. A thermochromic thin filmbased on host-guest interactions in a layered doubl hydroxide[J]. Langmuir,2010,26:1247-1253
    [145] Shi W Y, Sun Z Y, Wei M, Evans D G, Duan X. Tunable photoluminescence properties offluorescein in a layered double hydroxide matrix by changing the interlayermicroenvironment[J]. J. Phys. Chem. C,2010,114:21070-21076
    [146] Shi W Y, He S, Wei M, Evans D G, Duan X. Optical pH sensor with rapid response basedon a fluorescein-intercalated layered double hydroxide[J]. Adv. Funct. Mater.,2010,20:3856-3863
    [147] Roelofs J C A A, Lensveld D J, Van Dillen A J, De Jong K P. On the structure of activatedhydrotalcites as solid base catalysts for liquid-phase aldol condensation[J]. J. Catal.,2001,203:184-191
    [148] Choudary B. M, Lakshmi Kantam M, Kavita B, Venkat Reddya Ch, Figueras F. CatalyticC-C bond formation promoted by Mg-Al-O-t-Bu hydrotalcite[J]. Tetrahedron,2000,56:9357-9364
    [149] Zhang H, Qi R, Evans D G, Duan X. Synthesis and characterization of a novel nano-scalemagnetic solid base catalyst involvinga layered double hydroxide supported on a ferritecore[J]. J. Solid State Chem.,2004,177:772-780
    [150] Xu Y H, Zhang H, Duan X, Ding Y P. Preparation and investigation on a novelnanostructured magnetic base catalyst MgAl-OH-LDH/CoFe2O4[J]. Mater. Chem. Phys.,2009,114:795-801
    [151] Zhao Y F, Zhang S T, Li B, Yan H, He S, Tian L, Shi W Y, Ma J, Wei M, Evans D G,Duan X. A family of visible-light responsive photocatalysts obtained by dispersing CrO6octahedra into a hydrotalcite matrix[J]. Chem. Eur. J.,2011,17:13175-13181
    [152] Wang J, Lei Z Y, Qin H, Zhang L H, Li F. Structure and catalytic property of LiAl metaloxides from layered double hydroxide precursors prepared via a facile solution route[J].Ind.Eng. Chem. Res.,2011,50:7120-7128
    [153] Choudary B M, Kantam M L, Rahman A, Reddy C V, Rao K K. The first example ofactivation of molecular oxygen by nickel in Ni-Al hydrotalcite: a novel protocol for theselective oxidation of alcohols[J]. Angew. Chem.,2001,113:785-788
    [154] Murcia-Mascaros S, Navarro R M, Gómez-Sainero L, Costanitino U, Nocchelt M, Fierro JL G. Oxidative methanol reforming reactions on CuZnAl catalysts derived fromhydrotalcite-like precursor[J]. J. Catal.,2001,198:338-347
    [155] Zhou C H, Beltramini J N, Lin C X, Xu Z P, Lu G Q, Tanksale A. Selective oxidation ofbiorenewable glycerol with molecular oxygen over Cu-containing layered doublehydroxide-based catalysts[J]. Catal. Sci. Technol.,2011,1:111-1
    [156] Barrault J, Derouault A, Courtois G, Maissant J M, Dupin J C, Guimon C, Martinez H,Dumitriu E. On the catalytic properties of mixed oxides obtained fromthe Cu-Mg-Al LDHprecursors in the process of hydrogenation of the cinnamaldehyde[J]. Appl. Catal. A,2004,262:43-51
    [157] Marchi A J, Gordo D A, Trasarti A F, Apestegú a C R. Liquid phase hydrogenation ofcinnamaldehyde on Cu-based catalysts[J]. Appl. Catal. A,2003,249:53-67
    [158] Chang C T, Liaw B J, Huang C T, Chen Y Z. Preparation of Au/MgxAlO hydrotalcitecatalysts for CO oxidation[J]. Appl. Catal. A,2007,332:216-224
    [159] Chang C T, Liaw B J, Chen Y P, Chen Y Z. Characteristics of Au/MgxAlO hydrotalcitecatalysts in CO selective oxidation[J]. J. Mol. Catal. A,2009,300:80-88
    [160] You K J, Chang C T, Liaw B J, Huang C T, Chen Y Z. Selective hydrogenation ofα,β-unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts[J]. Appl. Catal. A.,2009,361:65-71
    [161] Chen H Y, Chang C T, Chiang S J, Liaw B J, Chen Y Z. Selective hydrogenation ofcrotonaldehyde in liquid-phase over Au/Mg2AlO hydrotalcite catalysts[J]. Appl. Catal. A,2010,381:209-215
    [162] Barrabes N, Cornado D, Foettinger K, Dafinov A, Llorca J, Medina F, Rupprechter G.Hydrodechlorination of trichloroethylene on noble metal promoted Cu-hydrotalcite-derivedcatalysts[J]. J. Catal.,2009,263:239-246
    [163] Sun P, Siddiqi G, Chi M F, Bell A T. Synthesis and characterization of a new catalystPt/Mg(Ga)(Al)O for alkane dehydrogenation[J]. J. Catal.,2010,274:192-199
    [164] Siddiqi G, Sun P, Galvita V, Bell A T. Catalyst performance of novel Pt/Mg(Ga)(Al)Ocatalysts for alkane dehydrogenation[J]. J. Catal.,2010,274:200-206
    [165] Sun P, Siddiqi G, Vining W C, Chi M F, Bell A T. Novel Pt/Mg(In)(Al)O catalysts forethane and propane dehydrogenation[J]. J. Catal.,2011,282:165-174
    [1] Harauta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitationfor low-temperature oxidation of hydrogen and of carbon monoxide[J]. J. Catal.,1989,115:301-309
    [2] Hayashi T, Tanaka K, Haruta M. Selective vapor-Phase epoxidation of propylene overAu/TiO2catalysts in the presence of oxygen and hydrogen[J]. J. Catal.,1998,178:566-575
    [3] Abad A, Concepción P, Corma A, García H. A collaborative effect between gold and asupport induces the selective oxidation of alcohol[J]. Angew. Chem. Int. Ed.,2005,44:4066-4069
    [4] Corma A, Serna P. Chemoselective hydrogenation of nitro compounds with supported goldcatalysts[J]. Science,2006,313:332-334
    [5] Claus P, Heterogeneously catalysed hydrogenation using gold catalysts[J]. Appl. Catal. A,2005,291:222-229
    [6] Hashmi A S K, Hutchings G J. Gold catalysis[J]. Angew. Chem. Int. Ed.,2006,45:7896-7936
    [7] McEwana L, Juliusa M, Robertsa S, Fletchera J C Q. A review of the use of gold catalystsin selective hydrogenation reactions[J]. Gold Bulletin,2010,43:298-306
    [8] Harauta M. Gold rush[J]. Nature,2005,437:1098-1099
    [9] Hutchings G J. Catalysis by gold[J]. Catal. Today,2005,100:55-61
    [10] Milone C, Ingoglia R, Pistone A, Neri G, Frusteri F, Galvagno S. Selective hydrogenation ofα, β-unsaturated ketones to α, β-unsaturated alcohols on gold-supported catalysts[J]. J.Catal.,2004,222:348-356
    [11] Milone C, Ingoglia R, Schipilliti L, Crisafulli C, Neri G, Galvagno S. Selectivehydrogenation of α,β-unsaturated ketone to α,β-unsaturated alcohol on gold-supported ironoxide catalysts: role of the support[J]. J. Catal.,2005,236:80-90
    [12] Milone C, Crisafulli C, Ingoglia R, Schipilliti L, Galvagno S. A comparative study on theselective hydrogenation of α, β-unsaturated aldehyde and ketone to unsaturated alcohols onAu supported catalysts[J]. Catal. Today,2007,122:341-351
    [13] Claus P, Brulckner A, Mohr C, Hofmeister H. Supported gold nanoparticles from quantumdot to mesoscopic size scale: effect of electronic and structural properties on catalytichydrogenation of conjugated functional groups[J]. J. Am. Chem. Soc.,2000,122:11430-11439
    [14] Schimpf S, Lucas M, Mohr C, Rodemerck U, Brückner A, Radnik J, Hofmeister H, Claus P.Supported gold nanoparticles: in-depth catalyst characterization and application inhydrogenation and oxidation reactions[J]. Catal. Today,2002,72:63-78
    [15] Mohr C, Hofmeister H, Claus P. The influence of real structure of gold catalysts in thepartial hydrogenation of acrolei[J]. J. Catal.,2003,213:86-94
    [16] Mohr C, Hofmeister H, Radnik J, Claus P. Identification of active sites in gold-catalyzedhydrogenation of acrolein[J]. J. Am. Chem. Soc.,2003,125:1905-1911
    [17] Liu L Q, Qiao B T, Ma Y B, Zhang J, Deng Y Q. Ferric hydroxide supported gold subnanoclusters or quantum dots: enhanced catalytic performance in chemoselectivehydrogenation[J]. Dalton Trans,2008,2542-2548
    [18] Cavani F, Trifirò A, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties andapplications[J]. Catal. Today,1991,11:173-301
    [19] Evans D G, Slade R C.T. Structural aspects of layered double hydroxides[J]. Struct Bond,2006,119:1-87
    [20] Zhao M Q, Zhang Q, Zhang W, Huang J Q, Zhang Y H, Su D S, Wei F. Embedded highdensity metal nanoparticles with extraordinary thermal stability derived from guest-Hostmediated layered double hydroxides[J]. J. Am. Chem. Soc.,2010,132:14739-14741
    [21] Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Efficient aerobic oxidationof alcohols using a hydrotalcite-supported gold nanoparticle catalyst[J]. Adv. Synth. Catal.,2009,351:1890-1896
    [22] Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Supported goldnanoparticles as a reusable catalyst for synthesis of lactones from diols using molecularoxygen as an oxidant under mild conditions[J]. Green Chem.,2009,11:793-797
    [23] Fang W H, Zhang Q H, Chen J, Deng W P, Wang Y. Gold nanoparticles on hydrotalcites asefficient catalysts for oxidant-free dehydrogenation of alcoholsw[J]. Chem. Commun.,2010,46:1547-1549
    [24] Fang W H, Chen J S, Zhang Q H, Deng W P, Wang Y. Hydrotalcite-supported gold catalystfor the oxidant-Free dehydrogenation of benzyl alcohol: studies on support and gold sizeeffects[J]. Chem. Eur. J.,2011,17:1247-1256
    [25] Mitsudome T, Noujima A, Mikami Y, Mizugaki T, Jitsukawa K, Kaneda K. Supported goldand silver nanoparticles for catalytic deoxygenation of epoxides into alkenes[J]. Angew.Chem. Int. Ed.,2010,49:5545-5548
    [26] Mitsudome T, Noujima A, Mikami Y, Mizugaki T, Koichiro J, Jitsukawa K, Kaneda K.Room-temperature deoxygenation of epoxides with CO catalyzed by hydrotalcite-supportedgold nanoparticles in water[J]. Chem. Eur. J.,2010,16:11818-11821
    [27] Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Selective deoxygenationof epoxides to alkenes with molecular hydrogen using a hydrotalcite-supported goldcatalyst: aconcerted effect between gold nanoparticles and basic sites on a support[J].Angew. Chem. Int. Ed.,2011,50:2986-2989
    [28] Parida K, Satpathy M, Mohapatra L. Incorporation of Fe3+into Mg/Al layered doublehydroxide framework: effects on textural properties and photocatalytic activity for H2generation[J]. J. Mater. Chem.,2012,22:7350-7357
    [29] You K J, Chang C T, Liaw B J, Huang C T, Chen Y Z. Selective hydrogenation ofα,β-unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts[J]. Appl. Catal. A,2009,361:65-71
    [30] Chen H Y, Chang C T, Chiang S J, Liaw B J, Chen Y Z. Selective hydrogenation ofcrotonaldehyde in liquid-phase over Au/Mg2AlO hydrotalcite catalysts[J]. Appl. Catal. A,2010,381:209-215
    [31] Gong J L. Structure and surface chemistry of gold-based model catalysts[J].2011,DOI:10.1021/cr200041p
    [32] Haruta M, Daté M. Advances in the catalysis of Au nanoparticles[J]. Appl. Catal. A,2001,222:427-437
    [33] Weast R C. CRC handbook of chemistry and physics,58th Edition, CRC Press, Boca Raton,Cleveland[M].1977
    [34] Segal S R, Anderson K B, Carrado K A, Marshall C L. Low temperature steam reformingof methanol over layered double hydroxide-derived catalysts[J]. Appl. Catal. A,2002,231:215-226
    [35] Ge X, Li M S, Shen J Y, The reduction of Mg-Fe-O and Mg-Fe-Al-O complex oxidesstudied by temperature-programmed reduction combined with in situ m ssbauerspectroscopy[J]. J. Solid State Chem.,2001,161,38-44
    [36] Venugopal A, Scurrell M S. Low temperature reductive pretreatment of Au/Fe2O3catalysts,TPR/TPO studies and behaviour in the water-gas shift reaction[J]. Appl. Catal. A,2004,258:241-249
    [37] Huang J, Dai W L, Fan K N. Remarkable support crystal phase effect in Au/FeOxcatalyzedoxidation of1,4-butanediol to γ-butyrolactone[J]. J. Catal.,2009,266:228-235
    [38] Zhang X, Shi H, Xu B Q. Vital roles of hydroxyl groups and gold oxidation states inAu/ZrO2catalysts for1,3-butadiene hydrogenation[J]. J. Catal.,2011,279:75-87
    [39] Hadnadjev M, Vulic T, Marinkovic-Neducin R, Suchorski Y, Weiss H. The iron oxidationstate in Mg-Al-Fe mixed oxides derived from layered double hydroxides: an XPS study[J].Appl. Surf. Sci.,2008,254:4297-4302
    [40] Zhang X, Wang H, Xu B Q. Remarkable nanosize effect of zirconia in Au/ZrO2catalyst forCO oxidation[J]. J. Phys. Chem. B,2005,109:9678-9683
    [41] Villa A, Chan-Thaw C E, Veith G M, More K L, Dr. Ferri D, Prati L. Au on nanosized NiO:a cooperative effect between Au and nanosized NiO in the base-free alcohol oxidation[J].ChemCatChem.,2011,3:1612-1618
    [42] Ma Z, Dai S. Development of novel supported gold catalysts: a materials perspective[J].Nano. Res.,2011,4:3-32
    [43] Moreau F, Bond G C, Taylor A O, Gold on titania catalysts for the oxidation of carbonmonoxide: control of pH during preparation with various gold contents[J]. J. Catal.,2005,231:105-114
    [44] Abad A, Concepción P, Corma A, García H. A collaborative effect between gold and asupport induces the selective oxidation of alcohols[J]. Angew. Chem. Int. Ed.,2005,44:4066-4069
    [45] Wolf A, Schüth F. A systematic study of the synthesis conditions for the preparation ofhighly active gold catalysts[J]. Appl. Catal. A,2002,226:1-13
    [1] Zhang X, Wang H, Xu B Q. Remarkable nanosize effect of zirconia in Au/ZrO2catalyst forCO oxidation[J]. J. Phys. Chem. B,2005,109:9678-9683
    [2] Abad A, Concepción P, Corma A, García H. Collaborative Effect between gold and asupport induces the selective oxidation of alcohols[J]. Angew. Chem. Int. Ed.,2005,44:4066-4069
    [3] Li J, Ta N, Song W, Zhan E S, Shen W J. Au/ZrO2catalysts for low-temperature water gasshift reaction: influence of particle sizes[J]. Gold Bull,2009,42:48-60
    [4] Shylesh S, Schünemann V, Thiel W R. Magnetically separable nanocatalysts: bridgesbetween homogeneous and heterogeneous catalysis[J]. Angew. Chem. Int. Ed.,2010,49:3428-3459
    [5] Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J. Magnetically recoverablenanocatalysts[J]. Chem. Rev.,2011,111:3036-3075
    [6] Feng J T, Lin Y J, Evans D G, Duan X, Li D Q. Enhanced metal dispersion andhydrodechlorination properties of a Ni/Al2O3catalyst derived from layered doublehydroxides[J]. J. Catal.,2009,266:351-358
    [7] Feng J T, Ma X Y, Evans D G, Duan X, Li D Q. Enhancement of metal dispersion andselective acetylene hydrogenation catalytic properties of a supported Pd catalyst[J]. Ind.Eng. Chem. Res.,2011,50:1947-1954
    [8] Ma X Y, Chai Y Y, Evans D G, Li D Q, Feng J T. Preparation and selective acetylenehydrogenation catalytic properties of supported Pd catalyst by the in situprecipitation-reduction method[J]. J. Phys. Chem. C,2011,115:8693-8701
    [9] Parida K, Satpathy M, Mohapatra L. Incorporation of Fe3+into Mg/Al layered doublehydroxide framework: effects on textural properties and photocatalytic activity for H2generation[J]. J. Mater. Chem.,2012,22:7350-7357
    [10] Fernández J M, Ulibarri M A, Labajosb F M, Rives V. The effect of iron on the crystallinephases formed upon thermal decomposition of Mg-Al-Fe hydrotalcites[J]. J. Mater. Chem.,1998,8:2507-2514
    [11] Wolf A, Schüth F. A systematic study of the synthesis conditions for the preparation ofhighly active gold catalysts[J]. Appl. Catal. A,2002,226:1-13
    [12] Dobrosz I, Jiratova K, Pitchon V, Rynkowski J M. Effect of the preparation of supportedgold particles on the catalytic activity in CO oxidation reaction[J]. J. Mole. Catal. A,2005,234:187-197
    [13] Xu R, Zeng H C. Synthesis of nanosize supported hydrotalcite-like compoundsCoAlx(OH)2+2x(CO3)y(NO3)x-2y·nH2O on γ-Al2O3[J]. Chem. Mater.,2001,13:297-30
    [14] Guo X X, Zhang F Z, Evans D G, Duan X. Layered double hydroxide films: synthesis,properties and applications[J]. Chem. Commun.,2010,46:5197-5210
    [15] Chang C T, Liaw B J, Huang C T, Chen Y Z. Preparation of Au/MgxAlO hydrotalcitecatalysts for CO oxidation[J]. Appl. Catal. A,2007,332:216-224
    [16] Chang C T, Liaw B J, Chen Y P, Chen Y Z. Characteristics of Au/MgxAlO hydrotalcitecatalysts in CO selective oxidation[J]. J. Mole. Catal. A,2009,300:80-88
    [17] Chen H Y, Zhang F Z, Fu S S, Duan X. In situ microstructure control of oriented layereddouble hydroxide monolayer films with curved hexagonal crystals as superhydrophobicmaterials[J]. Adv. Mater.,2006,18:3089-3093
    [18] Chen H Y, Zhang F Z, Chen T, Xu S L, Evans D G, Duan X. Comparison of the evolutionand growth processes of films of M/Al-layereddouble hydroxides with M=Ni or Zn[J].Chem. Eng. Sci.,2009,64:2617-2622
    [19] Guo X X, Xu S L, Zhao L L, Lu W, Zhang F Z, Evans D G, Duan X. One-stephydrothermal crystallization of a layered double hydroxide/alumina bilayer film onaluminum and its corrosion resistance properties[J]. Langmuir,2009,25:9894-9897
    [20] Zhang F Z, Zhao L L, Chen H Y, Xu S L, Evans D G, Duan X. Corrosion resistance ofsuperhydrophobic layered double hydroxide films on aluminum[J]. Angew. Chem. Int. Ed.,2008,47:2466-2469
    [21] Guo X X, Zhang F Z, Xu S L, Cui Z H, Evans D G, Duan X. Effects of varying thepreparation conditions on the dielectric constant of mixed metal oxide films derived fromlayered double hydroxide precursor films[J]. Ind. Eng. Chem. Res.,2009,48:10864-10869
    [22] Ge X, Li M S, Shen J Y, The reduction of Mg-Fe-O and Mg-Fe-Al-O complex oxidesstudied by temperature-programmed reduction combined with in situ m ssbauerspectroscopy[J]. J. Solid State Chem.,2001,161:38-44
    [23] Venugopal A, Scurrell M S. Low temperature reductive pretreatment of Au/Fe2O3catalysts,TPR/TPO studies and behaviour in the water-gas shift reaction[J]. Appl. Catal. A,2004,258:241-249.
    [24] Segal S R, Anderson K B, Carrado K A, Marshall C L. Low temperature steam reformingof methanol over layered double hydroxide-derived catalysts[J]. Appl. Catal. A,2002,231:215-226.
    [25] Milone C, Ingoglia R, Pistone A, Neri G, Frusteri F, Galvagno S. Selective hydrogenationof α, β-unsaturated ketones to α, β-unsaturated alcohols on gold-supported catalysts[J]. J.Catal.,2004,222:348-356
    [26] Milone C, Ingoglia R, Schipilliti L, Crisafulli C, Neri G, Galvagno S. Selectivehydrogenation of α,β-unsaturated ketone to α,β-unsaturated alcohol on gold-supported ironoxide catalysts: role of the support[J]. J. Catal.,2005,236:80-90
    [27] Milone C, Crisafulli C, Ingoglia R, Schipilliti L, Galvagno S. A comparative study on theselective hydrogenation of α, β-unsaturated aldehyde and ketone to unsaturated alcohols onAu supported catalysts[J]. Catal. Today,2007,122:341-351
    [28] You K J, Chang C T, Liaw B J, Huang C T, Chen Y Z. Selective hydrogenation ofα,β-unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts[J]. Appl. Catal. A.,2009,361:65-71
    [29] Chen H Y, Chang C T, Chiang S J, Liaw B J, Chen Y Z. Selective hydrogenation ofcrotonaldehyde in liquid-phase over Au/Mg2AlO hydrotalcite catalysts[J]. Appl. Catal. A,2010,381:209-215
    [30] Hadnadjev M, Vulic T, Marinkovic-Neducin R, Suchorski Y, Weiss H. The iron oxidationstate in Mg-Al-Fe mixed oxides derived from layered double hydroxides: an XPS study[J].Appl. Surf. Sci.,2008,254:4297-4302
    [31] Carrettin S, Hao Y L, Guerrero V A, Gates B C, Trasobares S, Calvino J J, Corma A.Increasing the number of oxygen vacancies on TiO2by doping with iron increases theactivity of supported gold for CO oxidation[J]. Chem. Eur. J.,2007,13:7771-7779
    [32] Zhang X, Shi H, Xu B Q. Catalysis by gold: isolated surface Au3+ions are active sites forselective hydrogenation of1,3-butadiene over Au/ZrO2catalysts[J]. Angew. Chem. Int. Ed.,2005,44:7132-7135
    [33] Zhang X, Shi H, Xu B Q. Vital roles of hydroxyl groups and gold oxidation states inAu/ZrO2catalysts for1,3-butadiene hydrogenation[J]. J. Catal.,2011,279:75-87
    [34] Lenz J, Campo B C, Alvarez M, Volpe M A. Liquid phase hydrogenation of α,β-unsaturated aldehydes over gold supported on iron oxides[J]. J. Catal.,2009,267:50-55
    [35] Claus P. Heterogeneously catalysed hydrogenation using gold catalyst[J]. Appl. Catal. A,2005,291:222-229
    [1] Sheldon R A, Kochi J K. Metal-catalyzed oxidations of organic compounds: mechanisticprinciples and synthetic methodology including biochemical processes[M]. New York,1981
    [2] Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass intochemicals[J]. Chem. Rev.,2007,107:2411-2502
    [3] Fang W H, Zhang Q H, Chen J, Deng W P, Wang Y. Gold nanoparticles on hydrotalcites asefficient catalysts for oxidant-free dehydrogenation of alcoholsw[J]. Chem. Commun.,2010,46:1547-1549
    [4] Fang W H, Chen J S, Zhang Q H, Deng W P, Wang Y. Hydrotalcite-supported gold catalystfor the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold sizeeffects[J]. Chem. Eur. J.,2011,17:1247-1256
    [5] Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Efficient aerobic oxidationof alcohols using a hydrotalcite-supported gold nanoparticle catalyst[J]. Adv. Synth. Catal.,2009,351:1890-1896
    [6] Pietron J J, Stroud R M, Rolison D R. Using three dimensions in catalytic mesoporousnanoarchitectures[J]. Nano Lett.,2002,2:545-549
    [7] Rolison D R. Catalytic nanoarchitectures-the importance of nothing and the unimportanceof periodicity[J]. Science,2003,299:1698-1701
    [8] Carrettin S, Concepción P, Corma A, Nieto J M L, Puntes V F. Nanocrystalline CeO2increases the activity of Au for CO oxidation by two orders of magnitude[J]. Angew. Chem.Int. Ed.,2004,43:2538-2540
    [9] Guzman J, Corma A. Nanocrystalline and mesostructured Y2O3as supports for goldcatalysts[J]. Chem. Commun.,2005,743-745
    [10] Zhang X, Wang H, Xu B Q. Remarkable nanosize effect of zirconia in Au/ZrO2catalyst forCO oxidation[J]. J. Phys. Chem. B,2005,109:9678-9683
    [11] Shylesh S, Schünemann V, Thiel W R. Magnetically separable nanocatalysts: Bridgesbetween homogeneous and heterogeneous catalysis[J]. Angew. Chem. Int. Ed.,2010,49:3428-3459
    [12] Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J. ChemInform abstract:Magnetically recoverable nanocatalysts[J].Chem. Rev.,2011,111:3036
    [13] Oliveira R L, Zanchet D, Kiyohara P K, Rossi L M. On the Stabilization of goldnanoparticles over silica-based magnetic supports modified with organosilanes[J]. Chem.Eur. J.2011,17:4626-4631
    [14] Aschwanden L, Panella B, Rossbach P, Keller B, Baiker A. Magnetically separable goldcatalyst for the aerobic oxidation of amines[J]. ChemCatChem.,2009,1:111-115
    [15] Shokouhimehr M, Piao Y Z, Kim J, Jang Y J, Hyeon T. A magnetically recyclablenanocomposite catalyst for olefin epoxidation[J]. Angew. Chem. Int. Ed.,2007,46:7039-7043
    [16] Oliveira R L, Kiyoharab P K, Rossi L M. High performance magnetic separation of goldnanoparticles for catalytic oxidation of alcohols[J]. Green Chem.,2010,12:144-149
    [17] Ge J P, Zhang Q, Zhang T R, Yin Y D. Core-satellite nanocomposite catalysts protected bya porous silica shell: controllable reactivity, high stability, and magnetic recyclability[J].Angew. Chem. Int. Ed.,2008,47:8924-8928
    [18] Lee Y M, Garcia M A, Frey N A, Sun S H. Synthetic tuning of the catalytic properties ofAu-Fe3O4nanoparticles[J]. Angew. Chem. Int. Ed.,2010,49:1271-1274
    [19] Zhang H, Pan D K, Zou K, He J, Duan X. A novel core-shell structured magneticorganic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coatedon a magnesium ferrite core for magnetically controlled drug release[J]. J. Mater. Chem.,2009,19:3069-3077
    [20] Zhang H, Pan D K, Duan X. Synthesis, characterization, and magnetically controlledrelease bBehavior of novel core-shell structural magnetic ibuprofen-intercalated LDHnanohybrids[J]. J. Phys. Chem. C,2009,113:12140-12148
    [21] Pan D K, Zhang H, Fan T, Chen J G, Duan X. Nearly monodispersed core-shell structuralFe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery andrelease[J]. Chem. Commun.,2011,47:908-910
    [22] Li L, Feng Y J, Li Y S, Zhao W R, Shi J L. Fe3O4core/layered double hydroxide shellnanocomposite: Versatile magnetic matrix for anionic functional materials[J]. Angew.Chem. Int. Ed.,2009,48:5888-5892
    [23] Eric D. Smolensky, Michelle C. Neary, Yue Z, Thelma S. Berquo and Valérie C. Pierre.Fe3O4@organic@Au: core-shell nanocomposites with high saturation magnetisation asmagnetoplasmonic MRI contrast agents[J]. Chem. Commun.,2011,47:2149-2151
    [24] Xuan S H, Wang F, Gong X L, Kong S K, Jimmy C. Yua J C, Leung K C. Hierarchicalcore/shell Fe3O4@SiO2@γ-AlOOH@Au micro/nanoflowers for protein immobilization[J].Chem. Commun.,2011,47:2514-2516
    [25] Fan T, Pan D K, Zhang H. Study on formation mechanism by monitoring the morphologyand structure evolution of nearly monodispersed Fe3O4submicroparticles with controlledparticle sizes[J]. Ind. Eng. Chem. Res.,2011,50:9009-9018
    [26] Evans D G, Slade R C T. Structural aspects of layered double hydroxides[J]. Struct Bond,2006,119:1-87
    [27] Guo X X, Zhang F Z, Evans D G, Duan X. Layered double hydroxide films: synthesis,properties and applications[J]. Chem. Commun.,2010,46:5197-5120
    [28] Chen H Y, Zhang F Z, Fu S S, Duan X. In Situ Microstructure Control of Oriented LayeredDouble hydroxide monolayer films with curved hexagonal crystals as superhydrophobicmaterials[J]. Adv. Mater.,2006,18:3089-3093
    [29] Chen H Y, Zhang F Z, Chen T, Xu S L, Evans D G, Duan X. Comparison of the evolutionand growth processes of films of M/Al-layereddouble hydroxides with M=Ni or Zn[J].Chem. Eng. Sci.,2009,64:2617-2622
    [30] Wolf A, Schüth F. A systematic study of the synthesis conditions for the preparation ofhighly active gold catalysts[J]. Appl. Catal. A,2002,226:1-13
    [31] Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. Preparation ofFe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separationof proteins[J]. J. Am. Chem. Soc.,2012,134:1071-1077
    [32] Du Y, Hu G, O’Hare D. Nucleation and growth of oriented layered hydroxides on polymerresin beads[J]. J. Mater. Chem.,2009,19:1160-1165
    [33] Gong J L. Structure and surface chemistry of gold-based model catalysts[J].2011,DOI:10.1021/cr200041p
    [1] Abad A, Concepción P, Corma A, García H. A collaborative effect between gold and asupport induces the selective oxidation of alcohols[J]. Angew. Chem. Int. Ed.,2005,44:4066-4069
    [2] Haider P, Baiker A. Gold supported on Cu-Mg-Al-mixed oxides: strong enhancement ofactivity in aerobic alcohol oxidation by concerted effect of copper and magnesium[J]. J.Catal.,2007,248:175-187
    [3] Haider P, Grunwaldt J D, Baiker A. Gold supported on Mg, Al and Cu containing mixedoxides: Relation between surface properties and behavior in catalytic aerobic oxidation of1-phenylethanol[J]. Catal. Today,2009,141:349-354
    [4] Su F Z, Liu Y M, Wang L C, Cao Y, He H Y, Fan K N. Ga-Al mixed-oxide-supported goldnanoparticles with enhanced activity for aerobic alcohol oxidation[J]. Angew. Chem. Int.Ed.,2008,47:334-337
    [5] Wang L C, Liu Y M, Chen M, Cao Y, He H Y, Fan K N. MnO2nanorod supported goldnanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation[J]. J. Phys.Chem. C,2008,112:6981-6987
    [6] Yang J, Guan Y J, Verhoeven T, Santen R V, Li C, Hensen E J. M. Basic metal carbonatesupported gold nanoparticles: enhanced performancein aerobic alcohol oxidation[J]. GreenChem.,2009,11:322-325
    [7] Villa A, Chan-Thaw C E, Veith G M, More K L, Ferri D, Prati L. Au on nanosized NiO: acooperative effect between Au and nanosized NiO in the base-free alcohol oxidation[J].ChemCatChem.,2011,3:1612-1618
    [8] Barrabes N, Cornado D, Foettinger K, Dafinov A, Llorca J, Medina F, Rupprechter G.Hydrodechlorination of trichloroethylene on noble metal promoted Cu-hydrotalcite-derivedcatalysts[J]. J. Catal.,2009,263:239-246.
    [9] Sun P, Siddiqi G, Chi M F, Bell A T. Synthesis and characterization of a new catalystPt/Mg(Ga)(Al)O for alkane dehydrogenation[J]. J. Catal.,2010,274:192-199
    [10] Siddiqi G, Sun P, Galvita V, Bell A T. Catalyst performance of novel Pt/Mg(Ga)(Al)Ocatalysts for alkane dehydrogenation[J]. J. Catal.,2010,274:200-206
    [11] Sun P, Siddiqi G, Vining W C, Chi M F, Bell A T. Novel Pt/Mg(In)(Al)O catalysts forethane and propane dehydrogenation[J]. J. Catal.,2011,282:165-174
    [12] Liu P, Guan Y J, Santen R A.V, Li C, Hensen E J. M. Aerobic oxidation of alcohols overhydrotalcite-supported gold nanoparticles: the promotional effect of transition metalcations[J]. Chem. Commun.,2011,47:11540-11542
    [13] Fan T, Pan D K, Zhang H, Study on formation mechanism by monitoring the morphologyand structure evolution of nearly monodispersed Fe3O4submicroparticles with controlledparticle sizes[J]. Ind. Eng. Chem. Res.,2011,50:9009-9018
    [14] Pan D K, Zhang H, Fan T, Chen J G, Duan X. Nearly monodispersed core-shell structuralFe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery andrelease[J]. Chem. Commun.,2011,47:908-910
    [15] Evans D G, Slade R C T. Structural aspects of layered double hydroxides[J]. Struct. Bond,2006,119:1-87
    [16] Guo X X, Zhang F Z, Evans D G, Duan X. Layered double hydroxide films: synthesis,properties and applications[J]. Chem. Commun.,2010,46:5197-5120
    [17] Chen H Y, Zhang F Z, Fu S S, Duan X. In Situ Microstructure Control of Oriented LayeredDouble hydroxide monolayer films with curved hexagonal crystals as superhydrophobicmaterials[J]. Adv. Mater.,2006,18:3089-3093
    [18]冯拥军,李殿卿,李春喜,王子镐, Evans D G,段雪. Cu2Ni2Mg2Al2CO3四元水滑石的合成及结构分析[J].2003,61:78-83
    [19] You K J, Chang C T, Liaw B J, Huang C T, Chen Y Z. Selective hydrogenation ofα,β-unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts[J]. Appl. Catal. A,2009,361:65-71
    [20] Chen H Y, Chang C T, Chiang S J, Liaw B J, Chen Y Z. Selective hydrogenation ofcrotonaldehyde in liquid-phase over Au/Mg2AlO hydrotalcite catalysts[J]. Appl. Catal. A,2010,381:209-215
    [21] Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S. New interpretations of XPSspectra of nickel metal and oxides[J]. Surf. Sci.,2006,600:1771-1779
    [22] Wang H, Xiang X, Li F. Facile synthesis and novel electrocatalytic performance ofnanostructured Ni-Al layered double hydroxide/carbon nanotube composites[J]. J. Mater.Chem.,2010,20:3944-3952
    [23] Kannan S, Dubey A, Knozinger H. Synthesis and characterization of CuMgAl ternaryhydrotalcites as catalysts for the hydroxylation of phenol[J]. J. Catal.,2005,231:381-392
    [24] Hu T J, Yin H B, Zhang R C, Wu H X, Jiang T S, Wada Y J. Gas phase hydrogenation ofmaleic anhydride to γ-butyrolactone by Cu-Zn-Ti catalysts[J]. Catal. Commun.,2007,8:193-199
    [25] Kumbhar P S, Sanchez-Valente J, Lopez J, Figueras F. Meerwein-Ponndorf-Verleyreduction of carbonyl compounds catalysed by Mg-Al hydrotalcite[J]. Chem. Commun.,1998,535-536
    [26] Choudary B M, Kantam M L, Rahman A, Reddy C V, Rao K K. The first example ofactivation of molecular oxygen by nickel in Ni-Al hydrotalcite: a novel protocol for theselective oxidation of alcohols[J]. Angew. Chem.,2001,113:785-788
    [27] Haider P, Grunwaldt J D, Seidel R, Baiker A. Gold supported on Cu-Mg-Al and Cu-Cemixed oxides: an in situ XANES study on the state of Au during aerobic alcoholoxidation[J]. J. Catal.,2007,250:313-3
    [28] Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Supported goldnanoparticles as a reusable catalyst for synthesis of lactones from diols using molecularoxygen as an oxidant under mild conditions[J]. Green Chem.,2009,11:793-797
    [29] Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Efficient aerobic oxidationof alcohols using a hydrotalcite-supported gold nanoparticle catalyst[J]. Adv. Synth. Catal.,2009,351:1890-1896

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700