用户名: 密码: 验证码:
苯并氧杂蒽类化合物,4,4'-芳亚甲基—二(3-甲基—吡咯酮)类化合物以及手性噁唑啉类化合物的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(一)苯并氧杂蒽类化合物应用范围广,这类化合物有着许多的生物和药学功效,比如作为止痛剂,抗炎药,抗菌药,抗病毒的活性体以及荧光材料等。
     由于苯并氧杂蒽类化合物的应用价值,科研人员开发出了很多的催化合成方法。主要包括:Sr(OTf)_2、相转移催化剂四丁基溴化铵、NaHSO_4/SiO_2、InCl_3和P_2O_5、I2、对甲苯磺酸、分子筛、Cu/SiO_2、脯氨酸的三氟甲磺酸盐、硝酸铈铵(CAN)以及樟脑磺酸(CSA)。这些方法都有各自的优点,但是正如硬币都有两面一样,同时也有某些缺点。比如反应时间较长(5-7小时)、使用毒性较大的有机溶剂(1,2-二氯乙烷)、催化剂有毒(Cu)或者具有较强腐蚀性(P_2O_5)以及催化剂成本较高(Sr(OTf)_2,InCl_3)等。
     显然,目前的这些合成方法都是不符合“绿色化学”的理念的,有必要开发出新的合成方法。我们首次使用Br nsted酸性离子液体和ZrOCl_28H_2O作为催化剂,开发出了两种高效的绿色合成方法。
     我们采用三种方法以较高的产率合成了9种离子液体,并且通过实验从中选择出了最佳的催化剂---[NSPTEA][HSO_4][N-(4-sulfonic acid) propyltriethylammonium hydrosulfate]。然后分别使用[NSPTEA][HSO_4]和ZrOCl_28H_2O作为催化剂,开发出了苯并氧杂蒽类化合物的新的合成方法。
     在实验中,我们以较高的产率合成了16种苯并氧杂蒽类化合物。相对于已经报道的合成方法,我们新开发的方法具有以下显著的优点:
     (1)产率高,74%-87%。
     (2)反应时间大幅缩短,只需要10-30min。
     (3)反应过程中不需要使用溶剂,既节约了成本,又降低了污染。
     (4)[NSPTEA][HSO_4]可以重复利用。
     (5)[NSPTEA][HSO_4]和ZrOCl_28H_2O几乎没有腐蚀性和毒性。
     (6)[NSPTEA][HSO_4]的制备非常简单,原材料廉价易得。
     (7) ZrOCl_28H_2O的存量很大,价格低廉,使用成本低。
     (8)[NSPTEA][HSO_4]和ZrOCl_28H_2O对水稳定,具备良好的可操作性。
     (二)吡咯环是很多具有生物活性化合物的核心结构,4,4’-芳亚甲基-二(3-甲基-吡咯酮)类化合物可以用来作为杀菌剂,农药,杀虫剂,染料,以及不同的金属离子螯合剂和提取试剂使用。
     4,4’-芳亚甲基-二(3-甲基-吡咯酮)类化合物的传统合成方法主要有两套路线:
     (1)以醛和吡咯酮为反应物。首先一分子醛和一分子3-甲基-2-吡唑啉-5-酮通过Knoevenagel反应合成芳亚甲基吡唑酮,然后在碱的催化作用下,另外一分子3-甲基-2-吡唑啉-5-酮再和芳亚甲基吡唑酮进行Michael加成反应,最后得到4,4’-芳亚甲基-二(3-甲基-吡咯酮)类化合物。典型的反应条件是以乙醇作溶剂,哌啶作为催化剂。(2)通过一分子醛和两分子3-甲基-2-吡唑啉-5-酮在酸的作用下进行加成反应,合成4,4’-芳亚甲基-二(3-甲基-吡咯酮)类化合物。该路线的典型反应条件是以乙醇或者以苯作为溶剂,在回流的温度下进行反应。虽然这种方法的产率较高,可以达到70%-90%。然而该方法的反应时间较长:首先需要回流3-12小时,然后在室温下再进行24小时。
     通过对这两套方法的思考,我们发现无论是路线(1)还是路线(2),都需要使用3-甲基-2-吡唑啉-5-酮作为反应底物。而3-甲基-2-吡唑啉-5-酮这一化合物通常情况下不太容易从市场上购买到,需要实验人员的预先合成。根据文献所述,3-甲基-2-吡唑啉-5-酮的合成往往需要在乙醇作溶剂的情况下回流1-3小时。而且粗产品还需要经过重结晶的纯化过程。因此导致路线(1)和路线(2)的总的实验流程加长,而且操作变得繁琐,同时合成的总产率也会相应的降低。
     我们组创新的运用多组分一锅法,从醛、乙酰乙酸乙酯和水合肼出发,直接合成了4,4’-芳亚甲基-二(3-甲基-吡咯酮)类化合物,我们开发的合成方法的主要优点是:
     (1)使用水作为反应的溶剂,从而避免了使用有机溶剂所造成的污染。
     (2)不需要预先合成3-甲基-2-吡唑啉-5-酮,减少了合成步骤,节省了人力、物力和时间。
     (3)产率较高(72%-85%),反应时间缩短至6-8小时。
     (4)不需要使用催化剂。
     (三)含有噁唑啉环的化合物有着很重要的作用,也因此科研人员开发出了很多合成方法。然而这些合成方法也存在一些缺点,比如反应所需条件较苛刻,需要160-220℃的高温,或者是反应所需时间太长(12-18小时)以及使用昂贵的试剂等。
     我们组结合前期的工作,转换合成角度,开发出了一种新的合成方法。首先将多种手性氨基酸还原成手性氨基醇,然后和N-[氯(二甲氨基)甲基]-N-甲胺盐氯(TMUCl Cl)进行反应,以较高的产率得到了手性的噁唑啉类化合物。我们开发的方法的优点如下:
     (1)反应中所用到的原材料都是廉价易得的。
     (2)不需要苛刻的反应条件,室温下反应即可。
     (3)产率高,时间短(5小时)。
     (4)纯化过程简单,经过减压蒸馏就可以得到纯品,因而适于大量制备。
(1) Benzoxanthene compounds have many applications. They have manybiological and pharmaceutical effects, such as analgesics, anti-inflammatory drugs,antibacterial drugs, anti-viral activity and the fluorescent material.
     Because of the value of the benzoxanthene compounds, the researchersdeveloped many synthetic methods, including Sr(OTf)_2, phase transfer catalysttetrabutylammonium bromide, NaHSO_4/SiO_2, InCl_3and P_2O_5, I2, toluenesulfonicacid, molecular sieves, Cu/SiO_2, proline trifluoromethane sulfonate, cericammonium nitrate (CAN) and camphor sulfonic acid (CSA). These methods havetheir own advantages, but as a coin has two sides, also have some drawbacks, suchas long reaction time (5-7hours), toxic organic solvents, toxic metal catalysts,corrosive catalyst, and expensive catalyst.
     Clearly, these methods are not in line with the concept of "green chemistry", itis necessary to develop new synthetic method. We developed a new syntheticmethod using [NSPTEA][HSO_4] and ZrOCl_28H_2O as catalyst for the synthesis ofbenzoxanthene compounds
     Compared to the reported synthetic methods, our newly developed method hasthe following significant advantages:
     a) High yield,74%-87%.
     b) The reaction time is significantly shortened, only requires10-30min.
     c) The reaction does not require solvents.
     d)[NSPTEA][HSO_4] can be reused.
     e)[NSPTEA][HSO_4], and ZrOCl_28H_2O are not corrosive or toxic at all.
     f) The preparation of [NSPTEA][HSO_4] is very simple. And the rawmaterials are cheap and easy to get.
     g) ZrOCl_28H_2O costs lower.
     h)[NSPTEA][HSO_4] and ZrOCl_28H_2O are water stable.
     (2) Pyrrole ring is the core structure of biologically active compounds, andtherefore arise widespread concern in the pharmaceutical industry. And it hasbecome one of the synthetic target molecules. Moreover, derivatives of4,4'-arylidene-bis (3-methyl-pyrazolones) can be used as fungicides, pesticides,insecticides, dyes, and different metal ion chelators and extraction reagents.
     However, the overall reaction yields and time are unsatisfying and lengthy. Sothere is still need to develop a new and convenient method for the synthesis of4,4’-arylidene-bis(3-methyl-pyrazolones).
     Our group developed a multi-component one-pot method, starting directly fromaldehydes, ethyl acetoacetate and hydrazine hydrate, for the synthesis of4,4'-arylidene-bis (3-methyl-pyrazolones) compounds. The advantages of our methodare:1) more simple procedure,2) high yields,3) shorter reaction time,4) avoid theuse of organic solvents which is harmful to environment.
     (3) Oxazolines are important class of heterocyclic compounds with a wide rangeof pharmaceutical and biological activities. In addition, these compounds have alsovarious synthetic uses in modern day chemistry which play an important role inasymmetric synthesis. Numerous methods have been developed for the preparationof2-substituted oxazolines. However, these methods have some shortcomings,including drastic thermal conditions (160–220℃), long reaction times (12–18h),modest yields, expensive coupling reagents.
     We have developed a new, simple and mild synthesis of optically active2-(N,N-dialkyl)oxazolines by only two or three steps from cheap tetraalkyl ureas andα-amino acids with good overall yields. These new2-(N, N-dialkyl)oxazolines maybe potential chiral auxiliaries or ligands, and are being investigated in our laboratoryfor further application.
引文
[1] WALDEN P. Molecular weights and electrical conductivity of several fused salts [J]. BullAcad Imper Sci (St Petersburg),1914:405-422.
    [2] SUGDEN S, WILKINS H. CLXVII.—The parachor and chemical constitution. Part XII.Fused metals and salts [J]. J Chem Soc,1929:1291-1298.
    [3] HUSSEY C L. Room-temperature molten salt systems [J]. Adv Molten Salt Chem,1983,5:185-229.
    [4] LAROCK R C. Comprehensive Organic Transformations, VCH, New York,2nd edn,1999.
    [5] MAKI A M, SALMI T, SUNDELL M, EKMAN K, PELTONEN R, LEHTON J. Comparisonof polyvinylbenzene and polyolefin supported sulphonic acid catalysts in the esterification ofacetic acid [J]. Appl Catal A: Gen,1985,184:25-32.
    [6] HINO M, ARATA K. Synthesis of esters from terephthalic and phthalic acids with n-octyland2-ethylhexyl alcohol, acrylic acid with ethanol and salicylic acid with metha [J]. ApplCatal,1985,18:401-404.
    [7] SCHWEGLER M A, VAN BEKKUM H. Synthesis of esters from terephthalic and phthalicacids with n-octyl and2-ethylhexyl alcohol, acrylic acid with ethanol and salicylic acid withmetha [J]. Appl Catal,1999,74:191-194.
    [8] ZHU H P, YANG F, TANG J, HE MY. Br nsted acidic ionic liquid1-methylimidazoliumtetrafluoroborate: a green catalyst and recyclable medium for esterification [J]. Green Chem,2003,5:38-39.
    [9] XING H B, WANG T, ZHOU Z H, DAI Y Y. Novel Br nsted-Acidic Ionic Liquids forEsterifications [J]. Ind Eng Chem Res,2005,44(11):4147-4150.
    [10] FRAGA D J, BOURAHLA K, RAHMOUNI M, BAZUREAU J P, HAMELIN J. Catalysedesterifications in room temperature ionic liquids with acidic counteranion as recyclablereaction media [J]. Catal Commun2002,3:185–190.
    [11] SHI H, ZHU W H,LI H M, LIU M, ZHANG M, YAN Y S,WANG Z J.Microwave-accelerated esterification of salicylic acid using Br nsted acidic ionic liquids ascatalysts [J]. Catal Commun,2010,11:588-591.
    [12] NGUYEN H P, ZNIFECHE S, BABOULENE M. An Improved Greener Esterification ofFatty Alcohols Using a Renewable Acid–Ionic Liquid Couple as Catalyst‐Solvent [J] SynthCommun,2004,34:2085-2094
    [13] ARFAN A, BAZUREAU J P. Efficient Combination of Recyclable Task Specific IonicLiquid and Microwave Dielectric Heating for the Synthesis of Lipophilic Esters [J]. Org ProcRes Dev2005,9:743-748.
    [14] XING H, WANG T, ZHOU Z, DAI Y. Novel Bronsted-Acidic Ionic Liquids forEsterifications [J].Ind Eng Chem Res2005,44:4147-4150.
    [15] JOSEPH T, SAHOO S, HALLIGUDI SB. Novel Br nsted acidic ionic liquid as efficient andreusable catalyst system for esterification [J]. J Mol Catal A: Chem,2005,234:107-110.
    [16] FORBES D C, WEAVER K J. Br nsted acidic ionic liquids: the dependence on water of theFischer esterification of acetic acid and ethanol [J]. J Mol Catal A: Chem,2004,214129.
    [17] GUI J, CONG X, LIU D, ZHANG X, HU Z, SUN Z. Novel Br nsted acidic ionic liquid asefficient and reusable catalyst system for esterification [J]. Catal Commun,2004,5:473-477.
    [18] AREND M, WESTERMANN N, RISCH N. Modern Variants of the Mannich Reaction [J].Angew Chem, Int Ed Eng l,1998,37(8):1044-1070.
    [19] LIST B, POJARLIEV P, BILER W T, MARTIN H J. The Proline-Catalyzed DirectAsymmetric Three-Component Mannich Reaction: Scope, Optimization, and Applicationto the Highly Enantioselective Synthesis of1,2-Amino Alcohols [J]. J Am Chem Soc,2002,124:827-833.
    [20] LIST B. The Direct Catalytic Asymmetric Three-Component Mannich Reaction [J]. J AmChem Soc,2000,122:9336-9337.
    [21] Duthaler R O. Proline‐C atalyzed Asymmetric α‐Amination of Aldehydes andKetones—An Astonishingly Simple Access to Optically Active α‐Hydrazino CarbonylCompounds [J]. Angew Chem Int Ed.2003,42:975-978.
    [22] MANABE K, MORI Y, KOBAYASHI S. Three-component carbon–carbon bond-formingreactions catalyzed by a Br nsted acid–surfactant-combined catalyst in water [J]. Tetrahedron,2001,57:2537-2544.
    [23] KOBAYASHI S, HAMADA T, MANABE K. The Catalytic Asymmetric Mannich-TypeReactions in Aqueous Media [J]. J Am Chem Soc,2002,124:5640-5641.
    [24] DESAI P, SCHILDKNEGT K, AGRIOS K A, MOSSMAN C, MILIGAN G L, AUBE J.Reactions of Alkyl Azides and Ketones as Mediated by Lewis Acids: Schmidt and MannichReactions Using Azide Precursors [J]. J Am Chem Soc,2000,122:7226-7232.
    [25] SHIMIZU M, ITOHARA S. Chemoselective Imino Aldol Reaction Promoted by aCation-Exchange Resin [J]. Synlett,2000,12:1828-1830.
    [26] DONG F, FEI Z H, LIU Z L. Functionalized ionic liquid as the recyclable catalyst forMannich-type reaction in aqueous media [J]. Catal Commun,2009,10:1267–1270.
    [27] Arundale E, Mikeska L A. The Olefin-Aldehyde Condensation. The Prins Reaction [J]. ChemRev,1952,51:505–555
    [28] KUMAR H M S, QAZI N A, SHAFI S, KUMAR V N. Barbier allylation–Prins reaction ofPEG-bound aldehydes—soluble polymer-supported synthesis of2,4,6-trisubstitutedtetrahydropyrans [J]. Tetrahedron Lett,2005,46:7205-7207.
    [29] ARUNDALE E, MIKESKA L A. The Olefin-Aldehyde Condensation. The Prins Reaction.[J].Chem Rev,1952,51:505-555.
    [30] YADAV J S, REDDY B V, BHAISHYA G. InBr3–[bmim]PF6: a novel and recyclablecatalytic system for the synthesis of1,3-dioxane derivatives [J]. Green Chem,2003,5:264-266.
    [31] CHAN K P, LOH T P. Lewis acid-catalyzed one-pot crossed Prins cyclizations usingallylchlorosilane as allylating agent [J]. Tetrahedron Lett,2004,45:8387-8390.
    [32] DZIEDZIC M, LIPNER G, FURMAN G. An efficient approach to the synthesis of3-vinylidene tetrahydropyrans via Prins-type cyclization [J]. Tetrahedron Lett,2005,46:6861-6863.
    [33] DU Y, TIAN F. Efficient synthesis of1,3-dioxanes catalyzed by trifluoromethanesulfonicacid using formalin as formaldehyde source [J]. Catal Commun,2007,8:2012-2016.
    [34] LI G, GU Y, DING Y, ZHANG H, WANG J, GAO Q, YAN L, SUO J. Wells–Dawson typemolybdovanadophosphoric heteropolyacids catalyzed Prins cyclization of alkenes withparaformaldehyde under mild conditions—a facile and efficient method to1,3-dioxanederivatives [J]. J Mol Catal A: Chem,2004,218:147-152.
    [35] VADAV M K, JASRA R V. Synthesis of nopol from β-pinene using ZnCl2impregnatedIndian Montmorillonite [J]. Catal Commun,2006,7:889-895.
    [36] WANG H, LIU Z, SUN C, WANG G. Liquid-phase catalytic synthesis of2,5-dimethyl-2,4-hexadiene by condensation of iso-butyl aldehyde with tert-butyl alcohol over solid acidiccatalysts [J]. Catal Today,2004,93-95:425-431.
    [37] SREEDHAR B, SWAPNA V, SRIDHAR C, SAILEELA D, SUNITHA A. Facile andEfficient Method for the Prins Reactions of Styrenes and Homoallyl Alcohols to1,3‐D ioxanes and4‐T etrahydropyranols Using Bismuth(III) Triflate [J]. Synth Commun,2005,35:1177-82.
    [38] DONG F, JIAO C M, ZHANG H B, JI B H. Synthesis of dioxanes via Prins reactioncatalyzed by acyclic acidic ionic liquids [J]. Journal of Industrial and Engineering Chemistry,2010,16:233-237.
    [39] LI R, KENYON G L, COHEN F E, CHEN X, GONG B, DOMINGUEZ J N. Davison E,Kurzban G, Miller R E, Nuzman E O. In Vitro Antimalarial Activity of Chalcones and TheirDerivatives [J]. J Med Chem,1995,38:5031-5037.
    [40] BALLESTEROS J F, SANZ M J, UBEDA A, MIRANDA M A, IBORRA S, PAYA M,ALCARAZ M J. Synthesis and Pharmacological Evaluation of2'-Hydroxychalcones andFlavones as Inhibitors of Inflammatory Mediators Generation [J]. J Med Chem,1995,38:2794-2797.
    [41] WATTENBERG L W, COCCIA J B, GALHAITH A R. Inhibition of carcinogen-inducedpulmonary and mammary carcinogenesis by chalcone administered after carcinogen exposure.[J]. Cancer Lett,1994,83:165-169.
    [42] DINKOVA-KOSTOVA A T, ABEYGUNAWARDANA C, Talalay P. ChemoprotectiveProperties of Phenylpropenoids, Bis(benzylidene)cycloalkanones, and Related MichaelReaction Acceptors: Correlation of Potencies as Phase2Enzyme Inducers and RadicalScavengers [J]. J Med Chem,1998,41:5287-5296.
    [43] SATOMI Y. Inhibitory effects of3′-methyl-3-hydroxy-chalcone on proliferation of humanmalignant tumor cells and on skin carcinogenesis,[J]. Int J Cancer,1993,55:506-514.
    [44] YIT C C, DAS N P. Cytotoxic effect of butein on human colon adenocarcinoma cellproliferation [J]. Cancer Lett,1994,82:65-72.
    [45] DIMMOCK J P, KANDEPU N M, HETHERINGTON M, QUAIL J W, PUGAZHENTHI U,SUDOM A M, CHAMANKHAH M, ROSE P, PASS E, ALLE T M, HALLERAN S,SZYDLOWSKI J, MUTUS B, TANNOUS M, MANAVATHU E K, MYERS G, CLERCQE D, BALZANI J. Cytotoxic Activities of Mannich Bases of Chalcones and RelatedCompounds [J]. J Med Chem,1998,41:1014-1026.
    [46] MANTAS A, DERETEY E, FERRETTI F H, ESTRADA M R, CSIZMADIA I G. Structuralanalysis of flavonoids with anti-HIV activity [J]. Theochem,2000,504:171-179.
    [47] DHAR D N. Chemistry of Chalcones and Related Compounds, Wiley, New York,1981.
    [48] CORMA A, CLIMENT M J, GARCIA H, PRIMO J. Zeolites as catalysts in organic reactions:Condensation of aldehydes with benzene derivatives [J]. J Catal Lett,1990,4:85
    [49] SARAVANAMURUGANL S, PALANICHAMY M, ARABINDOO B, MURUGESAN V.Liquid phase reaction of2′-hydroxyacetophenone and benzaldehyde over ZSM-5catalysts [J].J Mol Catal: A2004,218:101-106.
    [50] VARMA R S, KABALKA G W, EVANS L T, PAGNI R M. Aldol Condensations on BasicAlumina: The Facile Syntheses of Chalcones and Enones in a Solvent-Free Medium [J].Synth Commun,1985,15:279-284.
    [51] FUENTES A, MARINAS J M, SINISTERRA J V. Catalyzed synthesis of chalcones underinterfacial solid-liquid conditions with ultrasound [J]. Tetrahedron Lett,1987,28:4541-4544.
    [52] AGUILERA A, ALCANTARA A R, MARINAS J M, SINISTERRA J V. Ba(OH)2as thecatalyst in organic reactions, part XIV: Mechanism of Claisen–Schmidt condensation insolid–liquid conditions [J]. Can J Chem,1987,65:1165-1171.
    [53] DREXLER M T, AMIRIDIS M D. The effect of solvents on the heterogeneous synthesis offlavanone over MgO [J]. J Catal,2003,214:136-145.
    [54] CLIMENT M J, CORMA A, IBORRA S, PRIMO J. Base Catalysis for Fine ChemicalsProduction: Claisen-Schmidt Condensation on Zeolites and Hydrotalcites for the Productionof Chalcones and Flavanones of Pharmaceutical Interest [J]. J Catal,1995,151:60-66.
    [55] GUIDA A, LHOUTY M H, TICHIT D, FIGUERAS F, GENESTE P. Hydrotalcites as basecatalysts. Kinetics of Claisen-Schmidt condensation, intramolecular condensation ofacetonylacetone and synthesis of chalcone [J]. Appl Catal A,1997,164:251-264.
    [56] CLIMENT M J, CORMA A, IBORRA S, VELTY A. Activated hydrotalcites as catalysts forthe synthesis of chalcones of pharmaceutical interest [J]. J Catal,2004,221:474-482.
    [57] SEBTI S, SABER A, RHIHIL A, NAZIH R, TAHIR R. Claisen–Schmidt condensationcatalysis by natural phosphate [J]. Appl Catal A,2001,206:217-220.
    [58] SEBTI S, SOLHY A, TAHIR R, ABDELATIF S, BOULAAJAJ S, MAYORAL J A,GARCIA I, FRAILE J M, KOSSIR A, OUMIMOUN H. Application of natural phosphatemodified with sodium nitrate in the synthesis of chalcones: a soft and clean method [J]. JCatal,2003,213:1-6.
    [59] MACQUARRIE D J, NAZIH R, SEBTI S. KF/natural phosphate as an efficient catalyst forsynthesis of2′-hydroxychalcones and flavanones [J]. Green Chem,2002,4:56-59.
    [60] WANG X G, LIN K S K, CHAN J C C, CHENG S. Direct Synthesis and CatalyticApplications of Ordered Large Pore Aminopropyl-Functionalized SBA-15MesoporousMaterials [J]. J Phys Chem: B,2005,109:1763-1769.
    [61] WANG X, CHENG S. Solvent-free synthesis of flavanones over aminopropyl-functionalizedSBA-15[J]. Catal Commun,2006,7:689-695.
    [62] GILBERT L, MERCIER C. Solvent effects in heterogeneous catalysis: Application to thesynthesis of fine chemicals [J]. Stud Serf Sci Catal,1993,78:51-56.
    [63] SHEN J H, WANG H, LIU H C, SUNA Y, LIU Z M. Br nsted acidic ionic liquids as dualcatalyst and solvent for environmentally friendly synthesis of chalcone [J]. J. Mol. Catal. A:Chem,2008,280:24–28.
    [64] VAN ORDER R B, LINDWALL H G. Indole [J]. Chem Rev,1942,30:69–96.
    [65] GRIBBLE G W. Recent developments in indole ring synthesis—methodology andapplications [J]. J Chem Soc Perkin Trans1,2000:1045–1075.
    [66] CACCHI S, FABRIZI G. Synthesis and functionalization of indoles throughpalladium-catalyzed reactions [J]. Chem Rev,2005,105:2873–2920.
    [67] HUMPHREY G R, KUETHE J T. Synthesis and Functionalization of Indoles ThroughPalladium-catalyzed Reactions [J]. Chem Rev,2006,106:2875–2911.
    [68] ROBINSON B. The Fischer Indole Synthesis [J]. Chem Rev,1963,63:373–401.
    [69] ROBINSON B. Studies on the Fischer indole synthesis [J]. Chem Rev,1969,69:227–250.
    [70] FUKUYAMA T, CHEN X. Stereocontrolled Synthesis of (-)-Hapalindole G [J]. J Am ChemSoc,1994,116:3125–3126.
    [71] BOGER D L, MCKIE J A. An Efficient Synthesis of1,2,9,9a-Tetrahydrocyclopropa[c]benz[e]indol-4-one CBI: An Enhanced and SimplifiedAnalog of the CC-1065and Duocarmycin Alkylation Subunits [J]. J Org Chem,1995,60:1271–1275.
    [72] LIU R, ZHANG P, GAN T, COOK J M. Regiospecific Bromination of3-Methylindoles withNBS and Its Application to the Concise Synthesis of Optically Active Unusual TryptophansPresent in Marine Cyclic Peptides1[J]. J Org Chem,1997,62:7447–7456.
    [73] THOLANDER J, BERGMAN J. Syntheses of6,12-disubstituted5,11-dihydroindolo[3,2-b]carbazoles, including5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarbaldehyde, an extremely efficient ligand forthe TCDD (Ah) receptor [J]. Tetrahedron,1999,55:12577–12594.
    [74] LINNEPE P, SCHMIDT A M, EILBRACHT P.2,3-Disubstituted indoles from olefins andhydrazines via tandem hydroformylation–Fischer indole synthesis and skeletal rearrangement[J]. Org Biomol Chem,2006,4:302–313.
    [75] ROBINSON G M, ROBINSON R. C. The mechanism of E. Fischer's synthesis of indoles.Application of the method to the preparation of a pyrindole derivative [J]. J Chem Soc Trans,1924:827–840.
    [76] HUGHES D L, ZHAO D. Mechanistic studies of the Fischer indole reaction [J]. J Org Chem,1993,58:228–233.
    [77] BAST K, DURST T, HUISGEN R, LINDNER K, TEMME R. Can the progress of Fischer'sindole synthesis be stopped?[J]. Tetrahedron,1998,54:3745–3764.
    [78] MIYATA O, KIMURA Y, MUROYA K, HIRAMATSU H, NAITO T. Thermal cyclizationof N-trifluoroacetyl enehydrazines under mild conditions: A novel entry into the fischerindole synthesis [J]. Tetrahedron Lett,1999,40:3601–3604.
    [79] KISSMAN H M, FARNSWORTH D W, WITKOP B. Fischer Indole Syntheses withPolyphosphoric Acid [J]. J Am Chem Soc,1952,74:3948–3949.
    [80] HEGDE V, MADHUKAR P, MADURA J D, THUMMEL R P. Inverse-electron-demandDiels-Alder reactions of Fischer carbene complexes: a new and efficient dihydrobenzenesynthesis via a retrocycloaddition of chromium hexacarbonyl [J]. J Am Chem Soc,1990,112:4550–4552.
    [81] HILLIER M C, MARCOUX J F, ZHAO D, GRABOWSKI E J J, MCKEON A E, TILLYERR D. Stereoselective Formation of Carbon Carbon Bonds via SN2-Displacement:Synthesis of Substituted Cycloalkyl[b]indoles [J]. J Org Chem,2005,70:8385–8394.
    [82] NAKAZAKI M, YAMAMOTO K. Direct synthesis of indole by the Fischer indole synthesis[J]. J Org Chem,1976,41:1877–1877.
    [83] ACKERMANN L, BORN R. TiCl4/t-BuNH2as the sole catalyst for a hydroamination-basedFischer indole synthesis [J]. Tetrahedron Lett,2004,45:9541–9544.
    [84] BACCOLINI G, TODESCO P E. Synthesis of2,3-disubstituted indoles under mildconditions [J]. J Chem Soc Chem Commun,1981:563–564.
    [85] MHASKE S B, ARGADE N P. Facile zeolite induced Fischer-indole synthesis: a newapproach to bioactive natural product rutaecarpine [J]. Tetrahedron,2004,60:3417–3420
    [86] LIPINSKA T, GUIBé-JAMPEL E, PETIT A, LOUPY A.2-(2-Pyridyl)Indole DerivativesPreparation Via Fischer Reaction on Montmorillnite K10/Zinc Chloride Under MicrowaveIrradiation [J]. Synth Commun,1999,29:1349–1354.
    [87] DHAKSHINAMOORTHY A, PITCHUMANI K. Facile clay-induced Fischer indolesynthesis: A new approach to synthesis of1,2,3,4-tetrahydrocarbazole and indoles [J]. ApplCatal: A,2005,292:305–311.
    [88] XU D Q, YANG W L, LUO S P, WANG B T, WU J, XU Z Y. Fischer Indole Synthesis inBr nsted Acidic Ionic Liquids: A Green, Mild, and Regiospecific Reaction System [J]. Eur JOrg Chem,2007,6:1007–1012.
    [89] FANG D, SHI Q R, CHENG J, GONG K, LIU Z L. Regioselective mononitration of aromaticcompounds using Br nsted acidic ionic liquids as recoverable catalysts [J]. Appl Catal: A,2008,345:158–163.
    [90] KHODAEI M M, KHOSROPOUR A R, MOGHANIAN H. A Simple and EfficientProcedure for the Synthesis of Amidoalkyl Naphthols by p-TSA in Solution or underSolvent-Free Conditions [J]. Synlett,2006,6:916-920.
    [91] SHATERIAN H R, YARAHMADI H, GHASHANG M. An efficient, simple and expeditionsynthesis of1-amidoalkyl-2-naphthols as ‘drug like’ molecules for biological screening [J].Bioorg Med Chem Lett,2008,18:788-792.
    [92] NAGARAPU L, BASEERUDDIN M, APURI S, KANTEVARI S. Potassiumdodecatungstocobaltate trihydrate (K5CoW12O40·3H2O): A mild and efficient reusablecatalyst for the synthesis of amidoalkyl naphthols in solution and under solvent-freeconditions [J]. Catal Commun,2007,8:1729-1733.
    [93] DAS B, LAXMINARAYANA K, RAVIKANTH B, RAO R. Iodine catalyzed preparation ofamidoalkyl naphthols in solution and under solvent-free conditions [J]. J Mol Catal A: Chem,2007,261:180-183.
    [94] KANTEVARI S, VUPPALAPATI S, V N NAGARAPU L. Montmorillonite K10catalyzedefficient synthesis of amidoalkyl naphthols under solvent free conditions [J]. Catal Commun,2007,8:1857-1862.
    [95] SU W K, TANG W Y, LI J J. Strontium(II) triflate–catalysed condensation of β-naphthol,aldehyde, and urea or amides: A facile synthesis of amidoalkyl naphthols [J]. J Chem Res,2008:123.
    [96] SELVAM N P, PERUMAL P T. A new synthesis of acetamido phenols promoted byCe(SO4)2[J]. Tetrahedron Lett,2006,47:7481-7484.
    [97] PATIL S B, SINGH P R, SURPUR M P, SAMANT S D. Cation‐Exchanged Resins:Efficient Heterogeneous Catalysts for Facile Synthesis of1‐A midoalkyl‐2‐naphtholsfrom One‐Pot, Three‐Component Condensations of Amides/Ureas, Aldehydes, and2‐N aphthol [J]. Synth Commun,2007,37:1659-1664.
    [98] JIANG W Q AN L T ZOU J P. Molybdophosphoric Acid: An Efficient Keggin‐typeHeteropoloacid Catalyst for the One‐pot Three‐Component Synthesis of1‐A midoalkyl‐2‐naphthols [J]. Chin J Chem,2008,26:1697-1701.
    [99] NAGAWADE R R, SHINDE D B. Sulphamic Acid (H2NSO3H)‐CatalyzedMulticomponent Reaction of β‐Naphthol: An Expeditious Synthesis of AmidoalkylNaphthols [J]. Chin J Chem,2007,25:1710-1714.
    [100] SRIHARI G, NAGARAJU M M. Solvent‐f ree one‐pot synthesis of amidoalkylnaphthols catalyzed by silica sulfuric acid [J]. Helv Chim Acta,2007,90:1497-1504.
    [101] ABDOL R H, YOSOF G, NAFISEHSADAT S, ARNOLD E. Br nsted acidic ionic liquidas an efficient and reusable catalyst for one-pot synthesis of1-amidoalkyl2-naphtholsunder solvent-free conditions [J]. Tetrahedron Lett,2009,50:5649-5652.
    [102] CASIMIR J R, TURETTA C, ETTOUATI L, PARIS J. First application of the Dakin-Westreaction to fmoc chemistry: Synthesis of the ketomethylene tripeptidefmoc-Nα-Asp(t-Bu)-(R,S Tyr(tBu)Ψ(CO-CH2)Gly-OH [J]. Tetrahedron Lett,1995,36:4797-4799.
    [103] GODFREY A G, BROOKS D A, HAY L A, PETERS M, MCCARTHY J R, MITCHELL D.Application of the Dakin West Reaction for the Synthesis of Oxazole-Containing DualPPARα/γ Agonists [J]. J Org Chem,2003,68:2623-2632.
    [104] PANDEY G, SINGH R P, GARG A, SINGH V K. Synthesis of Mannich type products viaa three-component coupling reaction [J]. Tetrahedron Lett,2005,46:2137-2140.
    [105] KHODAEI M M, KHOSROPOUR A R, FATTAHPOUR P. A modified procedure for theDakin–West reaction: an efficient and convenient method for a one-pot synthesis ofβ-acetamido ketones using silica sulfuric acid as catalyst [J]. Tetrahedron Lett,2005,46:2105-2108.
    [106] GHOSH R, MAITI S, CHAKRABORTY A. One-Pot Multicomponent Synthesis ofβ-Acetamido Ketones Based on BiCl3Generated in situ from the Procatalyst BiOCl andAcetyl Chloride [J]. Synlett,2005,1:115-118.
    [107] GHOSH R, MAITI S, CHAKRABORTY A, CHAKRABORTY S, MUKHERJEE A K.ZrOCl2·8H2O: an efficient Lewis acid catalyst for the one-pot multicomponent synthesisof β-acetamido ketones [J]. Tetrahedron,2006,62:4059-4064.
    [108] HERAVI M M, RANJBAR L, DERIKVAND F, BAMOHARRAM F F. Sulfamic acid as acost-effective catalyst instead of metal-containing acids for the one-pot synthesis ofβ-acetamido ketones [J]. J Mol CatalA: Chem,2007,276:226-229.
    [109] RAFIEE E, SHAHBAZI F, JOSHAGHANI M, TORK F. The silica supported H3PW12O40(a heteropoly acid) as an efficient and reusable catalyst for a one-pot synthesis ofβ-acetamido ketones by Dakin–West reaction J Mol CatalA: Chem,2005,242:129-134.
    [110] KHAN A T, PARVIN T, CHOUDHURY L H. Iron(III) chloride-catalyzed convenientone-pot synthesis of β-acetamido carbonyl compounds [J]. Tetrahedron,2007,63:5593.
    [111] NAGARAPU L, BANTU R, PUTTIREDDY R. SnCl2·2H2O-catalyzed efficient synthesisof β-acetamido ketones and β-acetamido ketoesters under solvent-free conditions [J].Appl Catal A,2007,332:304-309.
    [112] DAVOODNIA A, MAJID M, HERAVILEILA R D, NILOOFAR T H. Br nsted-acidicionic liquid [HO3S(CH2)4MIM][HSO4] as efficient and reusable catalyst for one-potsynthesis of β-acetamido ketones [J]. Monatsh Chem,2009,140:1499–1502.
    [113] Biginelli, P. Aldehyde–urea derivatives of aceto-and oxaloacetic acids. Gazz. Chim. Ital.1893,23,360.
    [114] ZHENG R, WANG X, XU H, DU J. Br nsted Acidic Ionic Liquid: An Efficient andReusable Catalyst for the Synthesis of3,4‐Dihydropyrimidin‐2(1H)‐ones [J]. SynthCommun2006,36:1503.
    [115] BICKER M, ENDRES S, OTT L, VOGEL H. Catalytical conversion of carbohydrates insubcritical water: A new chemical process for lactic acid production [J]. J Mol Catal A:Chem2005,239:151–157.
    [116] ZHAO H B, HOLLADAY J E, BROWN H, ZHANG Z C. Metal chlorides in ionic liquidsolvents convert sugars to5-Hydroxymethylfurfural.[J]. Science,2007,316:1597–1600.
    [117] SIEVERS C, MUSIN I, MARZIALETTI T, OLARTE M B V, AGRAWAL P K, JONES CW. Acid‐C atalyzed Conversion of Sugars and Furfurals in an Ionic‐Liquid Phase [J].Chem Sus Chem,2009,2:665–671.
    [118] KUSTER B F M, BAAN H S. The influence of pH and weak-acid anions on thedehydration of D-fructose [J]. Carbohydr Res,1977,54:165–176.
    [119] HAMADA K, YOSHIHARA H, SUZUKAMO G. An improved method for the conversionof saccharides into furfural derivatives [J]. Chem Lett,1982:617–618.
    [120] RIGAL L, GASET A. Biomass and concentration and uptake of nutrients at varying Psupply [J]. Biomass,1985,8:267–276.
    [121] QI X, WATANABE M, AIDA T M, SMITH R L. Catalytic dehydration of fructose into5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwaveheating [J]. Green Chem,2008,10:799–805.
    [122] QI X, WATANABE M, AIDA T M, SMITH R L. Selective conversion of D-fructose to5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solventmixtures [J]. Ind Eng Chem Res,2008,47:9234–9239.
    [123] MOREAU C, DURAND R, POURCHERON C, RAZIGADE S. Preparation of5-hydroxymethylfurfural from fructose and precursors over H-form zeolites [J]. Ind CropsProd1994,3:85–90.
    [124] RIVALIER P, DUHAMET J, MOREAU C, DURAND R. Development of a continuouscatalytic heterogeneous column reactor with simultaneous extraction of an intermediateproduct by an organic solvent circulating in countercurrent manner with the aqueousphase [J]. Catal Today1995,24:165–171.
    [125] SCHWEGLERVM V, VINKE P, EIJK M, BEKKUM H. Activated carbon as a support forheteropolyanion catalysts [J]. Appl Catal A,1992,80:41–57.
    [126] COTTIER L, DESCOTES G.5-Hydroxymethylfurfural, syntheses and chemicaltransformations [J]. Trends Heterocycl Chem,1991,2:233–248.
    [127] MOREAU C, FINIELS A, VANOYE L. Dehydration of fructose and sucrose into5-hydroxymethylfurfural in the presence of1-H-3-methyl imidazolium chloride actingboth as solvent and catalyst [J]. J Mol Catal, A: Chem2006,253:165-169.
    [128] WU Y, HE L N, DU Y, WANG J Q, MIAO C X, LI W. Zirconyl chloride: an efficientrecyclable catalyst for synthesis of5-aryl-2-oxazolidinones from aziridines and CO2undersolvent-free conditions [J]. Tetrahedron,2009,65:6204–6210.
    [129] DAS B, RAVIKANTH B, REDDY K R, BOMMENA V R. Zirconyl Chloride(=Dichlorooxozirconium) as an Efficient Catalyst for One-Pot Multicomponent Synthesisof Homoallylic Amines [J]. Helvetica Chimica Acta,2007,90:105-109.
    [130] GHOSH R, MAITI S, CHAKRABORTY A. Facile catalyzed acylation of alcohols,phenols, amines and thiols based on ZrOCl2·8H2O and acetyl chloride in solution and insolvent-free conditions [J]. Tetrahedron Lett,2005,46:147–151.
    [131] IRAJ M R, AHMAD R K, SEYEDEH F H. ZrOCl2·8H2O as an environmentally friendlyand recyclable catalyst for the chemoselective synthesis of2-aryloxazolines andbis-oxazolines under thermal conditions and microwave irradiation [J]. Catal Commun,2007,8:200–204.
    [132] IRAJ M B, AHMAD R K, SEYEDEH F H. ZrOCl2·8H2O as an efficient, environmentallyfriendly and reusable catalyst for synthesis of benzoxazoles, benzothiazoles,benzimidazoles and oxazolo[4,5-b]pyridines under solvent-free conditions [J]. CatalCommun,2007,8:1865–1870.
    [133] VALIOLLAH M, IRAJ M B, MAJID M, SHAHRAM T, MOHAMMAD A A, HADI K.ZrOCl2·8H2O: An efficient and reusable catalyst for the synthesis of imidazolines andbis-imidazolines under various reaction conditions [J]. Appl Catal: A,2007,325:99–104.
    [134] HABIB F, NASSER I, MAASOUMEH J, ARASH G. ZrOCl2·8H2O as a highly efficientand the moisture tolerant Lewis acid catalyst for Michael addition of amines and indolesto α,β-unsaturated ketones under solvent-free conditions [J]. J Mol Catal A: Chem,2006,252,150–155.
    [135] HABIB F, NASSER I, MAASOUMEH J, ARASH G. ZrOCl2·8H2O/silica gel as a newefficient and a highly water–tolerant catalyst system for facile condensation of indoleswith carbonyl compounds under solvent-free conditions [J]. J Mol Catal A: Chem,2006,253:249–251.
    [136] ZHANG Z H, LI T S, LI J J. Synthesis of enaminones and enamino esters catalysed byZrOCl2·8H2O [J]. Catal Commun,2007,8:1615–1620.
    [137] GHOSH R, MAITI S, CHAKRABORTY A, CHAKRABORTYB S, MUKHERJEEB A K.ZrOCl2·8H2O: an efficient Lewis acid catalyst for the one-pot multicomponent synthesisof b-acetamido ketones [J]. Tetrahedron,2006,62:4059–4064.
    [138] ANASTAS P T, WARNER J C. Green Chemistry: Theory and Practice; Oxford UniversityPress: Oxford, UK,1998.
    [139] ANASTAS P T, WILLIAMSON T. Green Chemistry, Frontiers in Benign ChemicalSynthesis and Process; Oxford University Press: Oxford, UK,1998
    [140] ZHU J, BIENAYME, H. In Multi-component Reactions; WILEY-VCH Verlag GmbH&Co: KGaA, Weinheim,2005.
    [141] Hafez H N, Hegab M I, Ahmed-Farag I S, El-Gazzar A B A. A facile regioselectivesynthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2-[1,3,4]thiadiazolederivatives as potential analgesic and anti-inflammatory agents [J]. Bioorg Med ChemLett,2008,18:4538–4543.
    [142] HIDEO T, TERUOMI J.(Sankyo Co.) Benzopyrano[2,3-b]xanthene derivatives and itsPreparation. Jpn. Patent1981:56005480.
    [143] RUKAVISHNIKOV A V, SMITH M P, BIRRELL G B, KEANA J F W. Griffith O H.Synthesis of a new fluorogenic substrate for the assay of phosphoinositide-specificphospholipase C [J]. Tetrahedron Lett,1998,39:6637.
    [144] GAO S Y, CHEN H T, YAO C F. Strontium triflate catalyzed one-pot condensation ofb-naphthol, aldehydes and cyclic1,3-dicarbonyl compounds [J]. SYLETT,2009,6:949-954.
    [145] Gao S J,Tsai C H, Yao C-F. A Simple and Green Approach for the Synthesis ofTetrahyhrobenzo[a]xanthen-11-one Derivatives Using Tetrabutyl Ammonium Fluoride inWater. Synlett,2009,6:949–954.
    [146] DAS B, LAXMINARAYANA K, KRISHNAIAH M, SRINIVAS Y. An Efficient andConvenient Protocol for the Synthesis of Novel12-Aryl-or12-Alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one Derivatives [J]. Synlett,2007,20:3107–3112.
    [147] NANDI G C, SAMAI S, KUMAR R, SINGH M S. An efficient one-pot synthesis oftetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivativesunder solvent free condition [J]. Tetrahedron,2009,65:7129–7134.
    [148] WANG R Z, ZHANG L F, CUI Z S. Iodine-Catalyzed Synthesis of12-Aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one Derivatives via MulticomponentReaction [J]. Synth Commun,2009,39:2101–2107.
    [149] KHURANA J M, MAGOO D. pTSA-catalyzed one-pot synthesis of12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in ionic liquid and neat conditions[J]. Tetrahedron Lett,2009,50:4777–4780.
    [150] RAMA V, KANAGARAJ K, PITCHUMANI K. A multicomponent, solvent-free, one-potsynthesis of benzoxanthenones catalyzed by HY zeolite: their anti-microbial and cellimaging studies [J]. Tetrahedron Lett,2012,53:1018–1024.
    [151] OSKOOIE H A, HERAVI M M, NARGES K, KOHANSAL G. Cu/SiO2-CatalyzedOne-Pot Synthesis of12-Aryl-8,9,10,12-tetrahydrobenzo[α]xanthen-11-ones UnderSolvent-Free Conditions [J]. Synth Commun,2011,41:2763–2768.
    [152] LI J J, LU L M, SU W K. A new strategy for the synthesis of benzoxanthenes catalyzedby proline triflate in water [J]. Tetrahedron Letters,2010,51:2434–2437.
    [153] KUMAR A, SHARMA S, MAURYA R A, SARKAR J. Diversity Oriented Synthesis ofBenzoxanthene and Benzochromene Libraries via One-Pot, Three-Component Reactionsand Their Anti-proliferative Activity [J]. J Comb Chem,2010,12:20–24.
    [154] SHINDE P V, SHINGATE B B, SHINGAREM S. An Organocatalyzed ExpeditiousSynthetic Route to Tetrahydrobenzo[a]xanthen-11-ones via Grinding Technique [J]. LettOrg Chem,2011,8:568-572.
    [155] MCDONALD E, JONES K, BROUGH P A, DRYSDALE M J, WORKMAN, P. Discoveryand development of pyrazole-scaffold Hsp90inhibitors [J]. Curr Top Med Chem2006,6:1193–1203.
    [156] ELGUERO J. In Comprehensive Heterocyclic Chemistry. Oxford: Pergamon,1996,5.
    [157] ELGUERO J, GOYA P, JAGEROVIC N, SILVA A M S. Pyrazoles as drugs: facts andfantasies [J]. Targets Heterocycl Syst,2002,6:52–98.
    [158] SINGH D, SINGH D J. Studies on arylfuran heterocycles: Part I. Synthesis of6-(5-aryl-2-furyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles [J]. Indian Chem Soc,1991,68:16
    [159] LONDERSHAUSEN M. Review: Approaches to new parasiticides [J]. Pestic Sci1996,48:269–292.
    [160] The Chemistry of Synthetic Dyes and Pigments; Lubs, H A, Ed; American ChemicalSociety: Washington, DC,1970.
    [161] UZOUKWU A B. The synthesis and crystal structures of1-phenyl-3-methyl-4-butanolypyrazol-5-one and of two pyrazolonato complexes of iron[J]. Polyhedron1993,12:2719–2724.
    [162] MAURYA R C, VERMA R. Synthesis and characterization of some novel mixed-ligandcyanonitrosyl mnno6complexes of manganese (i) with biologically active oxygen donor2-or3-pyrazoline-5-one derivatives [J]. Indian J Chem Sect A,1997,36:596–598.
    [163] GARNOVSKII A D, URAEV A I, MINKIN V I. Metal complexes from aryl andhetarylazocompounds [J]. Arkivoc2004, iii:29–41.
    [164] SRIDHAR R, PERUMAL P T, ETTI S, SHANMUGAM G, PONNUSAMY M N,PRABAVATHY V R, MATHIVANAN N. Design, synthesis and anti-microbial activity of1H-pyrazole carboxylates [J]. Bioorg Med Chem Lett,2004,14:6035–6040.
    [165] SIVAPRASAD G, PERUMAL P T, PRABAVATHY V R, MATHIVANAN N. Synthesisand anti-microbial activity of pyrazolylbisindoles—Promising anti-fungal compounds [J].Bioorg Med Chem Lett,2006,16:6302–6305.
    [166] HAMAMA W S. Pyrazolones as versatile precursors for the synthesis of fused and binaryheterocycles [J]. Synth Commun,2001,31:1335–1345.
    [167] LI X L, WANG Y M, TIAN B, MATSUURA T, MENG J B. The solid‐state Michaeladdition of3‐m ethyl‐l‐phenyl‐5‐pyrazolone.[J]. J Heterocycl Chem,1998,35:129–134.
    [168] Singh D, Singh D. Structure of a new1,4-diphenyl-3H-2-benzopyran-3-one derivative [J].J Chem Eng Data,1984,29:355–356.
    [169] MITRA A S, ROUT M K. Tautomeric products of condensation of aromatic aldehydes [J].J Indian Chem Soc,1961,38:893.
    [170] PAVLOV P T, GOLENEVA A F, LESNOV A E, PROKHOROVA T S. Biological activityof some pyrazolone derivatives.[J]. Pharm Chem J (Engl Trans),1998,32:370–372.
    [171] BUZYKIN B I, LONSHCHAKOVA T I. Reaction of azines with5-pyrazolones [J]. BullAcad Sci USSR, Div Chem Sci (EnglTrans),1971:2224–2226.
    [172] WANG W, WANG S X, QI X Y, LI J T. Reaction of Aldehydes and Pyrazolones in thePresence of Sodium Dodecyl Sulfate in Aqueous Media [J]. Synth Commun,2005,35:1263–1269.
    [173] ALANI R M, COLE P A, YAN G, BOWERS E M. Method and device for measuring thepole position angle of a magnetic levitation vehicle of a magnetic levitation system PCT2011,138
    [174] PATEL CHIRAG K, RAMI C S, PANIGRAHI B, PATEL C N. Synthesis, Antitumor andAntimicrobial Activities of Some Novel1-(Substituted)-3-Methyl-1H-Pyrazol-5(4H)-One[J]. Indian j chem B,2010,2,73
    [175] NEGM N A, SAID M M, MORSY S M I. Pyrazole derived cationic surfactants and theirtin and copper complexes: synthesis, surface activity, antibacterial and antifungal efficacy[J]. J Surfactants Deterg,2010,13,521-528.
    [176] MARMORSTEIN R, LIU X, COLE P A, WANG L, BOWERS E M, MEYERS D J,MUKHERJEE, C. Methods and Compositions for Modulating P300/CBP Activity. PCT2008,85.
    [177] SHARMA C, THADHANEY B, PEMAWAT G, TALESARA G L. ChemInform Abstract:Synthesis of Some Novel Ethoxyphthalimide Derivatives of Pyrazolo [3,4‐c]pyrazoles.ChemInform Abstract: Synthesis of Some Novel EthoxyphthalimideDerivatives of Pyrazolo [3,4‐c]pyrazoles [J]. Indian J Chem B,2008,47B:1892.
    [178] BHASKAR V H, MORE V S, KUMAR M. Biological activities of4-(substituedphenyl)-5-(2,4-dinitrophenyl)-3-methyl-1,3a,4,5-tetrahydropyrazolo-[3,4-c] pyrazole.[J].Asian J Chem,2008,20:5474.
    [179] EVANS S. Incorporation of metal pigments in coating composition British Patent873,232(1958).
    [180] PURCELL R F. Belgian Patent624,495(1963).
    [181] PURCELL R F. Huiles siccatives polymères et leur procédé de préparation. French Patent1,367,518(1964).
    [182] PURCELL R F. Commercial solvents corporation. French Patent1,431,971(1966).
    [183] COCKERHAM L E, PURCELL R F. Ethyl cellulose compositions. U S Patent3,348,958(1967).
    [184] RIEMHOFER F, SEELIGER W, STUERZENHOFECKER F.AUSLEGESCHRIFT.German Patent1,261,261,1968.
    [185] CHEMISCHE WERKE HUELS A-G. Procédé de réalisation de revêtements-FR19670132229; FR1547176AFrench Patent1,547,176(1968).
    [186] SEELIGER W,THEIR W. Verfahren zur Polymerisation von delta2-Oxazolinen-DE1965C037145; DE1263300B German Patent1,263,300(1968).
    [187] REDDIE W A, WERLEIN E R, SIMON H A. Surface-active hydrocarbon solutions usedto free stuck drilling pipes.U S Patent3,217,802(1965).
    [188] KATZ J. Fatty oxazoline surfactants. U S Patent3,389,145(1968).
    [189] ERSKINE A M, LYDON R M. Iron blue pigment composition. U S Patent2,893,886(1959).
    [190] Standard Oil Co (Ohio), Motor fuel containing substituted oxazoline compounds-GB19590001129; GB846231A. British Patent846,231(1960).
    [191] DEGRAY R J. Motor fuel containing substituted oxazoline compounds. U S Patent3,033,661(1962).
    [192] DEGRAY R J, BELDEN S H. Oxazoline borate gasoline additives.U S Patent2,965,459(1960).
    [193] BELDEN S H. Boron-containing substituted oxazolines for addition to gasoline.U S Patent2,948,597(1960).
    [194] BELDEII S H. Gasoline containing boron. Oxazoline borate gasoline additives. U S Patent2,993,765(1961).
    [195] DEGRAY R J, BELDEN S H. Novel borated oxazolines. U S Patent3,030,375(1962).
    [196] BELDEN S H. Acid-treated borated oxazolines for use in gasoline. U S Patent3,030,374(1962).
    [197] BELDEN S H. Boron-containing oxazolines. U S Patent3,070,603(1962).
    [198] BARNUM E R. Corrosion-preventive compositions. U S Patent2,587,955(1952).
    [199] WAINWRIGHT H W, EGLESON G C, BROCK C M, FISHER J, SANDS A E. Selectiveabsorption of hydrogen sulfide from synthesis gas [J]. Chem Abstr1953,47:1357.
    [200] ESTER V C. Conditioning cellulose acetate yarn. U S Patent2,622,045(1952).
    [201] THOMPSON H A, DONALDSON R E, WHITE C C. Antistatic textile lubricants. U SPatent2,976,186,(1961).
    [202] PRAETORIUS H. Verfahren zum Veredeln, insbesondere Knitter-und Krumpffestmachenvon Textilien German Patent1,048,862(1959).
    [203] JAEGER A. übersetzung der europ ischen Patentschrift. German Patent1,050,540(1959).
    [204] BLOOM B M. Naphthylamino.ovrddot.oxazolines. U S Patent2,811,529(1957).
    [205] BLOOM B M. Naphthylamino.ovrddot.oxazolines. U S Patent2,889,351(1959).
    [206] Laboratoires Dausse S A. Method for the production of copper and zinc mono-andbi-metallic imidazolates French Addn79,701(1963).
    [207] Laboratoires Dausse S A. Amino-2-oxazolines nu-substituées et leurs procédés depréparation-FR19580771767; FR1313055A French Patent1,313,055(1962).
    [208] GIUDICELLI R, BEAUVALLET M, CHABRIER P, NAJER H. Sur laction vasculaire dequelques amino-2oxazolines n-substituees [J]. C R Acad Sci,1958,247:891.
    [209] NAJER H, CHABRIER P, GIUDICELLI R. Sur quelques amino-2oxazolinesn-substituees douees dactivite vasculaire [J]. Bull SOC Chim Fr,352(1959)1.
    [210] GIUDICELLI R, BEAUVALLET M, CHABRIER P, NAJER H. Sur laction vasculaire dequelques amino-2oxazolines n-substituees [J]. C R Acad Sci,1958,247,2494.
    [211] BEAUVALLET M, GIUDICELLI R, CHABRIER P, NAJER H. Vascular action of someN-substituted2-amino xazolines [J]. J Physiol (Paris),1959,51,397.
    [212] NAJER H, GIUDICELLI R. Sur quelques amino-2oxazolines n-substituees doueesdactivite vasculaire (2e memoire)[J]. Bull SOC Chim Fr,1960,1650.
    [213] WOILWEBER H, HILTMANN R, STOE K, PULS W.2-phenylamino-2-oxazolinesBritishPatent1,132,409(1968).
    [214] WOLLWEBER H, HILTMANN R, STOEPEL I, PULS W.2-phenylamino-2-oxazolinesand their production British Patent1,139,458(1969).
    [215] HILTMANN R, WOLLWEBER H, STOEPEL I, PUIS W S. Polymerization of vinylchloride in mass-nl6705654a. African Patent6705,654(1968).
    [216] JASSMANN E, SCHULZ H. RingschluBreaktionen in der Ephedrinreihe.2. Syn-theseneuer A3-Oxazoline. Pharrnarie,18,527(1963).
    [217] HALEY T J, MCCORMICK W G, FLESHER A M. Hypotensive and otherpharmacological properties of three quaternary oxazolium compounds;2(l-naphthyl)-,2-(4-methoxyphenyl)-, and2-(4-methylphenyl)-methyl-5-phenyloxazolium-4-toluenesulfonate [J]. Arch Intern Pharmacodqn,1957,109:78.
    [218] PURCELL R F. Naphthylamino.ovrddot.oxazolines. U S Patent3,382,197(1968).
    [219] BERG G, BLUEMEL H, SEELIGER W. Verbesserung der Haftfestigkeit elastischerKunststoffe an Cordfaeden-DE1966C039942; DE1287039B. German Patent1,287,039(1969).
    [220] LARCHAR A W. Stabilized chlorohydrocarbon cleaning composition. U S Patent2,517,893(1950).
    [221] FRUMP J A. Vinyl chloride resins containing2-ethyl-2-oxa-zoline heat stabilizers. U SPatent3,380,959(1968).
    [222] PURCELL R F. Oxazoline thermal stabilizers for vinyl chloride resins. U S Patent3,380,975(1968).
    [223] PFISTER K, ROBINSON C A, SHOBICA A C, tishler m. Chemical reactions in movingboundary systems of weak electrolytes [J]. J Am Chem Soc,1948,70:2297-2297.
    [224] PFISTER K, TISHLER M. Threonine and its derivatives. U S Patent2,446,192(1948).
    [225] PFISTER K, TISHLER M. Oxazolines. U S Patent2,571,940(1951).
    [227] PFISTER K, ROBINSON C A, SHABICA A C, TISHLERN M. The Synthesis ofDL-Threonine. II. Interconversion of DL-Threonine and DL-Allothreonine [J]. J AmChem Soc,1949,71:1101-1105.
    [228] SLACK R. Synthesis of chloramphenicol and related acylaminodiols. U S Patent2,786,870(1957).
    [229] HEYWOOD B J. Nitrophenyloxazolines. U S Patent2,820,041(1958).
    [230] DAVIS P. Verfahren zur UEberfuehrung vonerythro-2-Acylamido-1-nitrophenylpropan-1,3-diolen in die entsprechendenthreo-Verbindungen. German Patent949,289(1956).
    [231] JACOBS R M. Nouveau procédé de préparation de thréo (nitro-4'phényl)-1dichloracétylamino-2chloro-3propanols-1racémique et optiquement actifs-FRD1032621; FR1032621A. French Patent1,032,621(1953).
    [232] IKUMA S, MYOKEI R. D(1)スレオ-1-P-ニトロフェニール-チクロールブセトキシ-1-アミノ-プロパ-2-オール-3-碳酸盐の制备. Japanese Patent6284(1953).
    [233] JAGER A. Verfahren zur Herstellung von aether-bzw. thioaether-undcarbon-saeureamidgruppenhaltigen Verbindungen. German Patent1,062,253(1959).
    [234] WEHRMEISTER H L. Reactions of Aromatic Thiols with Oxazolines [J]. J Org Chem,1963,28:2587-2589.
    [235] BUTTER G N, FRUMP J A. Verfahren zur Herstellung von Oxazolinderivaten. BelgianPatent618,474(1962).
    [236] KORMENDY K, SOHAR P, and3Volford, Ann Unic Sci Budapest Roland0EofcosNominatae, Sect Chim,1962,4,61.
    [237] ROSNATI V AND MISITI D.2-Aryl-4-methyl-4-chlorocarbonyl-oxymethyl-2-oxazolines:Chemical reactivity and infra-red spectra [J]. Tetrahedron,1960,9:175.
    [238] BILLMAN J H, PARKER E E. alpha.-Amino-.alpha.-hydroxymethylmalonic acid. U SPatent2,556,791(1951).
    [239] FRY E D. Oxazolines [J]. J Org Chem,1949,14(5):887–894.
    [240] LEONARD W R, ROMINE J L, MEYERS A I. A rapid and efficient synthesis of chiral2-hydro-2-oxazolines [J]. J Org Chem,1991,56(5):1961-1963.
    [241] KAMATA K, AGATA I, MEYERS A I. An Efficient and Versatile Method for the Synthesisof Optically Active2-Oxazolines: An Acid-catalyzed Condensation of Ortho Esters withAmino Alcohols [J].J Org Chem,1998,63(9):3113-3116.
    [242] WIPF P, WANG X D. Parallel Synthesis of Oxazolines and Thiazolines by TandemCondensation Cyclodehydration of Carboxylic Acids with Amino Alcohols andAminothiols [J]. J Comb Chem2002,4:656-660.
    [243] ZHOU P W, BLUBAUM J E, BUMS C T, NATALE N R. The direct synthesis of2-Oxazolines from carboxylic esters using lanthanide chloride as catalyst [J]. TetrahedronLett,1997,38:7019-7020.
    [244] KANGANI C O, KELLEYA D E, DAY B W. One pot direct synthesis of oxazolines,benzoxazoles, and oxadiazoles from carboxylic acids using the Deoxo-Fluor reagent [J].Tetrahedron Lett,2006,47:6497–6499.
    [245] CWIK A, HELL Z, HEGEDUS A, FINTAA Z, HORVATH Z. A simple synthesis of2-substituted oxazolines and oxazines [J]. Tetrahedron Lett,2002,43:3985–3987.
    [246] PIRRUNG M C, TUMEY L N. Oxazoline Synthesis from Hydroxyamides by ResinCapture and Ring-Forming Release [J].J Comb Chem2000,2:675-680.
    [247] MCMANUS S P, CARROLL J T, GROHSE P M, PITTMAN C V.2-SUBSTITUTED-5-METHYL-2-OXAZOLINES [J]. Org Prep Proced,1969,1:183.
    [248] HESS L G. A process for the preparation of í-oxazoline-GB19540014325; GB758972A.British Patent758,972(1956).
    [249] WERKE C. HUELS A-G. Procédé de traitement des delta2-oxazolines aqueuses-FR19650016925; FR1436297A. French Patent1,436,297(1966).
    [250] SEELIGER W, AUFDERHAAR E, DIEPERS W, FEINAUER R, NEHRIRRG R, THEIRW, HELLMANN H. Neuere Synthesen und Reaktionen cyclischer Imidsureester [J].Angew Chem,1966,79:913.
    [251] LITT M H, LEVY A J. Verfahren zur Herstellung von Oxazolinderivaten. Belgian Patent666,829(1965).
    [252] SEELIGER W,THIER W. Herstellung von Δ2-Oxazolinen und Δ2-Hydrooxazinen [J].Justus Liebigs Ann Chem,1966,698,158.
    [253] JAGER A, ORTHNER L. Verfahren zur Herstellung von in2-Stellung substituiertenOxazolin-Derivaten-DE1953F010893; DE955951C. German Patent955,951(1957).
    [254] VALCO E I. Conversion of alkylolamides into oxazolines. U S Patent2,416,552(1947).
    [255] PHILLIPS A J, Uto Y, Wipf P, Reno M J, Williams D R. Synthesis of FunctionalizedOxazolines and Oxazoles with DAST and Deoxo-Fluor. Organic Lett,2000,2:1165-1168.
    [256] FANTA P E, DEUTSCH A S. Organic Lett,1958,23:72-75.
    [257] SAKAKURA A, KONDO R, Ishihara K. Molybdenum Oxides as Highly EffectiveDehydrative Cyclization Catalysts for the Synthesis of Oxazolines and Thiazolines [J].Org Lett,2005,7:1971-1974.
    [258] ODA R, OKANO M, TOKIURA S, MISUMI F. New Addition Reactions. III. Addition ofAliphatic Epoxides to Nitriles [J]. Bull Chem Soc.Jap,1962,35,1219.
    [259] LAMBERT R F, KRISTOFFERSON C E. Reaction of Butyramidine with Epoxides.Preparation of2-Propyl-2-oxazolines [J]. J Org Chem,1965,30:3938-3939.
    [260] LAMBERT R F. Oxazolines and thiazolines. U S Patent3,310,571(1967).
    [261] BADIANG J R, AUBE J. One-Step Conversion of Aldehydes to Oxazolines and5,6-Dihydro-4H-1,3-oxazines Using1,2-and1,3-Azido Alcohols [J]. J Org Chem,1996,61:2484-2487.
    [262] VENDRELL M, VENTURA R, EWENSON A, ROYOA M, ALBERICIOC F.Regioselective preparation of5-amino-and6-amino-1,3-benzoxazole-4,7-diones fromsymmetrical diaminophenol and aminoresorcinol [J]. Tetrahedron Letters,2005,46:5383–5386.
    [263] FUJISAWA T, MORI T, FUKUMOTO K, et al. N, N, N',N'-Tetramethylchloroformamidinium chloride as an efficient condensation reagent for anovel esterification applicable to the macrolide synthesis [J]. Chem Lett,1982,11(12):1891-1894.
    [264] Xin X, Wang Y, Xu W, Lin Y J, Duan H F, Dong D W. A facile and efficient one-potsynthesis of polysubstituted benzenes in guanidinium ionic liquids [J]. Green Chem.,2010,12:893–898.
    [265] CHINCHILLA R, DODSWORTH D J, CARMEN NáJERA, et al Uronium salts frompolymeric N-hydroxysuccinimide (P-HOSu) as new solid-supported peptide couplingreagents [J]. ARKIVOC,2003,41-47.
    [266] SCARDOVI N, GARNER P P, PROTASIEWICZ J DS-(2-Pyridinyl)-1,1,3,3-Tetramethylthiouronium Hexafluorophosphate A New Reagent forthe Synthesis of2-Pyridinethiol Esters [J]. Org Lett,2003,5(10):1633-1635.
    [1] SUGDEN S, WILKINS H. CLXVII.—The parachor and chemical constitution. Part XII.Fused metals and salts [J]. J Chem Soc1929:1291.
    [2] POOLE C F, KERSTEN B R, HO S S J, CODDENS M E, FURTON K G. Organic salts,liquid at room temperature, as mobile phases in liquid chromatography [J]. J Chromatogr A,1986,352:407-425.
    [1] LI J J, LU L M, SU W K. A new strategy for the synthesis of benzoxanthenes catalyzed byproline triflate in water [J]. Tetrahedron Letters,2010,51:2434–2437.
    [2] OSKOOIE H A, HERAVI M M, NARGES K, KOHANSAL G. Cu/SiO2-Catalyzed One-PotSynthesis of12-Aryl-8,9,10,12-tetrahydrobenzo[α]xanthen-11-ones Under Solvent-FreeConditions [J]. Synth Commun,2011,41:2763–2768.
    [3] LI J J, TANG W Y, LU L M, SU W K. Strontium triflate catalyzed one-pot condensation ofb-naphthol, aldehydes and cyclic1,3-dicarbonyl compounds [J]. Tetrahedron Letters,2008,49:7117–7120.
    [4] DAS B, LAXMINARAYANA K, KRISHNAIAH M, SRINIVAS Y. An Efficient andConvenient Protocol for the Synthesis of Novel12-Aryl-or12-Alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one Derivatives [J]. Synlett,2007,20:3107–3112.
    [5] NANDI G C, SAMAI S, KUMAR R, SINGH M S. An efficient one-pot synthesis oftetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivativesunder solvent free condition [J]. Tetrahedron,2009,65:7129–7134.
    [6] WANG R Z, ZHANG L F, CUI Z S. Iodine-Catalyzed Synthesis of12-Aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one Derivatives via Multicom.ponentReaction [J]. Synthetic Communications,2009,39:2101–2107.
    [7] KHURANA J M, MAGOO D. pTSA-catalyzed one-pot synthesis of12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in ionic liquid and neat conditions [J]. TetrahedronLetters,2009,50:4777–4780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700