用户名: 密码: 验证码:
固体充填采煤物料垂直输送技术开发与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据固体充填采煤技术发展的需要,本文采用理论分析、实验室试验、数值模拟分析、物理模拟和现场实践等综合研究方法,系统研究了固体充填采煤充填物料垂直输送方法与技术。首先分析了矿山固体充填物料的来源与分类,研究了固体充填物料的基本特性,然后提出了实现固体充填物料从地面高效连续化运输至井下的固体充填采煤充填物料垂直输送方法与技术,并研究了影响固体充填物料垂直投料管尺寸的关键因素,以及固体充填物料在垂直投料管内的运动特征及其引起的气流场分布特征、固体充填物料冲击特性及其缓冲机理等,最后在我国皖北煤电集团五沟煤矿进行了工业性试验,取得一些研究成果,主要体现在以下几个方面:
     (1)根据固体充填物料实际投放特征,建立了以透风率为参量的运动模型,并采用风洞试验方法研究了在垂直投料管尺寸一定条件下,固体充填物料在垂直投放过程中的风阻特性,得到了固体充填物料的运动控制方程及在不同投放量条件下固体充填物料的运动规律。
     (2)采用FLUENT数值模拟软件分析了固体充填物料垂直投放通道内气流速度场和压力场的分布规律,并结合现场实测数据,揭示了垂直投料管气固两相运动特征与作用原理,研究了卸压作用对气流场的分布影响,得到了气流卸压原理。
     (3)基于碰撞力学的基本原理,建立了固体充填物料与被动碰撞体的动力冲击模型,分析了固体充填物料垂直投放中的冲击特征,并采用ANSYS数值模拟软件研究得到了被动碰撞体在不同冲击条件下的动态响应规律,从而提出了固体充填物料垂直投放的缓冲机理,为固体充填物料垂直投放中缓冲装置的设计与研发提供了重要的理论依据。
     (4)针对固体充填物料垂直投料管安设和使用中的重要性,研究了固体充填物料垂直投料管安设的影响因素,建立了固体充填物料垂直管道安设的动态控制方程,并提出了固体充填物料垂直投料管材质选择的要求。
     (5)该技术在五沟煤矿进行成功应用,固体充填物料垂直输送能力达到550吨/小时,共投放矸石约22万t,系统运行良好,取得较好的应用效果。
Based on the development of the backfilling coal mining technology with solidmaterial, this paper adopted integrated research methods of laboratory test, theoreticalanalysis, numerical simulation analysis and physical simulation to do the research.Firstly, we analyzed the source, classification and basic characteristics of solidmaterial. Then we proposed the feeding vertical technology with the efficient andcontinuous transportation of solid material from the ground to underground andstudied the key factors that influence the vertical feeding size of solid materials theborehole. In the meanwhile, we further studied the movement characteristics of solidmaterials in vertical borehole and the flow field distribution characteristics, iMPactproperties and the buffer mechanism of the solid materials. Finally, we took theWugou coal mine (in northern Anhui electricity group of china) as an example to dothe industrial test, and achieved some research results, which mainly performed in thefollowing aspects:
     (1) According to the actual feeding characteristics of solid materials, weestablished the motion model which took the ventilating rate as its parameter, andstudied the wind drag characteristics of the solid materials in vertical feeding processon condition of the vertical feeding size of solid materials to the borehole by windtunnel test method. The motion control equation of solid materials and the motion lawof fillings on different launch conditions were obtained.
     (2) We analyzed the distribution law of airflow velocity field and pressure fieldin the vertical feeding borehole by using the FLUENT numerical simulation software.Combined with field data, this paper revealed the principle of gas-solid two-phasemovement of the in the channel of solid materials vertical feeding. We studied theeffect of pressure discharging function to air field distribution and obtained theairflow pressure discharging mechanism.
     (3) Based on the basic principles of the collision mechanics, we established thedynamic collision model and analyzed the iMPact properties during the verticalfeeding process. We obtained the dynamic response law of the bufferon differentiMPact conditions by using the ANSYS numerical simulation software and proposedthe buffer mechanism of the vertical feeding, which provided an important theoreticalbasis for the buffer equipment design and development in the vertical feeding process.
     (4) For the importance of the borehole’s installation and use in vertical feeding process, we studied the influence factors of installation and established the dynamiccontrol equation. And the falling movement law of pipe was obtained. Furthermore,we put forward the pipe material selection requirements.
     (5) This technology have successfully applied in Wu Gou coal mine, the systemoperated well to obtain good application effect, with vertical transmission capacity of550tons per hour and waste rock handling of220,000tons in total.
引文
[1]董光荣,吴波, et al.我国荒漠化现状、成因与防治对策[J].中国沙漠,1999,(04).
    [2]李丹,赵浩, et al.资源枯竭城市矿山环境问题及治理对策研究[J].露天采矿技术,2010,(05).
    [3]刘祥.浅谈露天煤矿开采环境问题及防治对策[J].中国科技博览,2010,(007):169-170.
    [4]梁凯.矿山固体废物的环境影响与综合利用[J].能源环境保护,2011,(01).
    [5]刘新宇.中国城市固体废弃物收运处置调查与思考[J].环境经济,2010,(10).
    [6]韩宝平.固体废物处理与利用[M].武汉:华中科技大学出版社,2010.
    [7]柴晓利,楼紫阳.固体废物处理处置工程技术与实践[M].北京:化学工业出版社,2009.
    [8]Liu Haibin, Liu Zhenling. Recycling utilization patterns of coal mining waste in China[J].Resources, Conservation and Recycling,2010(54):1331–1340.
    [9]Kai Wua, Huisheng Shi, Xiaolu Guo. Utilization of municipal solid waste incineration fly ashfor sulfoaluminate cement clinker production[J]. Waste Management,2011(31):2001–2008.
    [10]Sai Liang, Tianzhu Zhang. Comparing urban solid waste recycling from the viewpoint ofurban metabolism based on physical input–output model: A case of Suzhou in China [J].Waste Management,2012(32):220–225.
    [11]冉景煜,牛奔, et al..煤矸石综合燃烧性能及其燃烧动力学特性研究[J].中国电机工程学报,2006,(15).
    [12]邓寅生,邢学玲, et al.粉煤灰在煤矿巷道锚喷支护中的应用研究[J].矿业安全与环保2007,(03).
    [13]秦波涛.煤矿防灭火粉煤灰固化泡沫的研制及应用[J].金属矿山,2008,(04).
    [14]何秉顺,丁留谦, et al.某尾矿坝稳定性分析与加固措施[J]防灾减灾工程学报,2009,(02).
    [15]惠功领.我国煤矿充填开采技术现状与发展[J].煤炭工程,2010,(02).
    [16]亓兆伟,苏剑平.尾矿库坝体稳定分技术方法[J]西部探矿工程,2011,(01).
    [17]张育婵.河南高山镇赤泥尾矿库溃坝风险评价研究[D].辽宁工程技术大学,2009.
    [18]何荣军,张丽, et al.固体废弃物膏体充填料浆质量的神经网络研究[J].采矿与安全工程学报,2008,(03).
    [19]梁雅丽.10.18南丹尾矿坝大坍塌[J]沿海环境,2000,(12).
    [20]Huayong Wu, Hongtao Wang, Yan Zhao et al. Evolution of unsaturated hydraulic properties ofmunicipal solid waste with landfill depth and age [J]. Waste Management,2012(32):436–470.
    [21]刘二永,汪云甲, et al.矸石山自燃的温度场模型[J]矿业安全与环保,2007,(04).
    [22]束永保,李培良, et al.尾矿库溃坝事故损失风险评估[J].金属矿山,2010,(08).
    [23]谢龙水.矿山胶结充填技术的发展[J].湖南有色金属,2003,(04).
    [24]胡华,孙恒虎.矿山充填工艺技术的发展及似膏体充填新技术[J].中国矿业,2001,(06).
    [25]吉学文.膏体充填管道冲洗技术研究及应用[J].云南冶金,2008,(04).
    [26]Nobuhiro Tanigaki, Kazutaka Manako, Morihiro Osada. Co-gasification of municipal solidwaste and material recovery in a large-scale gasification and melting system [J]. WasteManagement,(2011), doi:10.1016/j.wasman.2011.10.019.
    [27]Ju F. Study on the key technique of waste and fly Ash backfilling with fully-mechanized coalwinning under Buildings [D]. Xuzhou: China University of Mining&Technology,2009.
    [28]Miao XX, Qian MG. Research on green mining of coal resources in china: current status andfuture prospects[J]. Journal of Mining&Safety Engineering,2009,26(1):1-14.
    [29]2010能源数据[M].中国科技论坛,2010,(11).
    [30]李兴尚,许家林,朱卫兵, et al.从采充均衡论煤矿部分充填开采模式的选择[J].辽宁工程技术大学学报(自然科学版),2008,(02):168-171.
    [31]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报,2009,26(1):1-14.
    [32]缪协兴,张吉雄,郭广礼.综合机械化固体充填采煤方法与技术研究[J].煤炭学报,2010,35(1):1-6.
    [33]缪协兴.采动岩体的力学行为研究与相关工程技术创新进展综述[J].岩石力学与工程学报,2010,29(10):1897-1998.
    [34]Moss B A. A.Paste. The Fill of the Future [J]. Canadian Mining Journal.1992(113):39-43.
    [35]B W. Basics of Paste Backfill Systems[J]. Mining Engineering,1994,46(1):1175-1178.
    [36]P M. Contribution to the study of ground movements under the influence of miningoperations[J]. International Journal of Rock Mechanics and Mining Science&GeomechanicsAbstracts.1965,2(2):225-228.
    [37]刘同有.中国有色矿山充填技术的现状及发展[J]中国矿业,2002,(01).
    [38]Donovan. J. Design of backfilled thin-seam coal pillars using earth pressure theory[J].Geotechnical and Geological Engineering.2004,22(4):627-642.
    [39]胡华,孙恒虎.矿山充填工艺技术的发展及似膏体充填新技术[J].中国矿业.2001(06):47-49.
    [40]黄玉诚,孙恒虎.尾砂作骨料的似膏体料浆流变特性实验研究[J].金属矿山.2003(06):8-10.
    [41]付毅,谢源, et al.膏体浆料管道自流充填新技术试验[J].有色金属(矿山部分),2003,(05).
    [42]吕辉,陈广平.矿山胶结充填技术述评与展望[J].矿业快报,2004,(10).
    [43]于润沧.我国胶结充填工艺发展的技术创新[J].中国矿山工程,2010,(05).
    [44]张洪军.建筑物下开采采空区膏体充填技术及应用[J].煤炭技术,2010,(06).
    [45]崔增娣,孙恒虎.煤矸石凝石似膏体充填材料的制备及其性能[J].煤炭学报,2010,(06):896-899.
    [46]李宏泉.空区膏体充填泵送特性及减阻试验研究[J].湘潭矿业学院学报,2004.(01).
    [47]李亮,周华强, et al.煤矿膏体充填料浆的工程检测及鉴别[J].能源技术与管理,2009,(03).
    [48]崔建强,孙恒虎,黄玉诚.建下似膏体充填开采新工艺的探讨[J].中国矿业.2002,(05):34-37,53.
    [49]李兴尚,许家林,黄伟强, et al.江砂胶结充填体抗压强度的多元回归研究[J].矿业研究与开发.2008(01):10-12.
    [50]李兴尚,田明华,许家林.新桥矿业公司充填技术的演变与应用[J].中国矿业.2006,(07):53-56.
    [51]J N. Recent developments and trends in backfill practices in Canada[Z]. Brislane:April:1998.
    [52]Nicieza C G. The new three-dimensional subsidence influence function denoted by n-k-g[J].Int.J.Rock Mech.and Min.Sci.2005,42(3):372-387.
    [53]Philip A. Engineering design of paste backfill systems[D]. Ontario, Canada: Queen’sUniversity Kingston,2003.
    [54]陈杰,张卫松, et al.井下矸石充填工艺及普采工作面充填装备[J].煤炭科学技术,2010,(04).
    [55]牛瑞芳.神东矿区井下无岩巷布置与矸石处理技术[J].陕西煤炭,2008,(05).
    [56]温庆华.哈拉沟煤矿井下矸石与煤置换开采探索与实践[J].煤炭工程,2009,(11).
    [57]张吉雄,缪协兴.煤矿矸石井下处理的研究[J].中国矿业大学学报,2006,35(2):197-200.
    [58]张吉雄,缪协兴,郭广礼.矸石(固体废物)直接充填采煤技术发展现状[J].采矿与安全工程学报,2009,26(4):395-401.
    [59]张吉雄,缪协兴.煤矿矸石井下处理的研究[J].中国矿业大学学报,2006,35(2):197-200.
    [60]缪协兴,张吉雄,郭广礼.综合机械化固体废物充填采煤方法与技术[M].徐州:中国矿业大学出版社,2010.
    [61]巨峰.建筑物下矸石与粉煤灰充填综采关键技术研究[D].徐州:中国矿业大学矿业工程学院,2009.
    [62]缪协兴.综合机械化固体充填采煤矿压控制原理与支架受力分析[J].中国矿业大学学报,2010,39(6):795-801.
    [63]张吉雄.矸石直接充填综采岩层移动控制及其应用研究[D].徐州:中国矿业大学,2008.
    [64]Miao XX, Zhang JX, Feng MM. Waste-filling in fully-mechanized coal mining and itsapplication[J]. Journal of China University of Mining&Technology.2008,18(4):79-82.
    [65]张吉雄,吴强,黄艳利等.矸石充填综采工作面矿压显现规律[J].煤炭学报,2010,35(8):1-4.
    [66]张吉雄,李,安泰龙等.矸石充填综采覆岩关键层变形特征研究[J].煤炭学报,201,35(3):357-362.
    [67]刘同友.充填采矿技术与应用[M].北京:冶金工业出版社,2001.
    [68]甘平,宋良泉.浅议充填采煤原理及方法[J].中国新技术新产品,2010,(21).
    [69]陈长杰,蔡嗣经.金川二矿膏体泵送充填系统可靠性研究[J].金属矿山,2002,(01).
    [70]陈小星.膏体充填管道自流输送系统分析[J]有色金属,2002,(01).
    [71]陈永强,徐鉴君.液粒凝固过程的动力学理论[J].力学学报,2008,(03).
    [72]李振安,刘宝月, et al..矿井开拓延伸矸石井下充填技术的研究与应用[J]煤炭工程,2011,(03).
    [73]巨峰张吉雄安百富.充填采煤固体物料垂直投料井施工工艺研究[J].采矿与安全工程学报,2010,(29):38-43.
    [74]Ju Feng, Zhang Ji-xiong, et al. Vertical transportation system of solid material for backfillingcoal mining technology[J]. Mining Science and Technology,2012,(01).
    [75]巨峰张吉雄.复杂地质条件矿井矸石零排放处理基础与应用[J].煤炭科学技术,2011,39(08):19-22.
    [76]Ju Feng, Zhang Ji-xiong, et al.Waste filling technology under condition of complicatedgeological condition working face. Procedia Earth and Planetary Science[J].2009,1(1):1220-1227.
    [77]张志云,丁世用,魏传忠.碰撞动力学[M].北京:兵器工业出版社,1989.
    [78]徐秉业,沈新普,崔振山.固体力学[M].北京:中国环境科学出版社,2003.
    [79]何思明,吴永, et al.滚石冲击碰撞恢复系数研究[M]岩土力学,2009,(03).
    [80]何思明,吴永, et al.滚石坡面冲击回弹规律研究[J].岩石力学与工程学报(S1),(2008).
    [81]Lian-Ping Wang, Bogdan Rosa,Hui Gao et al, Turbulent collision of inertial particles:Point-particle based, hybrid simulations and beyond[J]. International Journal of MultiphaseFlow,2009,(35):854-867.
    [82]C.J.Meyer,D.A.Deglon, Particle collision modeling-A review[J]. Minerals Engineering,2011,(24):719-730.
    [83]白更,严海军.空气阻力系数对水滴运动及蒸发的影响[J].水利学报,(2011).
    [84]白志刚,杨晨.循环流化床气固两相流动模拟[J].计算机仿真,2009,(03).
    [85]曹树刚,鲜学福.煤岩固-气耦合的流变力学分析[J].中国矿业大学学报,2001,(04).
    [86]傅德熏,马延文,李新亮等.可压缩湍流直接数值模拟[M].北京:科学出版社,2010.
    [87]Justin Hudson, David Harris. A high resolution scheme for Eulerian gas–solid two-phaseisentropic fow[J]. Journal of Computational Physics,2006,(216):494-525.
    [88]Yulong Ding, Yurong He, Ngoc Thang Cong, Wei Yang, Haisheng Chen. Hydrodynamics andheat transfer of gas–solid two-phase mixtures fowing through packed beds-a review[J].Progress in Natural Science,2008,(18):1185-1196.
    [89]Morimasa Watakabe, Masamiki Ohashi et al, Comparison of wind pressure measurements ontower-like structure obtained from full-scale observation, wind tunnel test, and the CFDtechnology[J].Journal of Wind Engineering and Industrial Aerodynamics,2002,(90):1817-1829.
    [90]程啟华.气固两相流场中固体颗粒对弹底撞击应力测试技术研究[D],南京理工大学,2007.
    [91]李洪波.气砂两相流在天然气开采过程中的理论及实验研究[D],四川大学,2004.
    [92]张德丰.MATLAB数值分析与应用[M].北京:国防工业出版社,2009.
    [93]徐辉,张毅, et al.一种空气动力系数拟合方法."弹箭与制导学报,2007,(01).
    [94]Korlin, R. and U. Starossek. Wind tunnel test of an active mass damper for bridge decks [J].Journal of wind engineering and industrial aerodynamics,2007,95(4):267-277.
    [95]Li, Y., F. Feng, et al.. Wind tunnel tests on ice accretions on the surface of a static straightblade for the vertical axis wind turbine, IEEE,2010.
    [96]Voisin, D., G. Grillaud, et al. Wind tunnel test method to study out-of-service tower cranebehaviour in storm winds. Journal of wind engineering and industrial aerodynamics.2004,92(7):687-697.
    [97]Zhang, C. L., X. Y. Zou, et al.. Wind tunnel test and137Cs tracing study on wind erosion ofseveral soils in Tibet. Soil and Tillage Research,2007,94(2):269-282.
    [98]Zuo, D. and N. P. Jones. Wind tunnel testing of yawed and inclined circular cylinders in thecontext of field observations of stay-cable vibrations[J]. Journal of wind engineering andindustrial aerodynamics,2009,97(5):219-227.
    [99]刘绍民,卢俐, et al.空气动力学阻抗的测量研究[J].应用气象学报,2007,(02).
    [100]刘涌江,胡厚田, et al.大型高速滑坡体运动的空气动力学研究[J].西南交通大学学,2002,(01).
    [101]毛军,薛琳, et al.新型高速列车隧道空气动力学模型实验系统[J].北方交通大学学报2003,(04).
    [102]王文奎,石柏军.低速风洞洞体设计,机床与液压,2008,(05).
    [103]王英学,高波, et al.高速列车进入隧道空气动力学模型实验分析[J].空气动力学学报.2004,(03).
    [104]王英学,高波, et al.高速列车进出隧道空气动力学特征模型实验分析[J].流体力学实验与测量,2004,(03).
    [105]杨恩霞,杨硕.低速风洞变角度系统的设计[J].机械工程师2008,(09).
    [106]张庆良,赵树国.汽车空气阻力系数的试验测定法[J].公路与汽运,2009,(05).
    [107]章荣平,王勋年, et al.低速风洞尾撑支杆干扰研究[J].实验流体力学,2006,(03).
    [108]周鑫.地震触发高速远程滑坡气垫效应的研究[J].上海交通大学,2010.
    [109]周晓,张耀平, et al.真空管道中高速列车空气阻力数值仿真[J].科学技术与工程,2008,(06).
    [110]姚朝辉,周强.计算流体力学入门[M].北京:清华大学出版社,2010.
    [111]Hao Zhou, Guiyuan Mo, Jiapei Zhao, Kefa Cen. DEM–CFD simulation of the particledispersion in a gas–solid two-phase fow for a fuel-rich/lean burner[J]. Fuel,2011(90):1584-1590.
    [112]B. Peng, C. Zhang, J. Zhu. Theoretical and numerical studies on the fow multiplicityphenomenon for gas–solids two-phase fows in CFB risers[J]. International Journal ofMultiphase Flow,2011(37):660-670.
    [113]晁东海,郭雪岩.大颗粒气固流化床内两相流动的CFD模拟[J].上海理工大学学报2010,(04).
    [114]冯启言,周来, et al.煤层处置CO_2的二元气-固耦合数值模拟[J].高校地质学报,2009,(01).
    [115]李人宪,刘应清, et al.高速磁悬浮列车纵向及垂向气动力数值分析[J].中国铁道科学,2004,(01).
    [116]李小剑,刘泽勤, et al.自由下落微粒流中气固两相流的数值模拟[J].天津商学院学报,2006,(06).
    [117]刘建,姚海飞, et al.基于罗森-拉姆勒分布函数的粉尘分散度分析[J].北京科技大学学报,2010,(09).
    [118]刘向军,石磊, et al.稠密气固两相流欧拉-拉格朗日法的研究现状[J].计算力学学报2007,(02).
    [119]鲁嘉华,凌志光.气固两相透平内颗粒湍流扩散的Lagarange数值模拟[J].热能动力工程,2003,(05).
    [120]蒲文灏,赵长遂, et al.垂直管密相输送的数值模拟[J].动力工程,2008,(01).
    [121]李锋,白鹏, et al.微型飞行器低雷诺数空气动力学[J].力学进展,2007,(02).
    [122]刘晓明,何德富.大型飞机翼型的低速风洞压力分布测量技术[J].中国民航飞行学院学报,2008,(06).
    [123]孙振旭,宋婧婧, et al. CRH3型高速列车气动头型优化计算[J].中国科学:技术科学.2011,(03).
    [124]许唯临,廖华胜, et al.隧道中列车空气阻力数值模拟研究[J].铁道学报,1998,(02).
    [125]张伟,胡树根, et al.汽车空气阻力系数的数值模拟及研究[J].拖拉机与农用运输车,2007,(02).
    [126]张子明,周星德,姜冬菊.结构动力学[M].北京:中国电力出版社,2009.
    [127]王礼立,余同希,李永池.冲击动力学进展[M].合肥:中国科学技术大学出版社,1992.
    [128]何思明.滚石对防护结构的冲击压力计算[J].工程力学,2010,(09).
    [129]何思明,沈均, et al.滚石冲击荷载下棚洞结构动力响应[J].岩土力学,2011,(03).
    [130]何思明,吴永, et al颗粒弹塑性碰撞理论模型."工程力学(12).
    [131]宋卫东,王洪永, et al.采区溜井卸矿冲击载荷作用的理论分析与验证[J].岩土力学2011,(02).
    [132]章广成,向欣, et al.落石碰撞恢复系数的现场试验与数值计算[J].岩石力学与工程学报,2011,(06).
    [133]宫凤强,李夕兵, et al.一维动静组合加载下砂岩动力学特性的试验研究[J].岩石力学与工程学报(10).
    [134]宫凤强,李夕兵, et al.三维动静组合加载下岩石力学特性试验初探[J].岩石力学与工程学报,2011,(06).
    [135]李启月,顾春宏, et al.冲击加载下矽卡岩破碎能耗与块度关系的试验研究[J].矿冶工程,2009,(04).
    [136]李夕兵,宫凤强, et al.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,2010,(02).
    [137]李旭东,刘凯欣, et al.地下防护结构在冲击载荷作用下的动态破坏过程[J].爆炸与冲击,2010,(05).
    [138]卢静涵,沈建虎, et al.反分析法在结构冲击动力响应实验中的应用[J].爆炸与冲击,2004,(02).
    [139]唐振廷,陈一龙.冲击试验的现状与发展[J].汽车工艺与材料,2004,(10).
    [140]尹土兵,李夕兵, et al.高温后砂岩动态压缩条件下力学特性研究[J].岩土工程学报,2011,(05).
    [141]Martin Sommerfeld, Validation of a stochastic Lagrangian modeling approach forinter-particle collis ions in homogeneous isotropic turbulence[J].International Journal ofMultiphase Flow,2001(27):1829-1858.
    [142]A. Vaziri, H.Nayeb-Hashemi, Dynamic response of a repaired composite beam with anadhesively bonded patch under a harmonic peeling load[J]. International Journal of Adhesion&Adhesives,2006(26):314-324.
    [143]F. Behnamfar, Y. Sugimura, Dynamic response of adjacent structures under spatially variableseismic waves[J]. Probabilistic Engineering Mechanics,1999(14):33-44.
    [144]任够平.预加轴力的钢管混凝土构件受刚性块侧向冲击的动力响应分析[D].太原理工大学,(2009).
    [145]张英朝,李杰, et al.轿车会车时气动特性的数值模拟[J].江苏大学学报(自然科学版),2008,(02).
    [146]赵丽娜,周科平, et al.露天矿边坡滚石运动特征及控制[J].灾害学,2008,(03).
    [147]Kang-he Xiea, Gan-bin Liua, Zu-yuan Shi, Dynamic response of partially sealed circulartunnel in viscoelastic saturated soil[J]. Soil Dynamics and Earthquake Engineering,2004(24):1003-1011.
    [148]DENG Fei-huang, MO Hai-hong, ZENG Qing-jun, YANG Xiao-jie,Analys is of the DynamicResponse of a Shield Tunnel in Soft Soil Under a Metro-Train Vibrating Load[J]. J. ChinaUniv. of Mining&Tech,2006(16):509-513.
    [149]何思明,沈均, et al.滚石坡面法向冲击动力响应特性研究[J].工程力学,2011,(06).
    [150]韩维.斜碰撞振动系统动力学研究[M].南京:南京航空航天大学,(2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700