用户名: 密码: 验证码:
基于磁性技术的无损检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无损检测是利用材料内部结构的异常或缺陷的存在所引起的热、声、光、电、磁等信号的变化,来确定被检测对象的特征及缺陷,以评价构件的使用性能。随着解析技术和计算机技术的发展,无损检测已经成为现代工业生产中质量控制和质量保证的重要的检测与测试手段。无损检测方法中如X射线衍射法、涡流检测以及巴克豪森法、磁记忆法等可探测材料表层信息,能够有效检测已发展成形的宏观缺陷。但是对于在役金属设备及构件的表层以下的结构变化或早期应力集中,特别是尚未形成微裂纹的隐性损伤,难以实施有效的评价。本论文系统研究基于磁力效应(Magnetomechanical effect)的无损检测技术并构建了基于LabView的检测系统,主要研究内容如下:
     研究基于磁力效应的无损检测方法及其理论模型,当构件应力水平处于弹性阶段,由于晶粒的强度在相同的受力方向上是不同的,个别薄弱晶粒进入塑性应变状态,屈服的晶粒形成应力集中区。铁磁体的磁化曲线和磁滞回线代表了磁性材料在外磁场作用下的基本磁特性,磁化曲线和磁滞回线上反映的磁特性参数磁导率μ、矫顽力H c、剩磁M R等,灵敏地依赖于磁性材料的微观结构,建立铁磁性材料的磁性参数和材料内应力之间的关系,利用应力引起材料磁特性的变化来确定材料内部的应力分布。
     在U型铁芯上缠绕激励和感应线圈是磁力法最常用的探头结构,U型探头使U型铁芯和构件的被测部分构成了一个闭合磁路,测量方便且结构简单。但是U型探头很难保证测量的准确性和重复性,温度、杂散场以及探头和构件间的空气缝隙均对测量结果均有较大影响。为提高U型探头的实用性,使用导磁胶固定探头,减小缝隙磁阻;引入偏置场,使各样品处于相同的磁化状态,屏蔽掉样品表面散射场;对测量结果进行温度补偿,提高系统测量精度;对感应信号的频率进行筛选,找出最佳频率范围。
     基于磁力效应的无损检测方法通常是应用单一频率的正弦信号波或低频的三角波信号作为激励信号。本文利用脉冲场作为激励信号,其磁化电流和检测探头感应出的感生电压直接输入由计算机控制的数据采集装置,通过数据处理得到整个磁化过程的磁化曲线和磁滞回线以及各种磁性参数。
     利用大电容对低阻的激励线圈放电产生脉冲强磁场。大电流在短时间内通过电感线圈,电流强度大且持续的时间短,应用绝缘栅双极型功率管(IGBT)作为开关,与电容、电感线圈、大功率阻尼电阻构建脉冲强磁场发生装置。同时为了获得完整的磁滞回线,应用微控制器控制不同的IGBT按预定时序导通或截止,控制两个相同容量电容依次对激励线圈放电,产生正反两个方向的脉冲强磁场。利用高速数据采集卡(DAQ)提取激励电流信号i与感应电压信号u,利用LabView提供的各种与实际仪器仪表外观几乎一样的控件、指示器等组成用户需要的仪表界面,获取由脉冲强磁场诱发出的磁性参数。
     建立各磁性参数(矫顽力、磁导率、剩磁等)与拉、压应力的关系,各磁性参数中,剩磁对应力反应比较灵敏,并且剩磁不随外磁场幅度的变化而变化,因此更适合来反应材料内部应力分布情况。
     测量低碳钢Q235弹性范围内拉应力状态下以及冷作硬化过程中的磁化曲线和磁滞回线,在试样的弹性阶段,外加拉应力使畴壁位移变得容易,材料更易于磁化,拉应力方向剩磁B r增大。外加拉应力超过屈服极限后,随着拉应力的增加剩磁B r快速减小,此时,有两个因素影响磁特性参数,外加拉应力使畴壁位移变得容易,塑性变形产生的大量位错却要阻碍畴壁位移,由于位错的钉扎效应强于外加拉应力的影响,两个因素的综合结果会导致当外加拉应力超过极限应力的后,随着外应力的增加,产生连续的塑性变形,使剩磁B r快速减小。
     测量脉冲场作用后试样的表面场强度,判断脉冲场的磁化区域和渗透深度,试样正反两面被磁化区域表面场强度一致,说明此强度的脉冲场渗透深度达到了该试样的厚度。
     利用脉冲场作为激励信号探测材料内部缺陷。材料内部缺陷不仅对磁导率和剩磁有影响,对矫顽力的影响也比较大,尤其是距离测量表面比较近的内部缺陷,其磁性参数变化十分明显,根据磁性参数中的矫顽力Hc变化辅助判断材料内部缺陷是否存在,分析内部缺陷距深度。
Non-destructive testing (NDT) technique is to evaluate the performance ofa component based on the changes of thermal, acoustic, optical, electric, andmagnetic signals. The changes are caused by the variation/degradation in amaterial. With modern analytical and computational techniques, NDT hasbecome an important testing means of quality control and quality assuranceinspection in modern industrial production.
     Several NDT techniques such as X-ray diffraction, eddy current,Barkhausen emission, and metal magnetic memory can provide a detection ofnear surface and surface defection. But for the sub-surface defectioncharacterisation, especial for the early stages of cracking, these techniquesare limited. In this paper, the magnetomechanical effect is studied for NDT, adetect system based on LabView environment has been designed andfabricated. The main research are listed as follow.
     The physical theoretical model of magnetomechanical effect isstudied. When the stress level was in elastic stage, plastic strain appeared atsome weak grain because the strength of the grains is different at the samestress direction. The yield grains formated the stress concentration. Themagnetization curve and magnetic hysteresis loop reflects magneticcharacteristics of a magnet material. The magnetic parameters such ascoercivity, hysteresis loses and permeability were derived from hysteresisloop. These magnetic hysteresis parameters are so sensitive to stress andmicrostructure changes, and the correlations between magnetic parameterswith stress, microstructure, chemical composition have been studied andmodeled.
     The widely utilized magnetic sensor for NDT consists of a singleU-shaped yoke, a magnetizing coil, and an induction coil. The two coils aredirectly wound on the yoke. The magnetizing coil and induction coil are forsample magnetization and determination of the system flux, respectively. Thesensor is convenient to use and with simple structure. But the U-shaped probeis hard to ensure the measured precision and reproducibility in magnetic stressmeasurement. Many factors can influence magnetic measurement, such asthe contact quality between yoke and sample, stray field and temperature. Inorder to extend the applicability of active magnetic techniques to industries,many measures were taken. Daubing the magnetism cement between theprobe head can reduce the gap magnetic resistance greatly. Establishing anoffset magnetic field along compressed direction can counteract the stray field.Temperature compensation can improve the system measurement accuracy.The best frequency range of induction signal was chosen.
     Most magnetic apparatuses for NDT employ a sinusoidal or a triangularwave as the excitation. Pulsed excitation has been introduced in hysteresismeasurement in recent work. The voltage of induction coil and the current ofmagnetizing coil are measured. Task of computer in the measurement iscontrolling data acquisition cards, saving the measured data andpost-processing of experimental data.
     The pulsed field is generated by the discharge of a capacitor over themagnetizing coil. The duration of the generated pulse varies within the limits of10–2to10–3s. In order to obtain a whole hysteresis loop, two capacitors andfour insulated gate bipolar transistors (IGBTs) are used to generate two pulsesin opposite directions. The signals of the excitation current and inducedvoltage in the induction coil are directly fed to a data acquisition card (NationalInstruments, model NI PCI6251). LabView-based software has beendeveloped in order to process the signals and plot the hysteresis loops.
     The relationship between magnetic parameters and stress wasestablished. The magnetic properties derived from the loops and curves are sensitive to applied stress. Remanence Br did not change with the externalmagnetic field, so it is more accurate and suitable to characterize the stress ina material.
     The hysteresis loops of a test sample were measured when the samplewas under the tensile stress during the cold-working hardening. In elasticstage, the tensile stress facilitated domain walls movement and result in easymagnetization in a material. Remanence Br increased at the tensile stressdirection. In the plastic strain range, with the stress increasing, there are twofactors affecting the magnetic properties, the tensile stress to ease the domainwalls movements and the dislocations caused by the strain to impede them.Because the hindering effect of dislocation on the domain walls movements ismuch stronger than the effect of tensile stress, the combined influences ofthese two factors result in a rapid decrease of Remanence Br with the appliedtensile stress.
     The surface magnetic field was measured by a Hall sensor after thepulsed field magnetized a sample. The measurements were performed on thetwo sides of the sample, the samples were made from different thickness. Ifthe surface field strength of the two sides was near consistent, it showed thatthe pulse field penetrating depth reached the sample thickness.
     An experiment has been set up to investigate the capabilities of thesystem to detect sub-surface defects. The sub-surface defects had influencenot only on permeability and remanence but also on coercive force. The nearsurface defect had great influence on these magnetic parameters. Accordingto the change of coercive force, the existence of the sub-surface defects couldbe judged and the depth of the defect could been calculated.
引文
[1]仁吉林,林俊明.电磁无损检测电磁无损检测[M].北京:科学出版社,2008.
    [2] P.J.Withers and H.K.H.Bhadeshia. Overview Residual stressPart1-Measurement techniques[J]. Materials Science and Technology,2001,17:355-365.
    [3] P.J.Withers and H.K.H.Bhadeshia. Overview Residual stress Part2-Nature andorigins[J]. Materials Science and Technology,2001,17:366-375.
    [4]姜保军.磁测应力技术的现状及发展[J].无损检测,2006,28(7):362-366.
    [5]罗健豪.无损残余应力测量及其新技术[J].力学与实践,2003,25(4):7-12.
    [6] John W. Wilson,Guiyun Tian,Simon Barrans. Residual magnetic fieldsensing for stress measurement[J]. Sensors and Actuators A:Physical,135(2):381-387.
    [7]任吉林,林俊明.金属磁记忆检测技术[M].北京:中国电力出版社,2000.
    [8] K.Titto. Use of Barkhausen Effect in Testing for Residual Stresses andMaterial Defects[J]. Non-Destruct. Test,1989,8(26):36-41.
    [9] D.Jiles,L.Mierczak. Stress and Depth Dependence of Stochastic Processes inthe Barkhausen Effect[C]. Bulletin of the American Physical Society APSMarch Meeting,2011.
    [10]尹何迟,颜焕元,陈立功,倪纯珍.磁巴克豪森效应在残余应力无损检测中的研究现状及发展方向[J].无损检测,2008,30(1):34-36.
    [11] C.Jagadish, L.Clapham,et al.Influence of uniaxial elastic stress on powerspectrum and pulse height distribution of surface Barkhausen noise inpipeline steel[J]. IEEE Transactions on Magnetics,1990,26(3):102-108.
    [12] G.Durin, S.Zapperi. On the power spectrum of magnetization noise[J].Journal of Magnetism and Magnetic Materials,2002,245(2):1085-1088.
    [13] Leszek, Magalas. Application of the wavelet transform in mechanicalspectroscopy and in Barkhausen noise analysis [J]. Journals of Alloys AndCompounds,2000,310(1-2):269-275.
    [14] Gauthier, Krause, Atherton. Measurement of residual stress in steel using themagnetic Barkhausen noise technique[J]. NDT&EInternational,1998,31(1):23-31.
    [15] A.Dhar, L.Clapham, Atherton D L. Influence of uniaxial plastic deformationon magnetic Barkhausen noise in steel[J]. NDT&EInternational,2001,34(8):507-514.
    [16] R.Langman. The effect of stress on the magnetization of mild steel atmoderate field strengths[J]. IEEE Transactions on Magnetics,1985,21(4):1314-1320.
    [17] D.C.Jiles, D.L.Atherton. Theory of ferromagneitc hysteresis[J]. Journal ofphysics D: Applied physics,1984,55(6):2115-20.
    [18] D.C.Jiles, D.L.Atherton. Theory of the magnetization process inferromagnets and its application to the magnetomechanical effect. Journal ofphysics D: Applied physics,1984,17(6):2491-95.
    [19] D.L.Atherton, D.C.Jiles. Effects of stress on magnetization. NDTInternational,1986,19(1):15-19.
    [20] P.Garikepati, D.C.Jiles. Theory of ferromagnetic hysteresis: evaluation ofstress from hysteresis curves[J]. IEEE Transactions on Magnetics,1988,24(6):2922-4.
    [21] D.L.Atherton, J.R.Beattie. A mean field Stoner-Wohlfarth hysteresismodel[J]. IEEE Transactions on Magnetics,1990,26(6):3058-63.
    [22] M.J.Sablik, D.C.Jiles. Coupled magnetoelastic theory of magnetic andmagnetostrictive hysteresis[J]. IEEE Transactions on Magnetics,1993,29(4):2113-23.
    [23] F.Liorzou,B.Phelps,D.L.Atherton. Macroscopic models of magnetization[J].IEEE Transactions on Magnetics,2000,36(2):418-28.
    [24] R.Langman. Some comparisons between the measurement of stress in mildsteel by means of Barkhausen noise and rotation of magnetization[J]. NDTInternational,1987,20(2):93-9.
    [25] R.Langman. Measurement of mechanical st ress in mild steel by means ofrotation of magnetic field strength[J]. NDT International,1981,14(5):255.
    [26] R.Langman. Measurement of mechanical st ress in mild steel by means ofrotation of magnetic field strength Part2: biaxial stress[J]. NDTInternational,1982,15(2):91-97.
    [27] R.Langman. Measurement of mechanical st ress in mild steel by means ofrotation of magnetic field strength Part3: practical applications[J]. NDTInternational,1983,16(2):59-65.
    [28] R.Langman. Magnetic properties of mild steel under conditions of biaxialstress[J]. IEEE Transactions on Magnetics,1990,26(4):1246-51.
    [29] T.Liu, H.Kikuchi. Magnetomechanical Effects Under Applied Stress andUnloaded Conditions Measured by a Probe With Indirect Pickup Coil[J].IEEE Transactions on Magnetics,2005,41(10):3664-66.
    [30] S. Takahashi, J. Echigoya, and Z. Motoki. Magnetization curves ofplastically deformed Fe metals and alloys[J]. Journal of physics D: Appliedphysics,2000,87(2),805.
    [31] B.Augustyniak, M.Chmielewski, and M.J.Sablik. Multiparametermagnetomechanical NDE[J]. IEEE Transactions on Magnetics,2000,36(5),3624.
    [32] S. Takahashi, L. Zhang, and T. Ueda. Magnetic hysteresis minor loops in Fesingle crysta[J]. Journal of Physics: Condensed Matter,2003,15(46):7997.
    [33] T. Liu, H. Kikuchi. Relationship between magnetic properties and externalstresses during in situ tensile testing[J]. Transactions of the MagneticsSociety of Japan,2005,5(1):35-8.
    [34] A.Sipeky, A.Ivanyi. Magnetic hysteresis under applied stress[J]. Physica B:Condensed Matter,2006,372(1-2):177–180.
    [35] A.Sipeky, A.Ivanyi. Magnetic measurement and vector modeling underapplied mechanical stress[J].Pollack Periodica,2008,3(1):53-65.
    [36] A.Sipeky, A.Ivanyi. Preisach-type stress-dependent magnetic vectorhysteresis model[J]. Physica B: Condensed Matter,2008,403(2-3):491-5.
    [37] D.Bulte, R.Langman. Origins of the magnetomechanical effect[J]. Journal ofMagnetism and Magnetic Materials,2002,251(2):229-43.
    [38] D.Bulte.The Pursuit of Hysteresis in Polycrystalline FerromagneticMaterials Under Stress[J]. IEEE Transactions on Magnetics,2009,45(1),83-87.
    [39] M.Katoh, N.Masumoto, K.Nishio, T.Yamaguchi. Modeling of theyoke-magnetization in MFL-testing by finite elements[J]. NDT&EInternational,200336:479-86.
    [40] G.V. Bida, A.P.Nichipuruk. Coercive force measurements in nondestructivetesting[J]. Russian journal of nondestructive testing,2000,36:707-27.
    [41] K.J. Stevens. Stress dependence of ferromagnetic hysteresis loops for twogrades of steel[J]. NDT&E International,2000,33:111–21.
    [42] O.Stupakov. Optimization of single-yoke magnetic testing by surface fieldsmeasurement[J]. Journal of physics D: Applied physics,2006,39(2),248.
    [43] O.Stupakov. Applicability of local magnetic measurements[J]. Measurement,2009,42(5):706-10.
    [44] J.Pala, O.Stupakov. Magnetic behaviour of low-carbon steel in parallel andperpendicular directions to tensile deformation[J]. Journal of Magnetismand Magnetic Materials,2007,310(1):57-62.
    [45] O.Stupakov, J.Pala, I.Tomas.Investigation of magnetic response to plasticdeformation of low-carbon steel[J]. Materials Science and Engineering: A,2007,462(1-2):351-4.
    [46] O.Stupakov, I.Tomas. Hysteresis minor loop analysis of plastically deformedlow-carbon steel[J]. NDT&E International,2006,39(7):554-61.
    [47] O.Stupakov. Magnetic anisotropy of plastically deformed low-carbonsteel[J]. Journal of physics D: Applied physics,2010,43(19).
    [48] J.Pala. Stabilization of the Barkhausen Noise Parameters[J]. IEEETransactions on Magnetics,2010,46(2),207-9.
    [49] J.Pala. Effect of Measurement Conditions on Barkhausen NoiseParameters[J]. Advances in Electrical and Electronic Engineering,2011,7(1-2):315-7.
    [50] I.Tomas. Non-destructive magnetic adaptive testing of ferromagneticmaterials[J]. Journal of Magnetism and Magnetic Materials,2004,268:178-85.
    [51] I.Tomas,O.Stupakov. Magnetic adaptive testing-low magnetization, highsensitivity assessment of material modifications[J]. Journal of Magnetismand Magnetic Materials,2006,304:168-71.
    [52] G.Vertesy, I.Tomas, I.Meszaros. Nondestructive indication of plasticdeformation of cold-rolled stainless steel by magnetic adaptive testing[J].Journal of Magnetism and Magnetic Materials,2007,310:76-82.
    [53] O.Stupakov. Investigation of applicability of extrapolation method forsample field determination in single-yoke measuring setup[J]. Journal ofMagnetism and Magnetic Materials,2006,307:279-87.
    [54] O.Stupakov, O.Perevertov, V.Stoyka. Correlation Between Hysteresis andBarkhausen Noise Parameters of Electrical Steels[J]. IEEE Transactions onMagnetics,2010,46(2),517-20.
    [55] J.A.Rivera, L.R.Padovese. Magnetic Barkhausen Noise and hysteresis loopin commercial carbon steel: influence of applied tensile stress and grainsize[J]. Journal of Magnetism and Magnetic Materials,2001,231(2-3):299-306.
    [56] H. Weinstock and T. Erber. Threshold of Barkhausen emission and onset ofhysteresis in iron[J]. Physical Review B,1985,31:1535–1553.
    [57] D.C.Jiles. Modeling of micromagnetic Barkhausen activity using astochastic process extension to the theory of hysteresis[J]. Journal ofphysics D: Applied physics,1993,73(10):5830-2.
    [58] CCH Lo, SJ Lee, L Li, LC Kerdus. Modeling stress effects on magnetichysteresis and Barkhausen emission using a hysteretic-stochastic model[J].IEEE Transactions on Magnetics,2002,38(5),2418-20.
    [59] F. Rumiche, J.E. Indacochea and M.L. Wang. Assessment of the Effect ofMicrostructure on the Magnetic Behavior of Structural Carbon Steels Usingan Electromagnetic Sensor[J]. Journal of Materials Engineering andPerformance,2008,17(4),586-93.
    [60] O.Stupakov, J.Pala, T.Takagi. Governing conditions of repeatableBarkhausen noise response[J]. Journal of Magnetism and MagneticMaterials,2009,321:2956–2962.
    [61] F.Bohn, F.J.G.Landgraf, A.M.Severino. Magnetostriction, Barkhausen noiseand magnetization process in E110grade non-oriented electrical steels[J].Journal of Magnetism and Magnetic Materials,2007,317:20–28.
    [62] C.Mandache, T.W.Krause, and L.Clapham. Investigation of optimum fieldamplitude for stress dependence of magnetic Barkhausen noise[J]. IEEETransactions on Magnetics,2007,43(11):3976–3983.
    [63] S.E.Zirka, Y.I.Moroz, D.C.Jiles. Generalization of the classical method forcalculating dynamic hysteresis loops in grain oriented electrical steels[J].IEEE Transactions on Magnetics,2008,44(9):2113–26.
    [64] O.Perevertov, O.Stupakov, I.Tomas. Detection of spring steel surfacedecarburization by magnetic hysteresis measurements[J]. NDT&EInternational,2011,44:490–494.
    [65] Li D, D.Anghelina, D.Burzic, J.Zamberger. Investigation of decarburizationin spring steel production process Part I: experiments[J]. Mater Technol,2009,80:298–303.
    [66] O.Stupakov, O.Perevertov, I.Tomas. Evaluation of surface decarburizationdepth by magnetic Barkhausen noise technique[J]. Journal of Magnetismand Magnetic Materials,2011,323:1692–97.
    [67] Chun Kan Hou, Jian Ming Tzeng. Influence of Heating Rate andDecarburization Temperature on the Microstructure and Magnetic Propertiesof Grain Oriented Electrical Steel[J]. Materials Science Forum,2012,706-709:2622.
    [67] S.Kahrobaee. Magnetic NDT Technology for characterization ofdecarburizing depth[J]. Surface and Coatings Technology,2011,205,(16):4083–4088.
    [68] D. Burzica, J. Zambergerb,E. Kozeschnikc. Non-destructive evaluation ofdecarburization of spring steel using electromagnetic measurement[J].NDT&E International,2010,43(5):446–450.
    [69]何辅云,张海燕,丁克勤.钢管漏磁高速检测技术与系统[M].北京:机械工业出版社,2009.
    [70]刘卓然.漏磁检测[M].北京:中国科学技术出版社,2007.
    [71]林俊明.漏磁检测技术及发展研究方向.无损探伤[J].2006,30(1):1-5.
    [72]范弘,岳东平,王锡琴,项峻峰.钢管漏磁探伤的新方法[J].钢铁研究学报,2002,12(6):50-54.
    [73]宋凯,康宜华,孙燕华,武新军.漏磁与涡流复合探伤时信号产生机理研究[J].机械工程学报,2009,45(7).
    [74]唐莺,潘孟春,罗飞路,陈棣湘.管道腐蚀检测中的脉冲漏磁检测技术[J].计算机测量与控制.2010,18(1):38-41.
    [75]张国光.管道漏磁检测中漏磁信号与缺陷特征关系的研究[J].化工自动化及仪表.2008,35(2):39-41.
    [76]唐莺,潘孟春,罗飞路,陈棣湘,高军哲.基于三维场测量的脉冲漏磁检测技术[J].仪器仪表学报,2011,32(10):2397-302.
    [77]于亚婷,杜平安,廖雅琴.线圈形状及几何参数对电涡流传感器性能的影响[J].仪器仪表学报,2007,28(6).
    [78]唐莺,罗飞路,潘孟春,等.脉冲漏磁检测的三维场特征分析及缺陷分类识别[J].仪器仪表学报,2009,28(6).
    [79]徐章遂,徐英,王建斌,谢颖.裂纹漏磁定量检测原理与应用[M].北京:国防工业出版社,2005.
    [80]张玉华,孙慧贤,罗飞路,等.脉冲涡流检测中三维磁场量的特征分析与缺陷定量评估[J].传感技术学报,2008,21(5).
    [81]杨理践,王玉梅.智能化管道漏磁检测装置的研究[J].无损检测,2002,24(3):100-102.
    [82]宋小春,黄松岭,等.高清晰度储罐底板漏磁检测器的研制[J].化工自动化及仪表,2007,34(1):77-80.
    [83]汪友生,梁策.管道内壁缺陷漏磁信号的ANSYS仿真与分析[J].计算机测量与控制,2005,13(3):273-275.
    [84] A. A. Dubov. A study of metal properties using the method of magneticmemory[J]. Metal Science and Heat Treatment,1997,39(9),401-405.
    [85]林俊明,林景春,林法炳,萨辉.基于磁记忆效应的一种无损检测新技术[J].无损检测,2000,22(7).
    [86]黄松龄,李路明,汪来富,刘时风.用金属磁记忆方法检测应力分布[J].无损检测,2002,24(5).
    [87]任吉林,高春法,宋凯.电站铁磁构件的磁记忆检测[J].仪器仪表学报,2003,24(5):470-476.
    [88]仲维畅.金属磁记忆法诊断的理论基础[J].无损检测,2001,23(10):424-426.
    [89]任吉林,范振中.基于小波包变换的磁记忆信号特征值的提取[J].无损检测,2008,30(9):184-186.
    [90]宛德福,马兴隆.磁性物理学[M].电子科技大学出版社,1994.
    [91] D. Huang, B.Han, T.Hu, and T.Zhang. Investigation on the applicability ofsingle-yoke magnetic testing under applied stress[J]. Applied Mechanics andMaterials,2011,44-47:2926-30.
    [92]郝秀兰.有关磁性应力仪对表面粗糙度要求的研究[J].无损检测,1995,17(8):219-220.
    [93]殷春浩,张雷.磁性应力测量条件对应力感度的影响[J].测试技术学报,2006,20(1):11-14.
    [94]周世昌.磁性测量[M].电子工业出版社,1994.
    [95]李国栋当代磁学[M].北京:中国科学技术大学出版社,1999.
    [96] Peter Kis, Miklos Kuczmann. Hysteresis measurement in LabView[J].Physica B,2004,343:357-63.
    [97] D.C.Jiles, D.L.Atherton, H.E.Lassen,D.Noble. Microcomputer based systemfor control of applied uniaxial stress and magnetic field[J]. Review ofScientific Instruments,1984,55(11):1843-8.
    [98] D. Huang, B.Han, T.Hu, and T.Zhang. Pulsed magnetic apparatus for insitu stress measurement[J]. Insight.2011,53(9):478-81.
    [99] D. Huang, B.Han, T.Hu, and T.Zhang. Measurement of hysteresis loop byusing pulsed magnetic field in LabView environment[J]. Applied Mechanicsand Materials.2011,121-126:4028-32.
    [100] Y.Pei, D.Fang. Magnetomechanical hydraulic-servo apparatus forinvestigation of magnetomechanical coupling properties of magneticmaterials[J]. Review of Scientific Instruments,2006,77.
    [101]周润景. Multisim&LabVIEW虚拟仪器设计技术[M].北京:北京航空航天大学出版社.
    [102] J.W.Wilson, G.Y.Tian. Pulsed electromagnetic methods for defect detectionand characterisation[J]. NDT&E International,2007,40:275–283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700