用户名: 密码: 验证码:
电磁屏蔽用吸收反射一体化复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁技术是一把双刃剑,电磁技术的利用给人们带来便捷的同时,大功率、高集成化电气设施的广泛运用却引起了诸如电磁干扰、电磁泄密和电磁污染等一系列安全及环境问题。随着电磁波辐射强度的增加以及电气设备的多样性,传统的屏蔽材料及屏蔽方式已经不能满足复杂电磁环境下的屏蔽要求,因此研究并制备出屏蔽效能高、工作频率宽及轻质的“绿色”电磁屏蔽材料成了目前屏蔽材料研究的热点。
     本文提出将电磁反射层与电磁吸收层相结合,制备轻质高效的吸收、反射一体化电磁屏蔽新型材料,是由于传统的反射式屏蔽材料目前虽然能够达到较高的屏蔽效能,然而这类材料是利用良导电性对电磁波进行反射作用,将能量约束在特定区域内,并未将能量有效转化。这样在减弱一个区域场强的同时势必会增加其他区域的场强,严重时甚至引起谐振,影响运用。而吸收反射一体化电磁屏蔽材料不仅具有屏蔽效能高的特点,还对电磁波具有吸收和拓展频带作用,可以用来克服反射式屏蔽的不足。
     本文借助了纤维增强树脂的工艺方法,完成了集屏蔽功能性、承载结构性双重功能于一体的功能结构一体化材料的制备,运用四探针电阻仪、扫描电镜、矢量网络分析仪并采用宽频同轴法、微波暗室法及相关力学性能测试手段对样品的电磁性能和力学性进行了测试和分析。文章通过理论模型的模拟和实测的方法,详细研究了材料导电性与屏蔽性的关系,阐述了吸波剂特性、掺量及材料尺寸对微波吸收性能的促进机理,并在此基础上匹配吸收反射一体化电磁屏蔽材料的最佳参数,以提高其对微波的吸收能力和频率覆盖有效性。
     研究表明,电磁反射层中镀铝玻璃纤维的掺入量和纤维长度对材料导电性能有最直接的影响。导电纤维的掺入量大于15%就已超过渗滤阈值使得材料形成导体,掺入量继续升高为40%到60%能使材料保持较为稳定的屏蔽性能,而在此基础上继续掺入镀铝玻璃纤维则会降低材料的屏蔽性能;同样地,研究发现因平均接触点数和工艺因素的共同作用,能使材料获得最佳屏蔽效能的纤维长度范围为4cm~10cm。此外,文章还研究了热固性树脂制备工艺中对屏蔽性能可能产生影响的相关问题,通过实验确定了热压产生的层状结构有利于屏蔽效能的提高和估算了导电纤维网络结构产生的感抗损耗大小,并指出添加非导电玻璃纤维配合成型工艺以及引入炭黑的隧道导电效应不可行。
     二次杂波抑制方面,在屏蔽材料中引入抑制杂波的电磁吸收层是本文特色之一。文章通过将W型铁氧体吸收剂与其它吸收剂复合或叠加的方式,研究了材料特性对抑制杂波的影响。实验发现,多相复合材料的吸波性能优于单相材料的吸波性能,并且当铁氧体中掺杂25wt%介电特性的合金粉时有利于减小吸波材料的匹配厚度和提高吸收效能。文章同时研究了多层吸波材料的电磁吸收性能,发现吸波剂和铺层顺序的选择对多层吸波材料的吸波能力影响重大,实验得出将不同种类吸收剂按介电常数由外至内递增的顺序进行叠加,可使材料总匹配厚度减小、吸收率增加和频带展宽。
     文章详细论述了吸收-反射一体化屏蔽材料的总屏蔽效能与理想状态下杂波抑制效能的关系,理论值和实测值都表明杂波抑制层的引入对总屏蔽效能增益不大,却可以使得材料有效地抑制二次干扰波并拓宽工作频段。文章计算了垂直干扰状态下材料杂波抑制能力,得出在5GHz~18GHz范围内,一体化材料能消除60%以上的干扰波,并且随着频率升高,抑制率更高。
     最后,文章研究了材料各项基本力学性能。实验通过对材料抗弯和抗拉伸强度的测定,结合镀铝玻璃纤维单丝强度的成因,详细分析了屏蔽材料在受力变形时应力再分配的过程和破坏机理,并指出相对其抗拉伸能力而言,材料更适合用于抗弯曲的场合。
Electromagnetic technology is a double-edged sword, it brings us muchconvenience. However, the popularity of high-power electrical equipment also causessome safety and environment problems such as electromagnetic interference,electromagnetic leaks and electromagnetic pollution. The traditional shieldingmaterial and way of shielding cannot meet the complex requirements in the newelectromagnetic environment especially when the intensity of electromagneticradiation increases. So to research and prepare a new kind of "green" material whichhas a higher shielding effectiveness and can cope with a wider frequency but with alower density becomes a "hot spot" in the material science.
     In this paper, we integrate the reflection layer and the absorbing layer as one.Comparing with any other material, this kind of material can reach a high shieldingeffectiveness but maintain a low density. As we all know, although traditionalshielding material can reach a high electromagnetic shielding effectiveness at present,the main shielding mechanism is reflection. That is to say, those material are onlyrestricting the energy into the very area, but not convert them into other kind ofenergy. So the result is, it causes a new electromagnetic interference at other place. Insome cases, it can cause resonance, making big trouble to the operation of equipment.However, the integrated material can remedy the defect of traditional material—itnot only absorbs the interfering radiation and broadens the band, but also maintains ahigh shielding effectiveness like traditional material.
     With the help of fiber reinforced resin process method, the experimentsuccessfully finished the preparation, and this material not only had functionalfeatures, but also had some structured features. Four-point probe, scanning electronmicroscopy and vector network analyzer were used to analyze the material. At thesame time, broadband coaxial, microwave anechoic chamber methods were used totest its electromagnetic properties. The mechanical properties of material were also beanalyzed. With the help of theoretical model and metrical value, the paper researchedthe relationship between conductivity and shielding effectiveness, and described themechanism of wave absorbing when the absorbent feature, content and material sizewere shifting. The paper at last found the best parameters of the integrated material; itcould promote electromagnetic wave absorbing ability as well as the efficiency ofband coverage.
     The research indicates that, Aluminized glass fiber's length and adding contentwere important to the conductivity. Material would change into a conductor whenfiber content above15%. It could keep a stable shielding effectiveness when fiber content reached40%to60%. However, excessive fiber content would result in thedeclination of the shielding effectiveness. The paper also found that, because of theco-work of average contact point and technological factors,4cm~10cm fiber lengthcould more possibly gain a higher SE. The paper also gave some explanation on therelationship between technological factors and shielding, it believed that the layerstructure of material had some positive effect on shielding, and calculated theinductive losses. The research confirmed that it was wrong to add insulated glass fiberand black carbon into the material.
     Bringing absorbing layer into material was a feature of the paper. Through themethod of composite and superposition the W-type ferrite and other absorbent, thepaper researched the relationship between material parameters and absorbing rate.Absorbing rate of multiple phase composite material was better than single phasematerial, and it was helpful to decrease the matching thickness and increase theabsorbing rate when the alloy powder content was25%. This paper also researchedthe absorbing ability of multiple layer material, and found that the choice of absorbentand the sequence of layer were important to the absorbing rate. The research showthat, matching thickness would decrease and absorbing rate would increase when weput the bigger dielectric constant layer in the inside and put the lower dielectricconstant layer on the outside.
     The paper discussed relationship between shielding effectiveness and clutterrestriction effectiveness in detail. Metrical and calculated value shows that the usageof clutter restriction layer could hardly increase the total shielding effectiveness,however, it could efficiently restrict the clutter and broaden response band. The papercalculated the ability of material restricting clutter in a vertical interference situation,and obtained that, the integrated material could restrict60%clutter from5GHz to18GHz area, and its restriction rate could be higher at the high frequency area.
     At last, the paper analyzed mechanical properties of material, and its bending andtensile strength were tested. The process of stress redistribution and wreck mechanismwere analyzed with the relationship of Aluminized glass fiber. The paper pointed outthat, comparing with other kind of material, such kind of material could used into theplace which baring bending stress more than tensile stress.
引文
1甘林.工业控制实时多任务和抗干扰软件设计.电子技术应用,2008(12):8-12
    2周镒等.无线通信设备电磁兼容性要求和测量方法.现代电信科技,2007,10:40-45
    3罗敏,陈震兵,陈小立等.纳米吸波材料在人体防护中的现状及发展方向.化学世界,2001,6:324-32
    4王智永,熊克敏,刘俊能等.单层薄型双波段雷达吸收涂层的研制.航空材料学报,1998,18(1):51-55
    5白同云,吕晓德.电磁兼容设计.北京邮电大学出版社,2001.3:3
    6杨宇涵.信息安全不容忽视的因素“电磁泄密”.计算机时代,2001,03:13
    7赖祖武.电磁干扰防护与电磁兼容.原子能出版社,1993:102
    8古映莹,邱小勇,胡启明,刘雪颖.电磁屏蔽材料的研究进展.材料导报,2005,19(02):53-56
    9胡传析.隐身涂层技术.化学工业出版社,2004:5
    10巩晓阳,董企铭.吸波材料的研究现状与进展.河南科技大学学报,2003,24(20):19-2
    11邓龙江,谢建良,梁迪飞等.磁参数对六角铁氧体RAM温度稳定性影响.电子科技大学学报,2000,29(l):61-6
    12王自荣.激光与雷达复合隐身分析.上海航天,2001,4:4-37
    13胡传析.隐身涂层技术.北京:化学工业出版社,2004:8-10
    14郭清泉,陈焕钦.涂覆型军品隐身包装的研究现状与发展趋势.涂料工业,2003,33(6):42
    15高焕方,陈一农,张捷等.吸波涂料的研究现状.表面技术,2003,23(5):1-3
    16曹克广.国外微波隐身材料的发展及现状.抚顺石油学院学报,1997,17(2):29-32
    17何显运,张兴华,周彦豪.吸波材料的研究进展.功能材料增刊,2001,10:592-595
    18秦嵘,陈雷.国外新型隐身材料研究动态.宇航材料工艺,1997,4:17-19
    19周敏,杨觉明,周建军.吸波材料研究进展.西安工业学院学报,2000,20(4):296-302
    20陈恩霖.雷达吸波材料与吸波结构.现代雷达,1996,4:95-104
    21阳开新.铁氧体吸波材料及其应用.磁性材料及器件,1996,27(3):19-23
    22邓龙江,谢建良,梁迪飞等.磁性材料在RAM中的应用及其进展.功能材料,1999,30(2):118-121
    23张永祥,耿香月,李玲霞等.六角结构磁铅石铁氧体吸波机制的设计与研究.天津大学学报,1999,32(5),611-614
    24高恭等.涂料工业.1990,5:41
    25CARROLL D L,CZERW R,WEBSTER S. Polymer-nanotube composites fortransparent, conducting thin films. Synthetic Metal,2005,155(3):694-697
    26Chung D D L. Electromagnetic interference shielding effectiveness of carbonmaterials[J]. Carbon,2001,39(2):279
    27山口祥司,坂口库一.工业涂装,4,1986:14
    28战凤绪.专用涂料.化学工业出版社,1985:59
    29Liu H,Ge X W,Ni Y H, et al. Synthesis and characterization ofpolyacylonitrile-silver nanocomposites by irradiation[J]. Radiation PhysChem,2001,61(1):89
    30武宏让.电磁波屏蔽材料.中国有色金属学报,1998,(2),238-239
    31Czigany T, et al. Effect of hygrothermal aging on the fracture and failurebehavior in short glass fiber reinforced, toughened PBT composites. PolymerComposites,1996,17(6):900
    32SICHEL E K. Carbon Black Polymer Composites: The Physics of ElectricallyConducting Composites. New York, Marcel Dekker,1982:1-50
    33Sircar A K and almond T G. Effect of carbon black particle size distribution onelectrical conductivity.Rubber Chemical and Technology,1978,51(1):126-132
    34Feng W,Bai X D,Lian Y Q,et al. Well-aligned polyaniline/carbonnanotubecomposite films grown by in-situ aniline polymerization[J].Carbon,2003,41(8):1551-1557
    35章明秋,曾汉民.HDPE导电复合材料的结构与性能关系研究.工程塑料应用,1990,3:3-8
    36Slupkowski T, Internation Polymer Science Technology.1986,13(6):80
    37VanBeek L R H, Rubb. Chem. Technol..1964,37(2):348
    38Huang J C. A Review of EMI Shielding Plastics[J]. Adv Poly Technol,1995,14(2):137-142
    39张玉萍.造福人类的电磁屏蔽和吸波材料.物理与工程,2003,6,25-29
    40李瑞琦.何世禹.初文毅.吸波涂层材料研究进展.兵器材料科学与工程,2006,29(3).
    41Avdeev VB, piskunov KP, yarygin AP. Reflection of electromagnetic wavesfrom a perfectly conducting screen covered by absorbing coating and Plasmalayer. Radiotekhnika,1996(6):97-101.
    42何燕飞,龚荣洲,李享成,王鲜,何华辉.多层复合吸波材料的制备及其吸波性能.无机材料学报.2006.2l(6):1451-1452
    43曹克广.国外微波隐身材料的发展及现状.抚顺石油学院学报,1997,17(2):29-32
    44胡传析.隐身涂层技术.化学工业出版社,2004
    45A.N. Yusoff, M.H. Abudllha. Microwave electromagnetic and absorptionproperties of some LiZn ferrites. J. Magn. Magn. Mater.,269(2004):271-280
    46T.Ginnakopoulou,L.Kompotiatis,A.Kontogeogakos,G.Kordas. Microwavebehavior of ferrites prepared via sol-gel methed. J.Magn.Magn.Mater.,2002(246):360~365
    47张海军,姚熹,张良莹等.BaPbZnCo-Y型铁氧体的柠檬酸溶胶凝胶合成及其微波性能研究.功能材料,2003,34(l):37-38
    48S.Sugimoto, S.Kondo, K.Okayama et al. M-Type Ferrite Composite as aM i c ro w a v e A b s o r b e r w i t h Wi d e B a n d w i d t h i n t h e G H z R a n g e.IEEE.Trans.Magn.,1999,135(5):3154~3156
    49Okayma K., Ata H., et al. Electromagnetic Wave Absorption Properties ofBaFe12-x(Ti0.5Mn0.5)xO19. J.Appl.Magn.Soc.Jap.,1998,22(4-2):297-300
    50郭树旭,范薇,宋宁华.双涂层纳米复合材料的微波吸收性能.光电对抗与无源.1999,2:35-6.46
    51党芬,王敏芳.现代隐身技术及隐身材料研究进展.合肥学院学报.2005.15(4):36-39
    52范丛斌,熊国宣.导电席夫碱类吸波材料的研究进展.北工新型材料.2005.33(2):60-62
    53杨咏来.宁桂玲.吸波材料及其研究进展。北工进展.1996.(5):19
    54秦嵘.陈雷.国外新型隐身材料的发展状况.宇航材料工艺.1997(4):l7-19
    55黄婉霞.PZT/Ni-Zn铁氧体复合材料电磁特性研究.功能材料,1996,27(5):431-433
    56王东方.两种特殊结构型吸波材料吸波特性的研究[学位论文].哈尔滨.哈尔滨工业大学.2004.8
    57肖钢.多层吸波材料的计算设计与优化研究[学位论文].哈尔滨.哈尔滨工程大学.2003.12
    58曹茂盛.刘海涛.张铁夫.双峰响应结构型吸波材料动静态力学性能研究.材料工程,2002,10:26-28,32
    59曹义,程海峰,周永江.一种新型结构吸波材料的制备,国防科技大学学报,2005,27(1):44-46
    60邢丽英,刘俊能.电阻渐变型结构吸波材料的研究与发展.航空材料学报,2000,20(3):187-191
    61W.K.Jung, B.K.Kim, M.S.Won, etal. Fabrication of radar absorbingstructure(RAS)using GFR-nano composite and spring-back compensation ofhybrid composite RAS shells, Composite Structures,2006,(75):571-576
    62S.Woo, Chin, D.G.Lee, Development of the composite RAS(radar absorbingstructure) for the X-band frequency range, Composite Structures,2007,(77):457-465
    63H.O.Jung, S.O.Kyung, G.K.Chun, etal. Design of radar absorbing structuresusing glass/epoxy composite containing carbon black in X-bandfrequency ranges, Composites: Part B,2004,(35):49~56
    64杨士元.电磁屏蔽理论与实践.国防工业出版社,2006,108-110
    65Da He and N N Ekere. Effect of particle size ratio on the conductingpercolation threshold of granular conductive–insulating composites,Appl.Phys.37:223
    66W. J. Beek.传递现象.化学工业出版社,2003:91
    67Donnet and Voet. Carbon Black. Marcel Dekker Inc., New York1976:1-12
    68Polley&Boonsrta. Power rubber-a new raw material generation for simplifyingproduction. Rubber World, Mar.2001:42-47
    69E.papire, R. Lacroix and J.B.Donnet. Chemical Modifications and SurfaceProperties of Carbon Blacks. Rubber Chemistry and Technology,1993,66:491-493
    70Mun Fu Tes,陈权启等译.炭黑的化学改性与表面性质.橡胶参考资料,2003,6:45
    71夏英.炭黑填充聚乙烯导电复合材料的性能研究.塑料,2002,31:48
    72刘东,王钧.碳纤维导电复合材料的研究与应用.玻璃钢/复合材料,2001(6):91
    73Miyasaka, Keizo et al. Electrical Conductivity of Carbon-Polymer Compositesas a Function of Carbon Content. Journal of Materials Science,1982,17:1510-1616
    74师春生等.镀金属炭毡/树脂复合材料的电磁屏蔽性能.功能材料,2001,3:32
    75Paul Ivanfi, together with translation (undated).Processing of Single and Multi-component Adhesives and Sealants. US Patent6756072,2004,7
    76C.M.Butler and K.R.Umashankar. Finite-element method applied to EMCproblems. IEEE Trans. Electromagn. Compat.,35(2):178-184,February1993.
    77张雪峰,李哲男,王威娜,等.磁性Fe、Co、Ni纳米粒子的吸波性能研究.粉末冶金工业,2006,16(1):11-16
    78ShengPing Runa,Boakun Xu,Hui Suo et al. Microwave absorptive Behaviourof ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material.J.Magn.Magn.Mater.,212(2000):175-177
    79胡传析.隐身涂层技术[M].北京:化学工业出版社,2004
    80曾立志.吸波材料抑制电磁干扰研究[D].西安电子科技大学硕士学位论文,2007
    81林国荣.玻璃钢力学性能试验[M].武汉:武汉工业大学出版社,1995
    82谭松庭.电磁屏蔽用导电性高分子复合材料的研究[D].中山:中山大学博士学位论文,1999
    83姜肇中等.玻璃纤维[M].北京:中国石化出版社,2004:47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700