用户名: 密码: 验证码:
新型紫外、深紫外非线光学晶体氯硼酸钾、氟硼酸钡的合成、生长及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要在K_2O-KCl-B_2O_3和BaO-BaF_2-B_2O_3体系中合成出两种具有应用前景的新型紫外非线性光学晶体材料卤素硼酸盐K_3B_6O_(10)Cl (KBOC)和Ba_4B_(11)O_(20)F(BBOF),KBOC和BBOF的紫外截止边都达到了深紫外区,BBOF粉末倍频效应达10倍KDP。采用顶部籽晶法生长出了大尺寸的晶体对其性能进行了测试;在探索新型紫外非线性光学晶体材料过程中,发现了四种结构新颖的硼酸盐化合物;另外,使用室温溶液法得到了两种新型有机-无机杂化的硼酸盐化合物。主要工作及结果如下:
     1.新型紫外非线性光学晶体KBOC的研究
     在硼氧框架中引入碱金属阳离子和卤素离子以提高其性能的设计思想指导下,首次获得一种新型的碱金属卤素硼酸盐(KBOC)。其中,选择硼氧功能基元为阴离子,其带隙较大,双光子吸收概率小,激光损伤阈值较高;B-O键利于宽波段光透过;阳离子选择无d~0电子跃迁的碱金属离子,有利于紫外光透过;同时卤素离子的引入也将拓宽其透光范围;在结构上,选择类钙钛矿结构,有助于产生大的非线性光学效应。
     非线性光学性能测试表明,KBOC粉末倍频效应约为3倍KDP,可实现相位匹配。分析发现,KBOC化合物的非线性光学效应主要来源于畸变的ClK_6多面体及B_6O_(10)基团。
     通过TG-DSC测试表明KBOC为非同成分熔融化合物。通过助熔剂探索,生长出25mm×11mm×7mm高质量单晶。测量了KBOC晶体的透光范围,采用最小偏向角法对KBOC晶体折射率进行了测量,计算出KBOC晶体的相位匹配区间,证实了在1064nm基频光下,可以实现I类、II类相位匹配。KBOC晶体的I类相匹配最短倍频波长为255nm。
     KBOC晶体的激光损伤阈值实验表明:其激光损伤阈值大于9.2GW/cm~2。晶体的热膨胀系数沿a和c方向分别为3.08×10~(-6)和28.4×10~(-6)K~(-1)。硬度测试表明,KBOC晶体的莫氏硬度约为4-5Mohs,物化性能稳定。
     2.新型紫外非线性光学晶体BBOF的研究
     将无d-d电子跃迁的金属阳离子基元和利于紫外光透过的氟离子与硼氧功能基元结合,首次设计、合成出新型紫外非线性光学晶体BBOF。
     利用高温熔液法获得小尺寸BBOF晶体。单晶结构解析表明,BBOF晶体属正交晶系,空间群为Cmc21,晶胞参数为:a=18.8112(15),b=10.7151(6),c=8.6031(5),Z=4,V=1734.1(2)3。BBOF晶体结构是由新的硼氧功能基元B11O24通过氧原子连接形成一个沿c方向的孔道,Ba(1)-F(1)-Ba(2)链填充于孔道中,Ba(3)原子位于孔道周围对称的位置上。
     非线性光学性能测试表明,BBOF粉末倍频效应约为10倍KDP,可实现相位匹配。采用顶部籽晶法生长出BBOF晶体,BBOF晶体透过光谱测试表明其紫外截止边约为190nm。硬度测试表明,BBOF晶体的硬度约5Mohs。潮解性能实验表明,BBOF晶体不吸潮,在水中和空气中都很稳定。
     3.四种新型硼酸盐化合物的研究
     发现了四种新型硼酸盐化合物:K_3ZnB_5O_(10)、Pb_xBa_(9-x)B_(18)O_(36)、K_3B_3O_3F_6和CsB_5O_8,解析其单晶结构,测试其光学和热学性能。其中,K3ZnB5O10为同成分熔融化合物。Pb_xBa_(9-x)B_(18)O_(36)晶体结构中含有B_3O_6功能基元,与β-BaB_2O_4结构比较:B_3O_6功能基元的排列方式对材料的倍频效应有较大影响。在K_3B_3O_3F_6化合物中,B和F的成键在常压下比较少。CsB_5O_8晶体属正交晶系,空间群为Pccn,基本功能基元为B_(10)O_(22),它与文献报道的α-CsB_5O_8、β-CsB_5O_8和γ-CsB_5O_8结构不同,其差异主要是由基本功能基元不同引起的。
     4.两种新型有机-无机杂化硼酸盐的研究
     通过室温溶液法合成了两种有机-无机杂化硼酸盐晶体Sr[B(C_6H_5O_7)_2](H_2O)_43H_2O和Ca[B(C_6H_6O_7)_2](H_2O)_4HCl,反应原料的初始摩尔比和溶液的pH值对生长这两种晶体起着重要的作用。解析了晶体结构,测试了红外、透过光谱,分析了其热性能及元素组成。
Two new halogen complex borates, K_3B_6O_(10)Cl (KBOC) and Ba_4B_(11)O_(20)F (BBOF)have been found in the K_2O-KCl-B_2O_3and BaO-BaF_2-B_2O_3systems. The large singlecrystals have been grown by the top-seeded solution growth method and some propertieshave been characterized. In addition, other four novel borates and two organic-inorganichybrid borates have been synthesized by the high-temperature solution method and theslow evaporation of water solution at room temperature, respectively. The dissertationmainly consists of the discussions about their solid-state synthesis, crystal structuredetermination, crystal growth and measurement of properties.
     1. Research on UV nonlinear optical KBOC crystal
     Pure phase of KBOC compound was synthesized by the solid-state reaction for thefirst time. The crystal structure of KBOC was determined by the single crystal X-raydiffraction. KBOC crystallizes in the rhombohedral system, space group R3m with unit-cellparameters a=10.0624(14), c=8.8361(18), Z=4, V=774.8(2)3. The structureexhibits an intricate3-dimensional (3D) network composed of [B_6O_(10)] units and [ClK_6]octahedra and can also be described as two networks (a [B_6O_(10)]∞and a ReO_3-type ClK_6network) that are interweaved.
     As-prepared KBOC has a powder second harmonic generation (SHG) effect aboutthree times that of KDP and is phase matchable as supported by powder SHGmeasurements. The large SHG response arises from the distortions of [B_6O_(10)] and ClK_6groups.
     The TG-DSC analysis proves that KBOC is an incongruently melting compound. Ahigh quality single crystal of KBOC with dimensions up to25mm×11mm×7mm wassuccessfully grown by the top-seeded solution growth method for the first time. By theminimum deviation technique, the refractive indices of the crystal were measured andfitted to the Sellmeier equations. The limit of type-I phase matching SHG wavelength wascalculated to be255nm. The transmittance spectrum shows that the as-grown crystal is transparent in the wavelength range of180-3460nm. The thermal properties and laserdamage threshold have been investigated. The two principal coefficients of thermalexpansion along a and c axes were measured to be3.08×10~(-6)and28.4×10~(-6)K~(-1),respectively. The optical damage threshold was estimated, which is more than9.2GW/cm~2.
     The measured hardness of the KBOC crystal is approximately4-5Mohs.Experiments demonstrate that the KBOC crystal is nonhygroscopic, very stable in water orair.
     2. Research on UV nonlinear optical BBOF crystal
     Pure phase of BBOF was synthesized by the solid-state reaction for the first time. Thecrystal structure of BBOF was investigated. It crystallizes in the orthorhombic system,space group Cmc21with unit-cell parameters a=18.8112(15), b=10.7151(6), c=8.6031(5), Z=4, V=1734.1(2)3. BBOF has a3D network structure, in which a newFunction Building Block (FBB) B11O24was observed. The FBBs are connected with eachother by sharing O atoms to form3D network with tunnels viewing along c axis, whereBa(1)-F(1)-Ba(2) chains are filled, and the Ba(3) atoms are located at symmetrical site inthe periphery of the tunnel.
     The SHG measurement suggests that BBOF has a powder SHG effect about10timesthat of KDP and is phase matchable.
     The TG-DSC experiment proves that BBOF melts incongruently. BBOF single crystalhas been grown by the high temperature solution method. The UV-vis-NIR transmittancespectrum of the BBOF crystal was measured, and the UV cutoff edge is about190nm. Themeasured hardness of the BBOF crystal is approximately5Mohs.
     3. Research on four new borate compounds
     Four compounds, K_3ZnB_5O_(10), Pb_xBa_(9-x)B_(18)O_(36), K_3B_3O_3F_6and CsB_5O_8, have beenfound to crystallize in new structure types. Some properties of the compounds are reported.The DSC experiments prove that K_3ZnB_5O_(10)melts congruently. In Pb_xBa_(9-x)B_(18)O_(36), the FBB is B_3O_6group. By comparing the structures of Pb_xBa_(9-x)B_(18)O_(36)with that of β-BaB_2O_4,it is found that the arrangement of B_3O_6groups in the compounds leads to different SHGeffect. In K_3B_3O_3F_6, the FBB is B_3O_3F_6, but scarcely see the linkage of B-F under ambientpressure. CsB_5O_8crystallizes in the orthorhombic space group Pccn. By comparing thestructures of CsB_5O_8with that of α-CsB_5O_8, β-CsB_5O_8andγ-CsB_5O_8, it is found that thedifference of FBB among the compounds leads to crystallize in different space groups.
     4. Research on two organic-inorganic hybrid borate compounds
     Sr[B(C_6H_5O_7)_2](H_2O)_43H_2O and Ca[B(C_6H_6O_7)_2](H_2O)_4HCl have been synthesizedby the slow evaporation of water solution at room temperature. Their crystal structureswere established by single-crystal X-ray diffraction and optical properties were measured.
引文
[1]陈创天,吴柏昌.中国牌深紫外非线性光学晶体─KBBF和SBBO晶体[J].中国科学院院刊,1999,(6):456-457.
    [2]万云芳,韩克祯,左春华,何京良.高效三倍频全固态Nd:YAG/LBO紫外激光器[J].光子学报,2007,36(12):2182-2184.
    [3]周勇,王桂玲,陈亚辉,许祖彦.高功率深紫外177.3nm激光倍频产生[J].中国激光,2007,(9):1231-1231.
    [4] Schawlow, A. L.; Townes, C. H. Infrared and optical masers[J]. Phys. Rev.1958,112(6):1940-1949
    [5] Maiman, T. H. Stimulated optical radiation in ruby[J]. Nature1960,187(6):493-494.
    [6] Franken, P. A.; Hill, A. E.; Peters, C. W.; et al. Generation of optical harmonics[J]. Phys. Rev. Lett.1961,7(4):118-119.
    [7] Maker, P.; Terhune, R.; Nisenoff, M.; Savage, C.; et al. Effects of dispersion and focusing on theproduction of optical harmonics[J]. Phys. Rev. Lett.1962,8(1):21-22.
    [8]张克从,张乐惠.晶体生长科学与技术(上册)[M].第三版,北京:科学出版社,19975-19.
    [9] Kleinman, D. A. Nonlinear dielectric polarization in optical media. Phys. Rev.1962,126(6):1977-1979.
    [10] Sasaki, T.; Mori, Y.; Yoshimura, M.; et al. Recent development of nonlinear optical borate crystals:key materials for generation of visible and UV light[J]. Mater. Sci. Eng. R.2000,30(1):1-54.
    [11] Rao, K. S.; Yoon, K. H. Review of electrooptic and ferroelectric properties of barium sodiumniobate single crystals[J]. J. Mater. Sci.2003,38(3):391-400.
    [12] Zernike Jr, F.; Berman, P. R. Generation of far infrared as a difference frequency[J]. Phys. Rev.Lett.1965,15(26):999-1001.
    [13]张克从,王希敏.非线性光学晶体材料科学[M].科学出版社,1996,20-43.
    [14] Zernike, F.; Midwinter, J. E. Applied nonlinear optics[M]. Wiley New York,1973.
    [15] Hecht, J. Short history of laser development[J]. Opt. Eng.2010,49(9):1002-1005.
    [16] Giordmaine, J.; Miller, R. C.; et al. Tunable coherent parametric oscillation in LiNbO3at opticalfrequencies[J]. Phys. Rev. Lett.1965,14(24):973-976.
    [17]陈创天,林哲帅,王志中.紫外、深紫外非线性光学晶体的最新研究进展[J].功能材料信息,2005,2(3):3-11.
    [18] Yu, P.; Zhou, L. J.; Chen, L.; et al. Noncentrosymmetric inorganic open-framework chalcohalideswith strong middle IR SHG and red emission: Ba3AGa5Se10Cl2(A=Cs, Rb, K)[J]. J. Am. Chem.Soc.2012,134(4):2227-2235.
    [19] Chen, M. C.; Wu, L. M.; Lin, H.; et al. Disconnection enhances the second harmonic generationresponse: synthesis and characterization of Ba23Ga8Sb2S38[J]. J. Am. Chem. Soc.2012,134(14):6058-6060.
    [20] Wu, H. P.; Pan, S. L.; Poeppelmeier, K. R.; et al. K3B6O10Cl: A new structure analogous toperovskite with a large second harmonic generation response and deep UV absorption edge[J]. J.Am. Chem. Soc.2011,133(20):7786-7790.
    [21] Yu, H. W.; Pan, S. L.;Wu, H. P.; et al. A new congruent-melting oxyborate, Pb4O(BO3)2withoptimally aligned BO3triangles adopting layered-type arrangement[J]. J. Mater. Chem.2011,22(5):2105-2110.
    [22]吴林,赵波.非线性光学和非线性光学材料[J].大学化学,2002,17(6):21-24.
    [23]陈创天.紫外、深紫外非线性光学晶体探索十年回顾[J].人工晶体学报,2001,30(1):36-42.
    [24]蒋民华.晶体物理[M].山东科学技术出版社,1980.
    [25] Fan, Y. X.; Eckardt, R.; Byer, R.; et al. AgGaS2infrared parametric oscillator[J]. Appl. Phys. Lett.1984,45(4):313-315.
    [26] Eckardt, R. C.; Fan, Y.; Byer, R. L.; et al. Broadly tunable infrared parametric oscillator usingAgGaSe2[J]. Appl. Phys. Lett.1986,49(11):608-610.
    [27] Boyd, G.; Buehler, E.; Storz, F. Linear and nonlinear optical properties of ZnGeP2and CdSe[J].Appl. Phys. Lett.1971,18(7):301-304.
    [28] Haussuhl, S. Elastische und thermoelastische eigenschaften von KH2PO4, H2AsO4, NH4H2PO4,NH4H2AsO4und RbH2PO4. Z. Kristallogr.1964,120(6):401-414.
    [29] Shen, D.; Huang, C; et al. A new nonlinear optical crystal KTP[J]. Prog. Cryst. Growth Char.1985,11(2):269-274.
    [30] Yang, Y.; Pan, S. L.; Li, H. Y.; et al. Li4Cs3B7O14: Synthesis, crystal structure, and opticalproperties[J]. Inorg. Chem.2011,50(6):2415-2419.
    [31] Yang, Y.; Pan, S. L.; Han, J.; et al. A new lithium rubidium borate Li6Rb5B11O22with isolatedB11O22building blocks[J]. Cryst. Growth Des.2011,11(9):3912-3916.
    [32] Wang, S. C.; Ye, N.; Li, W.; et al. Alkaline beryllium borate NaBeB3O6and ABe2B3O7(A=K, Rb)as UV nonlinear optical crystals[J]. J. Am. Chem. Soc.2010,132(25):8779-8786.
    [33] Chen, C. T.; Wang, G. F., Wang, X.; et al. Deep-uV nonlinear optical crystalKBe2BO3F2-discovery, growth, optical properties and applications[J]. Appl. Phys. B: Las. Opt.2009,97(1):9-25.
    [34] Imai, S.; Yamada, T.; Fujimori, Y.; et al. Third‐harmonic generation of an alexandrite laser inβ-BaB2O4[J]. Appl. Phys. Lett.1989,54(13):1206-1208.
    [35] Wu, B.; Xie, F.; Chen, C. T.; et al. Generation of tunable coherent vacuum ultraviolet radiation inLiB3O5crystal[J]. Opt. Comm.1992,88(4-6):451-454.
    [36] Wu, Y. C.; Chen, W. F.; Fu, P. Z.; et al. High-average-power third harmonic generation at355nmwith CsB3O5Crystal[J]. Chin. Phys. Lett.2005,22(6):1426-1429.
    [37] Sasaki, T.; Mori, Y.; Yoshimura, M.; et al. Progress in the growth of a CsLiB6O10crystal and itsapplication to ultraviolet light generation[J]. Opt. Mater.2003,23(1-2):343-351.
    [38] Lin, Z. H.; Wang, Z. Z.; Chen, C. T.; et al. Mechanism for linear and nonlinear optical effects inKBe2BO3F2(KBBF) crystal[J]. Chem. Phys. Lett.2003,367(5-6):523-527.
    [39] Koh, S.; Uda, S.; Huang, X.; et al. Partitioning of ionic species and crystallization electromotiveforce during the melt growth of LiNbO3and Li2B4O7[J]. J. Cryst. Growth2007,306(2):406-412.
    [40] Moreira, M. L.; Mambrini, G. P.; Volanti, D. P.; et al. Hydrothermal microwave: a new route toobtain photoluminescent crystalline BaTiO3nanoparticles[J]. Chem. Mater.2008,20(16):5381-5387.
    [41] Dainty, J. Electro-optic and photorefractive materials[J]. J. Modern Opt.1988,35(8):1280-1286.
    [42] Glass, A.; Lines, M.; Nassau, K.; et al. Anomalous dielectric behavior and reversiblepyroelectricity in roller-quenched LiNbO3and LiTaO3glass[J]. Appl. Phys. Lett.1977,31(4):249-251.
    [43] Chen, F. Optically induced change of refractive indices in LiNbO3and LiTaO3[J]. Appl. Phys.1969,40(8):3389-3396.
    [44] Villarroel, J.; Carrascosa, M.; García-Caba es, A.; et al. Photorefractive response and opticaldamage of LiNbO3optical waveguides produced by swift heavy ion irradiation[J]. Appl. Phys. B2009,95(3):429-433.
    [45]蒋民华.人工晶体发展动向的探讨[J].人工晶体学报,2002,31(3):177-181.
    [46] Zgonik, M.; Schlesser, R.; Biaggio, I.; et al. Materials constants of KNbO3relevant forelectro‐and acousto-optics[J]. Appl. Phys.1993,74(2):1287-1297.
    [47] Thamizharasan, K.; Xavier Jesu Raja, S.; Xavier, F. P.; et al. Growth, thermal and microhardnessstudies of single crystals of potassium penta borate (KB5)[J]. J. Cryst. Growth2000,218(2):323-326.
    [48] Kato, K. Phase-matched generation of2314in KB5O84H2O. Appl. Phys. Lett.1976,29(9):562-563.
    [49] Paquette, J.; Reeder, R. J. Relationship between surface structure, growth mechanism, and traceelement incorporation in calcite[J]. Geoch. Cosm. Act.1995,59(4):735-749.
    [50]张克从,张乐惠.晶体生长科学与技术下册[M].科学出版社,1997.
    [51] Rajasekar, S. A.; Thamizharasan, K.; Joseph Arul Pragasam, A.; et al. Growth and characterizationof pure and doped potassium pentaborate (KB5) single crystals[J]. J. Cryst. Growth2003,247(1):199-206.
    [52] Stickel, R.; Dunning, F. Generation of tunable coherent vacuum UV radiation in KB5[J]. Appl. Opt.1978,17(7):981-982.
    [53] Hemmati, H.; Bergquist, J.; Itano, W. M.; et al. Generation of continuous-wave194-nm radiationby sum-frequency mixing in an external ring cavity[J]. Opt. Lett.1983,8(2):73-75.
    [54] Cheng, L.; Bosenberg, W.; Tang, C.; et al. Broadly tunable optical parametric oscillation inβ-BaB2O4[J]. Appl. Phys. Lett.1988,53(3):175-177.
    [55] Bosenberg, W.; Cheng, L.; Tang, C.; et al. Ultraviolet optical parametric oscillation in β-BaB2O4[J].Appl. Phys. Lett.1989,54(1):13-15.
    [56] Chen, C. T.; Wu, Y. C.; Jiang, M.; et al. A new nonlinear-optical crystal: LiB3O5[J]. J. Opt. Soc.Am. B1989,6(4):616-621.
    [57] Lin, S.; Sun, Z.; Wu, B. C.; et al. The nonlinear optical characteristics of a LiB3O5crystal[J]. J.Appl. Phys.1990,67(2):634-638
    [58] Wu, Y. C.; Sasaki, T.; Nakai, S.; et al. CsB3O5: a new nonlinear optical crystal[J]. Appl. Phys. Lett.1993,62(21):2614-2615.
    [59] Bosenberg, W.; Pelouch, W.; Tang, C.; et al. High‐efficiency and narrow‐linewidth operation ofa two‐crystal β-BaB2O4optical parametric oscillator[J]. Appl. Phys. Lett.1989,55(19):1952-1954.
    [60] Mori, Y.; Kuroda, I.; Nakajima, S.; et al. Growth of a nonlinear optical crystal: cesium lithiumborate[J]. J. Cryst. Growth1995,156(3):307-309.
    [61] Rajesh, D.; Yoshimura, M.; Eiro, T.; et al. UV laser-induced damage tolerance measurements ofCsB3O5crystals and its application for UV light generation[J]. Opt. Mater.2008,31(2):461-463.
    [62] Atuchin, V.; Kesler, V.; Pokrovsky, L.; et al. Structure and chemical composition of CsB3O5(CBO)optical surface[J]. J. Kor. Cryst. Growth Cryst. Technology.2003,13(1):19-23.
    [63] Xue, D. F.; Betzler, K.; Hesse, H.; et al. Chemical-bond analysis of the nonlinear optical propertiesof the borate crystals LiB3O5, CsLiB6O10, and CsB3O5[J]. Appl. Phys. A2002,74(6):779-782.
    [64] Tu, J. M.; Keszler, D. A. CsLiB6O10: a noncentrosymmetric polyborate[J]. Mater. Res. Bull.1995,30(2):209-215.
    [65] Yap, Y.; Haramura, S.; Taguchi, A.; et al. CsLiB6O10crystal for frequency doubling the Nd: YAGlaser[J]. Opt. Comm.1998,145(1-6):101-104.
    [66] Yoshimura, M.; Kamimura, T.; Murase, K. Bulk laser damage in CsLiB6O10crystal and itsdependence on crystal structure[J]. Jap. J. Appl. Phys.1999,38(2A):129-131.
    [67] Ghotbi, M.; Ebrahim-Zadeh, M. Optical second harmonic generation properties of BiB3O6[J]. Opt.Express2004,12(24):6002-6019.
    [68] Xue, D. F.; Betzler, K.; Hesse, H.; et al. Origin of the large nonlinear optical coefficients inbismuth borate BiB3O6[J]. Phys. State Solid1999,176(2):1-2.
    [69]王正平,滕冰,刘耀岗. BiB3O6单晶生长及其1.064μm的二倍频,三倍频输出[J].中国激光,2000,27(11):56-60.
    [70] Becker, P.; Liebertz, J.; Bohaty, L.; et al. Top-seeded growth of bismuth triborate, BiB3O6[J]. J.Cryst. Growth1999,203(1):149-155.
    [71] Hu, Z. G.; Higashiyama, T.; Yoshimura, M.; et al. A new nonlinear optical borate crystalK2Al2B2O7(KAB)[J]. Jap. J. Appl. Phys.1998,37(10A):1093-1094.
    [72] Liu, L.; Liu, C.; Wang, X.; et al. Impact of Fe3+on UV absorption of K2Al2B2O7crystals[J]. SolidState Sci.2009,11(4):841-844.
    [73]刘丽娟,陈创天.新型深紫外非线性光学晶体KBe2BO3F2族的研究进展[J].中国材料进展,2010,(10):16-20.
    [74] Mei, L.; Huang, X.; Wang, Y.; et al. Crystal structure of KBe2BO3F2[J]. Zeitschrift fürKristallographie,1995,210(2):93-95.
    [75] Chen, C. T.; Lu, J.; Togashi, T.; et al. Second-harmonic generation from KBe2BO3F2crystal in thedeep ultraviolet[J]. Opt. Lett.2002,27(8):637-639.
    [76] Wang, G. L.; W.; Zhang C. Q.; Z., Chen, C. T.; et al. Determination of nonlinear opticalcoefficients of KBe2BO3F2crystals[J]. Chin. Phys. Lett.2003,20(2):243-246.
    [77] Chen, C. T.; Luo, S.; Wang, X.; et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2[J]. J. Opt.Soc. Am. B2009,26(8):1519-1525.
    [78] Wu, Y. C.; Liu, J.; Fu, P. Z.; et al. A new lanthanum and calcium borate La2CaB10O19[J]. Chem.Mater.2001,13(3):753-755.
    [79] Komatsu, R.; Ono, Y.; Kajitani, T.; et al. Optical properties of a new nonlinear borate crystalLiRbB4O7[J]. J. Cryst. Growth2003,257(1):165-168.
    [80] Ye, N. Structure design and crystal growth of UV nonlinear borate materials[J]. Structure Bond,2012,1-41.
    [81] Huang, H.; Yao, J. Y.; Lin, Z. S.; et al. NaSr3Be3B3O9F4: A promising deep ultraviolet nonlinearoptical material resulting from the cooperative alignment of the [Be3B3O12F]10anionic group[J].Angew. Chem. Int. Ed.2011,123(39):9307-9310.
    [82] Du, C.; Wang, Z.; Liu, J.; et al. Investigation of intracavity third-harmonic generation at1.06μminYCa4O(BO3)3crystals[J]. Appl. Phys. B2002,74(2):125-127.
    [83] Saji, T.; Yoshimura, M.; Hisaminato, N.; et al.355-nm UV light generation in high-quality CsB3O5fabricated by post-growth heat treatments[A]. In2005.
    [84] Liu, Q.; Yan, X. High power all‐solid‐state fourth harmonic generation of266nm at the pulserepetition rate of100kHz[J]. Laser Phys. Lett.2009,6(3):203-206.
    [85] Wang, G.; Zhang, C.; Chen, C. T.; et al. High-efficiency266-nm output of a KBe2BO3F2crystal[J].Appl. Opt.2003,42(21):4331-4334.
    [86] Wang, Y. G.; Wang, L. R.; Gao, X.; et al. Growth, characterization and fourth harmonic generationat266nm of K2Al2B2O7crystals without UV absorptions and Na impurity[J]. J. Cryst. Growth2012,348(1):1-4.
    [87] Wang, G.; Geng, A.; Bo, Y.; et al.28.4W266nm ultraviolet-beam generation by fourth-harmonicgeneration of an all-solid-state laser[J]. Opt. Comm.2006,259(2):820-822.
    [88] Sakuma, J.; Asakawa, Y.; Imahoko, T; et al. Generation of all-solid-state, high-powercontinuous-wave213-nm light based on sum-frequency mixing in CsLiB6O10[J]. Opt. Lett.2004,29(10):1096-1098.
    [89] Cheng, G.; Wang, Y.; Yu, L.; et al. High efficient second harmonic at416nm and fourth harmonicgeneration at208nm in compacted all-solid-state Ti: sapphire laser[J]. Chin. Lasers2004,31(7):769-772.
    [90] Wu, S.; Wu, Y. C.; Fu, P. Z.; et al. All solid-state193nm source with5mJ pulse energy[A]. In2003.
    [91] Togashi, T.; Kanai, T.; Sekikawa, T.; et al. Generation of vacuum-ultraviolet light by an opticallycontacted, prism-coupled KBe2BO3F2crystal[J]. Opt. Lett.2003,28(4):254-256.
    [92] Nakatsuka, M.; Fujioka, K.; Kanabe, T.; et al. Rapid growth over50mm/day of water-solubleKDP crystal[J]. J. Cryst. Growth1997,171(3):531-537.
    [93] Byrappa, K.; Yoshimura, M. Handbook of hydrothermal technology: a technology for crystalgrowth and materials processing[M]. WilliamAndrew,2001.
    [94] Liu, B.; Zeng, H. C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of50nm[J].J. Am. Chem. Soc.2003,125(15):4430-4431.
    [95] Jacco, J.; Loiacono, G.; Jaso, M.; et al. Flux growth and properties of KTiOPO4[J]. J. Cryst.Growth1984,70(1):484-488.
    [96] Aidong, J.; Fen, C.; Qi, L.; et al. Flux growth of large single crystals of low temperature phasebarium metaborate[J]. J. Cryst. Growth1986,79(1-3):963-969.
    [97] Polgár, K.; Peter, A.; F ldvári, I.; et al. Crystal growth and stoichiometry of LiNbO3prepared bythe fFlux method[J]. Opt. Mater.2002,19(1):7-11.
    [98] Hu, Z. G.; Higashiyama, T.; Yoshimura, M.; et al. Flux growth of the new nonlinear optical crystal:K2Al2B2O7[J]. J. Cryst. Growth2000,212(1):368-371.
    [99] Li, F.; Hou, X. L.; Pan, S. L.; et al. Growth, structure, and optical properties of a congruent meltingoxyborate, Bi2ZnOB2O6[J]. Chem. Mater.2009,21(13):2846-2850.
    [100] Li, F.; Hou, X. L.; Pan, S. L.; et al. Growth, Structure, and Optical Properties of a CongruentMelting Oxyborate, Bi2ZnOB2O6[J]. Chem. Mater.2009,21(13):2846-2850.
    [101] Kitamura, K.; Yamamoto, J.; Iyi, N.; et al. Stoichiometric LiNbO3single crystal growth bydouble crucible Czochralski method using automatic powder supply system[J]. J. Cryst. Growth1992,116(3-4):327-332.
    [102] Donnay, J.; Harker, D. A new law of crystal morphology extending the law of Bravais[J]. Am.Mineral.1937,22(5):446-467.
    [103]施尔畏,仲维卓,华素坤.关于负离子配位多面体生长基元模型[J].中国科学E辑,1998,28(1):37-45.
    [104]仲维卓,华素坤.晶体生长形态学[M].科学出版社,1999,98-105.
    [105]张运法.化学材料的发展与展望[J].科技资讯,2010,(5):143-143.
    [106]陶绪堂.新材料发展趋势[J].国际学术动态,2004,(3):29-31.
    [107] Zhang, W. L.; Cheng, W. D.; Zhang, H.; et al. A strong second-harmonic generation materialCd4BiO(BO3)3originating from3-chromophore asymmetric structures[J]. J. Am. Chem. Soc.2010,132(5):1508-1509.
    [108] Huang, Y. Z.; Wu, L. M.; Wu, X. T.; et al. Pb2B5O9I: an iodide borate with strong secondharmonic generation[J]. J. Am. Chem. Soc.2010,132(37):12788-12789.
    [109] Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; et al. Structural modulation of molybdenyl iodatearchitectures by alkali metal cations in AMoO3(IO3)(A=K, Rb, Cs): a facile route to new polarmaterials with large SHG responses[J]. J. Am. Chem. Soc.2002,124(9):1951-1957.
    [110] Ok, K. M.; Chi, E. O.; Halasyamani, P. S.; et al. Bulk characterization methods fornon-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity,and ferroelectricity[J]. Chem. Soc. Rev.2006,35(8):710-717.
    [111] Kong, F.; Huang, S. P.; Sun, Z. M.; et al. Se2(B2O7): A new type of second-order NLOmaterial[J]. J. Am. Chem. Soc.2006,128(24):7750-7751.
    [112] Chang, H. Y.; Kim, S. H.; Ok, K. M.; et al. Polar or nonpolar:A+cation polarity control inA2Ti(IO3)6(A=Li, Na, K, Rb, Cs, Tl)[J]. J. Am. Chem. Soc.2009,131(19):6865-6873.
    [113] Jiang, H. L.; Kong, F.; Fan, Y.; et al. ZnVSe2O7and Cd6V2Se5O21: new d10transition-metalselenites with V (IV) or V (V) cations[J]. Inorg. Chem.2008,47(16):7430-7437.
    [114] Zhang, W. G.; Tao, X. T.; Zhang, C.; et al. Bulk growth and characterization of a novel nonlinearoptical crystal BaTeMo2O9[J]. Cryst. Growth Des.2007,8(1):304-307.
    [1] Xu, K.; Loiseau, P. BaCaBO3F: A nonlinear optical crystal investigated for UV light generation[J].J. Cryst. Growth2009,311(8):2508-2512.
    [2] Zhang, H.;Wang, G.,Guo, L.; et al.175to210nm widely tunable deep-ultraviolet light generationbased on KBBF crystal[J]. Appl. Phys. B2008,93(2):323-326.
    [3] Kanai, T.; Kanda, T.; Sekikawa, T.; et al. Generation of vacuum-ultraviolet light below160nm ina KBBF crystal by the fifth harmonic of a single-mode Ti: sapphire laser[J]. J. Opt. Soc. Am. B2004,21(2):370-375.
    [4] Hu, Z. G.; Yoshimura, M.; Muramatsu, K.; et al. A new nonlinear optical crystal-BaAlBO3F2(BABF)[J]. Jap. J. Appl. Phys.2002,41(10B):1131-1133.
    [5] Schaffers, K. I.; DeLoach, L. D.; Ebbers, C. A; et al. Yb3+: BaCaBO3F: A potential newself-frequency-doubling laser material[A]. In1995.
    [6] Wu, H. P.; Pan, S. L.; Yu, H. W.; et al. Growth, thermal and optical properties of a novel nonlinearoptical material K3B6O10Cl[J]. CrystEngComm,2012,14(3):799-803.
    [7] Wu, H. P.; Pan, S. L.; Poeppelmeier, K. R.; et al. K3B6O10Cl: A new structure analogous toperovskite with a large second harmonic generation response and deep UV absorption edge[J]. J.Am. Chem. Soc.2011,133(20):7786-7790.
    [8] Sheldrick, G. M. SHELXTL[M]. version6.14. Bruker analytical X-ray instruments, Inc, Madison,WI,2003.
    [9] SAINT[M]. version7.60. Bruker analytical X–ray instruments, Inc.: Madison, WI,2008.
    [10]Spek, A. L. Single-crystal structure validation with the program PLATON[J]. J. Appl. Cryst.2003,36:7-13.
    [11] Brown, I.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of theinorganic crystal structure database[J]. Acta Cryst. Section B1985,41(4):244-247.
    [12] Brese, N.; O'keeffe, M. Bond-valence parameters for solids[J]. Acta Cryst. Section B1991,47(2):192-197.
    [13] Zhao, W.; Pan, S. L.; Han, J.; et al. Synthesis, crystal structure and optical properties of a new leadfluoride borate with isolated [B9O15-21]unit[J]. Inorg. Chem. Comm.2011,14(4):566-568.
    [14] Zhang, M.; Pan, S. L.; Han, J.; et al. Synthesis, crystal structure and optical properties of a novelsodium lead pentaborate, NaPbB5O9[J]. J. Solid State Chem.2011,184(4):824-829.
    [15] McMillen, C. D.; Hu, J.; VanDerveer, D.; et al. Trigonal structures of ABe2BO3F2(A=Rb, Cs, Tl)crystals[J]. Acta Cryst. Section B2009,65(4):445-449.
    [16] Pan, S. L.; Smit, J. P.; Marvel, M. R.; et al. Synthesis, structure and properties of Pb2CuB2O6[J].Mater. Res. Bull.2006,41(5):916-924.
    [17] Pan, S. L.; Smit, J. P.; Lanier, C. H.; et al. Optical floating zone growth of β-BaB2O4from aLiBa2B5O10-based solvent[J]. Cryst. Growth Des.2007,7(8):1561-1564.
    [18] Pan, S. L.; Smit, J. P.; Watkins, B.; et al. Synthesis, crystal structure, and nonlinear opticalproperties of Li6CuB4O10: a congruently melting compound with isolated [CuB-)4O10](6units[J]. J.Am. Chem. Soc.2006,128(35):11631-11634.
    [19]张国春,李云阁,傅佩珍. Na3La2(BO3)3的晶体结构[J].人工晶体学报2004,33(4):490-495.
    [20] Kurtz, S.; Perry, T. A powder technique for the evaluation of nonlinear optical materials[J]. J. Appl.Phys.1968,39(8):3798-3813.
    [21] Yoshimura, M.; Mori, Y.; Hu, Z. G.; et al. Growth and characterization of nonlinear optical boratecrystals CsLiB6O10, CsB3O5, and BaAlBO3F2[J]. Opt. Mater.2004,26(4):421-423.
    [22] Zhang, G. C.; Wu, Y. C.; Li, Y.; et al. Flux growth and characterization of a new oxyborate crystalNa3La9O3(BO3)8[J]. J.Cryst. Growth2005,275(1-2):1997-2001.
    [23] Li, Z.; Wu, Y. C.; Fu, P. Z.; et al. Flux growth of BPO4crystals[J]. J. Cryst. Growth2004,270(3-4):486-490.
    [24] Pan, S. L.; Wu, Y. C.; Fu, P. Z.; et al. Flux growth of single crystals of BaBPO5[J]. Chem. Lett.2001,30(7):628-629.
    [25] Sabharwal, S.; Tiwari, B. Investigations on the growth of LiB3O5crystal by top-seeded solutiongrowth technique[J]. J. Cryst. Growth2004,263(1):327-331.
    [26] Chen, G. J.; Wu, Y. C.; Fu, P. Z.; et al. Crystal growth of CsB3O5from NaF flux[J].结构化学,2007,26(9):56-58.
    [27] Ding, Y.; Li, Q.; Jia, Y.; et al. Growth of single crystal selenium with different morphologies via asolvothermal method[J]. J. Cryst. Growth2002,241(4):489-497.
    [28] Fan, X. Y.; Pan, S. L.; Hou, X. L.; et al. Flux growth and morphology analysis of Na3VO2B6O11crystals[J]. J. Cryst. Growth2010,312(15):2263-2266.
    [29] Krasiński, M. J.; Prywer, J. Growth morphology of sodium fluorosilicate crystals and its analysisin base of relative growth rates[J]. J. Cryst. Growth2007,303(1):105-109.
    [30] Prywer, J. Kinetic and geometric determination of the growth morphology of bulk crystals: recentdevelopments[J]. Progress in Crystal Growth and Characterization of Mater.2005,50(1-3):1-38.
    [31] Solanki, S.; Chong, T. C.; Xu, X.; et al. Flux growth and morphology study of stoichiometriclithium niobate crystals[J]. J. Cryst. Growth2003,250(1-2):134-138.
    [32] Thompson, C.; Davies, M. C.; Roberts, C. J.; et al. The effects of additives on the growth andmorphology of paracetamol (acetaminophen) crystals[J]. Int. J. Pharm.2004,280(1-2):137-50.
    [33] Wang, J.; Fu, P. Z.; Wu, Y. C.; et al. Top-seeded growth and morphology of La2CaB10O19crystals[J]. J. Cryst. Growth2002,235(6):5-7.
    [34] Zhang, X. H.; He, T. H.; Zhong, W. Z.; et al. The best growth direction for KABO crystal and itsmechanism[J]. J. Cryst. Growth2006,294(2):315-317.
    [35] Zhang, W. G.; Tao, X. T.; Zhang, C.; et al. Yu, W. Bulk growth and characterization of a novelnonlinear optical crystal BaTeMo2O9[J]. Cryst. Growth Des.2008,8(1):304-307.
    [36]黄凌雄;张戈;黄呈辉;魏勇;位民, BiB3O6晶体主轴折射率及其温度系数.光子学报,2006,35(7):1005-1007.
    [37] Liu, X. J.; Wang, Z. Y.; Wang, X. Q.; et al. Morphology and physical properties of L-Argininetrifluoroacetate crystals[J]. Cryst.Growth Des.2008,8(7):2270-2274.
    [38] Wang, X.; Zhang, G.; Zhao, Y.; et al. Optical properties of BaCaBO3F crystal[J]. Opt. Mater.2007,29(12):1658-1661.
    [39] Wang, G.; Wu, Y. C.; Fu, P. Z.; et al. Crystal growth and properties of β-Zn3BPO7[J]. Chem. Mater.2002,14(5):2044-2047.
    [40] Jerphagnon, J. Invariants of the third-rank cartesian tensor: optical nonlinear susceptibilities[J].Phys. Rev. B1970,2(4):1091-1095.
    [41] Jerphagnon, J.; Kurtz, S. K. Maker Fringes: a detailed comparison of theory and experiment forisotropic and uniaxial crystals[J]. J. Appl. Phys.1970,41(4):1667-1681.
    [42] Jerphagnon, J.; Kurtz, S. K. Optical nonlinear susceptibilities: accurate relative values for Quartz,ammonium dihydrogen phosphate, and potassium dihydrogen phosphate[J]. Phys. Rev. B1970,1(4):1739-1741.
    [43] Bechthold, P. S.; Haussühl, S. Nonlinear optical properties of orthorhombic barium formate andmagnesium barium fluoride[J]. Appl. Phys. A. Mater. Sci. Proc.1977,14(4):403-410.
    [44] Dmitriev, V. G.; Nikogosyan, D. N. Effective nonlinearity coefficients for three-wave interactionsin biaxial crystal of mm2point group symmetry[J]. Opt. Comm.1993,95(1-3):173-182.
    [45] Faccio, D.; Pruneri, V.; Kazansky, P. G.; et al. Noncollinear Maker's fringe measurements ofsecond-order nonlinear optical layers[J]. Opt. Lett.2000,25(18):1376-1378.
    [46] Tzankov, P.; Petrov, V. Effective second-order nonlinearity in acentric optical crystals with lowsymmetry[J]. Appl. Opt.2005,44(32):6971-6985.
    [1] Chang, H. Y.; Kim, S. H.; Ok, K. M.; et al. New polar oxides: synthesis, characterization,calculations, and structure-property relationships in RbSe2V3O12and TlSe2V3O12[J]. Chem. Mater.2009,21(8):1654-1662.
    [2] Mao, J. G.; Jiang, H.; Kong, F.; et al. Structures and properties of functional metal selenites andtellurites[J]. Inorg. Chem.2008,47(19):8498-8510.
    [3] Halasyamani, P. S. Asymmetric cation coordination in oxide materials: influence of lone-paircations on the intra-octahedral distortion in d0transition metals[J]. Chem. Mater.2004,16(19):3586-3592.
    [4] Jiang, H.; Kong, F.; Fan, Y.; Mao, J. G.; et al. ZnVSe2O7and Cd6V2Se5O21: New d10transition-metal selenites with V(IV) or V(V) cations[J]. Inorg. Chem.2008,47(16):7430-7437.
    [5] Chang, H.; Kim, S.; Ok, K. M. Polar or nonpolar: A+cation polarity control in A2Ti(IO3)6(A=Li,Na, K, Rb, Cs, Tl)[J]. J. Am. Chem. Soc.2009,131(19):6865-6873.
    [6] Chang, H.; Kim, S.; Halasyamani, P. S.; Ok, K. M.; et al. Alignment of lone pairs in a new polarmaterial: synthesis, characterization, and functional properties of Li2Ti(IO3)6[J]. J. Am. Chem. Soc.2009,131(7):2426-2427.
    [7] Fan, X. Y.; Pan, S. L.; Hou, X. L.; et al. Growth and properties of single crystals ofnoncentrosymmetric Na3VO2B6O11[J]. Cryst. Growth Des.2010,10(1):252-256.
    [8] Zhang, W. G.; Tao, X. T.; Zhang, C.; et al. Structure and thermal properties of the nonlinear opticalcrystal BaTeMo2O9[J]. Cryst. Growth Des.2009,9(6):2633-2636.
    [9] Kong, F.; Huang, S.; Mao, J. G.; et al. Se2(B2O7): a new type of second-order NLO material[J]. J.Am. Chem. Soc.2006,128(24):7750-7751.
    [10]Kim, J. H.; Baek, J.; Halasyamani, P. S.; et al.(NH4)2Te2WO8: a new polar oxide withsecond-harmonic generating, ferroelectric, and pyroelectric properties[J]. Chem. Mater.2008,20(10):3542-3542.
    [11] Bera,T. K.; Jang, J. I.; Kanatzidis, M. G.; et al. Strong second harmonic generation from thetantalum thioarsenates A3Ta2AsS11(A=K and Rb)[J]. J.Am. Chem. Soc.2009,131(1):75-77.
    [12] Bera,T. K.; Song, J. H.; Freeman, A. J.; et al. Soluble direct-band-gap semiconductors LiAsS2andNaAsS2: large electronic structure effects from weak As S interactions and strong nonlinearoptical response[J]. Angew. Chem. Int. Ed.2008,47(41):7828-7832.
    [13] SAINT[M]. version7.60. Bruker Analytical X–ray Instruments, Inc.: Madison, WI,2008.
    [14] Sheldrick, G. M. SHELXTL[M]. version6.14. Bruker analytical X-ray instruments, Inc, Madison,WI,2003.
    [15] Spek, A. L. Single-crystal structure validation with the program PLATON[J]. J. Appl. Cryst.2003,36:7-13.
    [16] Zhao, W. W.; Pan, S. L.; Han, J.; et al. Synthesis, crystal structure and optical properties of a newlead fluoride borate with isolated [B9O21]15-unit[J]. Inorg. Chem. Comm.2011,47(41):7828-7832.
    [17] Yang, Y.; Pan, S. L.; Hou, X. L.; et al. A congruently melting and deep UV nonlinear opticalmaterial: Li3Cs2B5O10[J]. J. Mater. Chem.,2011,21(9):2890-2894.
    [18] Chen, X. A.; Li, M.; Chang, X.; et al. Synthesis and crystal structure of a novel pentaborate,Na3ZnB5O10[J]. J. Solid State Chem.2007,180(5):1658-1663.
    [19] Clark, S. J.; Segall, M. D.; Pickard, C. J.; et al. First principles methods using CASTEP[J], Z.Kristallogr,2005,220(5-6):567-570.
    [20] Perdew, J. P.; M. Levy, Physical content of the exact Kohn-Sham orbital energies: band gaps andderivative discontinuities[J]. Phys. Rev. Lett.1983,51(20):1884-1887.
    [1] Bubnova, R.; Dinnebier, R.; Filatov, S.; et al. Crystal structure, thermal and compositionaldeformations of β-CsB5O8[J]. Cryst. Res. Technology2007,42(2):143-150.
    [2] Penin, N.; Seguin, L.; Touboul, M.; et al. Crystal structures of three MB5O8(M=Cs, Rb) borates(alpha-CsB5O8, gamma-CsB5O8, and beta-RbB5O8)[J]. J. Solid State Chem.2001,161(2):205-213.
    [3] Kwon, O. P.; Ruiz, B.; Choubey, A.; et al. Organic nonlinear optical crystals based onconfigurationally locked polyene for melt growth[J]. Chem. Mater.2006,18(17):4049-4054.
    [4] Kannan, C.; Kimura, H.; Miyazaki, A.; et al. Nucleation, growth and characterization of LiB3O5single crystals[J]. J. Cryst. Growth2005,275(1):769-774.
    [5] Wang, G.; Wu, Y.; Liu, H.; et al. Crystal growth of magnesium zinc borophosphate[J]. Chem. Lett.2002,31(6):620-621.
    [6] Koporulina, E.; Pilipenko, O.; Maltsev, V.; et al. Flux growth, morphology and composition ofYAl3(BO3)4crystals doped with Pr, Ho, Yb, Tm[J]. J. Opt. Adv. Mater.2003,5(3):615-620.
    [7] Chen, W.; Jiang, A.; Wang, G.; et al. Growth of high-quality and large-sized β-BaB2O4crystal[J]. J.Cryst. Growth2003,256(3–4):383-386.
    [8] Sheldrick, G. M. SHELXTL[M]. version6.14. Bruker Analytical X-ray Instruments, Inc, Madison,WI,2003.
    [9] SAINT[M]. version7.60. Bruker analytical X–ray instruments, Inc.: Madison, WI,2008.
    [10] Spek, A. L. Single-crystal structure validation with the program PLATON[J]. J. Appl. Cryst.2003,36:7-13.
    [11] Chen, X. A.; Li, M.; Chang, X.; et al. Synthesis and crystal structure of a novel pentaborate,Na3ZnB5O10[J]. J. Solid State Chem.2007,180(5):1658-1663.
    [12] Gao, W. L; Wang, Y. X; Li, G. B.; et al. Synthesis and structure of an aluminum borate chlorideconsisting of12-membered borate rings and aluminate clusters[J]. Inorg. Chem.2008,47(2):7800-7802.
    [13] Barbier, J.; Penin, N.; Denoyer, A.; et al. BaBiBO4, a novel non-centrosymmetric borate oxide[J].Solid State Sci.2005,7(9):1055-1061.
    [14] Barbier, J.; Penin, N.; Cranswick, L.; et al. Melilite-Type Borates Bi2ZnB2O7and CaBiGaB2O7[J].Chem. Mater.2005,17(12):3130-3136.
    [15] Chang, F.; Fu, P. Z.; Wu, Y. C.; et al. Growth of large CsB3O5crystals[J]. J. Cryst. Growth2005,277(1-4):298-302.
    [16] Li, Z.; Wu, Y. C.; Fu, P. Z.; et al. Czochralski crystal growth and properties of Na5[B2P3O13][J]. J.Cryst. Growth2003,255(1-2):119-122.
    [17] Garrett, J. D.; Iyer, M. N.; Greedan, J. E.; et al. The czochralski growth of LiBO2and Li2B4O7[J]. J.Cryst. Growth1977,41(2):225-227.
    [18] Huang, H.; Yao, J. Y.; Lin, Z. S.; et al. NaSr3Be3B3O9F4: A promising deep‐ultraviolet nonlinearoptical material resulting from the cooperative alignment of the [Be3B3O12F]10anionic group[J].Angew. Chem. Int. Ed.2011,123(39):9307-9310.
    [19] Krogh-Moe, J. The cation distribution in some crystalline and vitreous cesium borates[J]. Arkivfoer Kemi1959,14(2):451-459.
    [1] López-Garabito, C.; Campo, J. A.; Heras, J. V. Agulló-López F.; et al. Second-order nonlinearperformance of poly(methyl methacrylate) Films with dispersed donor-acceptor organobimetalliccompounds[J]. J. Phys. Chem. B1998,102(2):10698-10706.
    [2] Bhat, S. I.; Rao, P. M.; Bhat, A. P.; et al. Growth and characterisation of a new promising NLOmixed borate crystal[J]. J. Cryst. Growth2001,233(1-2):208-210.
    [3] Rayes, A.; Ben-Nasr, C.; Rzaigui, A.; et al. Synthesis and crystal structures of a new(2,3-(CH3)(2)C6H3NH3)H2XO4(X=P, As)[J]. Mater. Res. Bull.2004,39(7-8):1113-1121.
    [4] Fan X. Y.; Pan S. L.; Hou, X. L.; et al. Semiorganic nonlinear optical material: preparation andproperties of (NH4) Sr[L-(+)-C4H2O6B(OH)2]4H2O[J]. Inorg. Chem.2009,48(9):4806-4810.
    [5] Zyss, J.; Chemla, D. S. Nonlinear optical properties of organic molecules and crystals, eds. J. F.Nicoud and R. J. Twieg, Academic Press, New York,1987,1:227.
    [6] Keszler, D. A. Synthesis, crystal chemistry, and optical properties of metal borates. Curr. Opin[J].Solid State Mater. Sci.1999,4(1):155-162.
    [7] Becker, P. Borate materials in nonlinear optics[J]. Adv. Mater.1998,10(13):979-992.
    [8] Chen, C.T.; Wang, G. L.; Wang, X. Y.; et al. Deep-UV nonlinear optical crystalKBe2BO3F2-discovery, growth, optical properties and applications[J]. Appl. Phys. B2009,97(2):9-25.
    [9] David, C. China’s crystal cache[J]. Nature2009,457.953-955.
    [10] Chen, C. T.; Wang, Y. B.; Wu, B. C.; et al. Design and synthesis of an ultraviolet-transparentnonlinear optical crystal Sr2Be2B2O[J]. Nature1995,373(26):322-324
    [11] Knyrim, J. S.; Becker, P.; Johrendt, D.; et al. A new non-centrosymmetric modification ofBiB3O6[J]. Angew. Chem. Int. Ed.2006,45(8):8239-8241.
    [12] Agarwal, M. D.; Choi, J.; Wang, W. S.; et al. Solution growth of a novel nonlinear optical material:L-histidine tetrafluoroborate[J]. J Cryst. Growth1999,204(3):179-183.
    [13] Lintner, B.; Arfsten, N.; Dislich, H.; et al. A first look at the optical properties of ormosils[J]. J.Non-Cryst. Solids1988,100(1-3):378-379.
    [14] Finn, M. G.; Sharpless, K. B. Mechanism of asymmetric epoxidation[J]. J. Am. Chem. Soc.1991,113(1):113-126.
    [15] Bou, J. J.; Rodriguez-Galan, A.; Munoz-Guerra, S.; et al. Optically active polyamides derived fromL-tartaric acid. macromolecules[J]. Macromolecules1993,26(21):5664-5670.
    [16] Miller, F. A.; Wilkins, C. H. Infrared spectra and characteristic frequencies of inorganic ions: theiruse in qualitative analysis[J]. Anal. Chem.1952,24(8):1253-1294.
    [17] Kumar, T. K.; Janarthanan, S.; Pandi, S.; et al. Spectral, dielectric, and thermal properties oftriketohydrindane hydrate single crystals[J]. Cryst. Growth Des.2009,9(5):2061-2064.
    [18] Kubelka, P. New contributions to the optics of intensely lightscattering materials[J]. J. Opt. Soc.Am.1948,38(5):448-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700