用户名: 密码: 验证码:
RecQ解旋酶的动力学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RecQ家族解旋酶属于SF2解旋酶超家族,对基因组稳定性的维持起着非常重要的作用。Bloom综合症、Werner综合症和Rothmund-Thomson综合症分别是由人类RecQ解旋酶3个成员BLM、WRN和RecQ4的功能缺失导致的,表现为多种严重的癌症症状。RecQ解旋酶解旋机制的大量研究,将为RecQ解旋酶作为抗癌药物靶的研究提供全新的思路。
     RecQ5解旋酶是人类5种RecQ家族解旋酶中的一员,人体细胞内RecQ5至少存在3种异构体RecQ5α、RecQ5β和RecQ5γ。RecQ5β全长包含991个氨基酸,包括解旋酶结构域和一个RQC结构域,还含有一个较长的与其它RecQ解旋酶没有同源性的C-末端区域。RecQ5β不仅能够解旋双链DNA结构,而且具有介导两条互补单链DNA分子退火的活性。尽管人们对解旋酶的研究已经比较广泛,但是目前RecQ5的生化特性及其在生物体内的功能仍不清楚。BLM全长1417个氨基酸,在溶液中能够以多聚体的结构存在,但是其解旋机制有待进一步研究。本研究对于深入了解RecQ家族解旋酶的作用机制,探索其生物学功能具有重要意义。
     本研究结合快速反应停流技术(stopped-flow method)和荧光共振能量转移(fluorescence resonance energy transfer,FRET)的方法,系统的研究了RecQ5β的DNA退火和解旋动力学特性以及BLM的解旋活性。主要取得以下结果:
     1.在空状态和0.1mM磷酸核苷因子ADP、ATPγS和AMPPNP存在四种状态下,分析了随RecQ5β解旋酶浓度变化的RecQ5β对2nM两条互补的45-nt单链DNA底物的退火动力学过程。并对所有的退火动力学曲线进行双指数或三指数拟和,得到在四种状态下随RecQ5β浓度变化的退火初始速率。结果表明:(1)RecQ5β在四种状态下催化的退火反应在10~20nM之间都有一个最适解旋酶浓度。(2)在四种状态下的最大初始退火速率基本相同。这与以前的研究结果不同。以前的研究认为,ATPγS和ADP能够完全或者部分抑制RecQ5β的退火活性。(3)在空状态和有磷酸核苷因子ATPγS存在状态下,RecQ5β催化的退火效率有比较宽的浓度变化范围,而在磷酸核苷因子ADP存在状态下,RecQ5β催化的退火效率其浓度变化幅度比较小。另外,定义了一个RecQ5β能够催化高效的退火反应时的有效的RecQ5β解旋酶浓度范围,在空状态和有磷酸核苷因子AMPPNP、ATPγS和ADP存在四种状态下,这个浓度范围分别为:5.6-27.7nM、9.8-24.1nM、4.9-33.8nM和11.5-19.3nM。
     2.通过偏振荧光的测量,分析了空状态和在0.1mM磷酸核苷因子ADP、ATPγS和AMPPNP存在四种状态下,一定量的RecQ5β解旋酶依次连续滴定到8nM3’F20-nt单链DNA底物的稳态结合动力学过程。结果表明,在四种状态下,RecQ5β解旋酶浓度较低时,偏振值随着RecQ5β解旋酶浓度的升高而升高。随后,RecQ5β解旋酶浓度较高时,偏振值不再升高,达到饱和。由于偏振值的变化反应单链DNA底物被结合在其上的RecQ5β解旋酶分子覆盖的程度,所以在RecQ5β解旋酶浓度较低时,单链DNA底物仅部分被RecQ5β解旋酶所覆盖;而RecQ5β解旋酶浓度较高时,RecQ5β解旋酶几乎完全覆盖单链DNA底物。并且,结合前面退火动力学分析中给出的有效的RecQ5β解旋酶浓度范围,在四种状态下,RecQ5β能够催化高效的退火反应时,RecQ5β解旋酶覆盖单链DNA底物的程度分别为:39.4%22.8%(空状态)、37.3%14.0%(AMPPNP)、37.8%26.3%(ATP S)和49.1%9.9%(ADP)。因此,RecQ5β解旋酶覆盖单链DNA底物大约40%-50%时,RecQ5β解旋酶能够催化高效的退火反应,而无论磷酸核苷因子存在与否。
     3.通过测量偏振荧光的方法,分析了(空状态和在0.1mM磷酸核苷因子ADP、ATPγS和AMPPNP存在四种状态下)在不同磷酸核苷因子存在状态下,100nM RecQ5β从10nM3’F20-nt单链DNA底物上的解离动力学过程。在空状态和AMPPNP与ATPγS存在三种状态下,RecQ5β从3’F20-nt单链DNA底物上解离的过程相似,都由一个快过程和一个慢过程两个过程组成。在ADP存在状态下,RecQ5β从3’F20-nt单链DNA底物上解离的过程只有一个过程。对所有的解离动力学曲线进行单指数或双指数拟合,得到空状态和在AMPPNP和ATPγS存在三种状态下的慢过程的解离速率和在ADP存在状态下的解离速率。结果表明,在ATPγS存在状态下,RecQ5β与ssDNA底物结合的最为紧密;而在ADP状态下,RecQ5β与ssDNA底物的结合最弱。空状态和在AMPPNP存在状态下,RecQ5β和ssDNA底物的亲和力相似。
     4.采用非互补的F和H标记的ssDNA底物进行退火动力学的分析。发现空状态和在ATP S存在状态下,荧光信号的变化较以互补ssDNA为底物的反应显著减小。充分说明在本研究中荧光信号的变化不是由于在RecQ5的作用下一些ssDNA分子的简单聚集,而是由于dsDNA的形成而造成的。结果表明本研究方法能够真实的反映RecQ5催化的ssDNA退火的动力学特性。
     5.采用另一种反应缓冲液体系:20mM Tris-acetate,pH7.9,50mM KOAc,10mMMg(OAc)2,1mM DTT和50mg/ml BSA,分析RecQ5的退火动力学特性。发现ATP S能够抑制RecQ5催化的退火反应。结果表明本研究方法能够真实的反映ssDNA的退火过程。
     6.在空状态下,比较分析了RecQ5β的C-末端缺失解旋酶片段RecQ5β~(1-662)的随解旋酶浓度变化的退火动力学过程、稳态DNA结合动力学过程和解离动力学过程。退火动力学结果表明,RecQ5β~(1-662)的最大初始退火速率比RecQ5β解旋酶全长低很多,前者大约为3%s~(-1),后者大约为30%s~(-1),低大约一个数量级。同样,可以得到RecQ5β~(1-662)的有效的解旋酶浓度范围为4.6-16.3nM。由稳态DNA结合动力学分析可以得到,在空状态下,RecQ5β~(1-662)能够催化高效的退火反应时,RecQ5β~(1-662)覆盖单链DNA底物的程度为52.9%23.3%。这个结果表明,同RecQ5β解旋酶全长一样,当RecQ5β~(1-662)覆盖单链DNA底物大约一半时,RecQ5β~(1-662)能够催化高效的退火反应。该有趣的现象是否也存在于RecQ家族解旋酶的其它成员中,值得将来进一步研究。解离动力学结果表明,同RecQ5β解旋酶全长一样,在空状态下,RecQ5β~(1-662)从3’F20-nt单链DNA底物上解离的过程由一个快过程和一个慢过程两个过程组成。其中,慢过程的解离速率为0.450.04S-1,基本同RecQ5β解旋酶全长在空状态下慢过程的解离速率一样,为0.510.12s~(-1)。因此,尽管RecQ5β解旋酶全长与RecQ5β~(1-662)对单链DNA具有几乎相同的亲合性,但这两个解旋酶的退火效率却相差很大。表明RecQ5β的退火活性,并不仅仅简单的决定于其与单链DNA底物的结合能力,而由特定结构所决定的解旋酶的内在特性也是非常重要的决定因素。进一步阐明了RecQ5β的C-末端区域是其催化高效退火反应所必不可少的。
     7.选择RecQ5β~(1-467)和RecQ5β~(1-662)两个RecQ5β解旋酶片段,确定了RecQ5β解旋的单转换动力学实验条件:以2nM双链部分长度为16-bp、带有不同长度(10-50nt)3’-尾链的ss/dsDNA为底物,温度为37°C、蛋白诱捕试剂dT56的浓度为2μM、ATP的浓度为1.5mM、RecQ5β的浓度为100nM。另外,对于较长的解旋酶片段RecQ5β~(1-662),DNA trap的浓度为2μM。
     8.在上述确定的单转换动力学实验条件下,通过对RecQ5β解旋酶N-末端三个氨基酸片段:RecQ5β~(1-467)、RecQ5β~(1-567)和RecQ5β~(1-662)随不同3’-尾链长度DNA底物解旋动力学特性的研究和比较发现,该三个RecQ5β解旋酶片段的解旋幅度和解旋速率随着DNA底物3’-尾链长度的增加而增加,RecQ5β~(1-467)的最高解旋幅度达到73.5%,RecQ5β~(1-567)可达57.6%,而RecQ5β~(1-662)则低于35.5%。即随着解旋酶氨基酸片段长度的增加,解旋酶的最高解旋幅度依次降低。在DNA底物的3’-尾链长度较短时,基本上只有一个慢解旋过程,随着3’-尾链长度的增加,快过程的解旋幅度显著增加,即RecQ5β对双链DNA底物的解旋依赖于3’-尾链长度。表明RecQ5β在对双链DNA进行解旋时具有协同性,这与以往E.coli RecQ的解旋特性截然不同,在SF2解旋酶超家族中是有趣的发现。
     9.RecQ5β解旋酶的N-末端467个氨基酸足够介导RecQ5β的解旋活性,多余的氨基酸序列会抑制其解旋活性,RecQ5β解旋酶自身存在一定的活性调节机制。N-末端467个氨基酸包含一个完整的解旋功能结构域,这为RecQ5功能域的划分提供了重要的理论依据。
     10.通过解离动力学分析,发现BLM持续解旋能力较低的原因在于,在ADP·Pi和ADP状态下BLM从DNA底物上解离的速率非常大,分别为3.9和4.8s~(-1),因此很容易从核酸链上解离下来,从而不能持续高效的进行解旋。
RecQ helicases are critical for the maintenance of genomic stability, which belongs toSF2. Defects in BLM, WRN and RecQ4will lead to serious human hereditary diseases:Bloom syndrome, Werner syndrome and Rothmund–Thomson syndrome, characterized bygenomic instability and a high predisposition to cancer. Over the past decade areas such ashuman RecQ helicases play roles in nucleic acid metabolism have been widely studied. Andthis will provide novel idea and probability to cancer treatment.
     RecQ5is one of the five human RecQ-family helicases. In human RecQ5protein existsin at least three different isoforms, namely RecQ5α, RecQ5β and RecQ5γ. RecQ5β has991amino acids, which has one helicase domain, one RQC domain, and a long non-homologousC-terminal region from other RecQ helicase. Interestingly, RecQ5β can not only unwindduplex DNA, but possesses DNA annealing activity. Although helicase are widely studied, thebiochemical properties and biological functions of RecQ5in human have yet to be determined.BLM contains1417amino acids, and exist as oligomeric structures in solution, the unwindingmechanism of which needs further study.The study may be useful for better understanding theaction mechanism catalyzed by RecQ helicases, as well as for understanding its biologicalfunctions.
     In this study, using stopped-flow method based on fluorescence resonance energytransfer, we have investigated systematically the DNA annealing and unwinding kineticproperties of RecQ5β, and the unwinding activity of BLM. The main results are as follows:
     1. We have systematically studied the annealing kinetics properties of RecQ5-catalyzed2nM two complementary45nt ssDNA substrates, at different enzyme concentrations, in theabsence or presence of0.1mM different nucleotide cofactors (ADP、ATPγS and AMPPNP).And by double-or triple-exponential fits of the data curves, we obtained the initial annealingrate at each enzyme concentration. It showed that:(a) There is an optimum enzymeconcentration, between10and20nM, for DNA annealing in each case;(b) All the maximuminitial annealing rates are quite similar for the four different cases, which seems to be incontradiction with the previous observation that ATP S and ADP may completely or partiallyinhibited the annealing activity of RecQ5.(c) RecQ5catalyzed DNA annealing efficiently in wide concentration ranges for the cases of apo and ATP S states, and in a much narrowerrange for the case of ADP. We defined an efficient enzyme concentration range when efficientannealing occurs. They are5.6-27.7nM、9.8-24.1nM、4.9-33.8nM and11.5-19.3nM,respectively, for apo、AMPPNP、ATP S and ADP.
     2. We have analyzed the equilibrium ssDNA binding kinetics of RecQ5by fluorescencepolarization anisotropy assay, with varying amounts of RecQ5adding to8nM3’F20-ntssDNA substrate, in the absence or presence of0.1mM different nucleotide cofactors (ADP、ATPγS and AMPPNP). It showed that, the anisotropy first increases with increasing enzymeconcentration, and then, at high enzyme concentrations, the anisotropy saturates. As theanisotropy reflects the extent to which the ssDNA is covered with bound enzyme molecules,the data curves indicate that the ssDNA is partially covered with the enzyme at lowconcentrations and then completely covered with the enzyme at high concentrations. From theefficient enzyme concentration range given previously and the equilibrium DNA binding datacurves, we found that efficient annealing occurs when the coverage of ssDNA by the enzymeis in the ranges of39.4%22.8%(apo)、37.3%14.0%(AMPPNP)、37.8%26.3%(ATP S)and49.1%9.9%(ADP), indicating that RecQ5-catalyzed DNA annealing proceedsoptimally at levels of enzyme sufficient to cover~40%-50%of the DNA strand, regardless ofthe nucleotide states.
     3. We have measured the dissociation kinetics of bound100nM RecQ5β helicase from10nM3’F20-nt ssDNA substrate by fluorescence polarization anisotropy assay, in theabsence or presence of0.1mM different nucleotide cofactors (ADP、ATPγS and AMPPNP). Itshowed that, the dissociation from this substrate of RecQ5exhibited similar behavioursunder conditions of apo、AMPPNP and ATP S states: occurring in two phases, a slow one anda fast one. In the case of ADP state, there is only one phase. By single-or double-exponentialfits of the dissociation kinetics data curves, we obtained the dissociation rates in the four cases(in the cases of apo、AMPPNP and ATP S, only the slow-phase rates are given). It showedthat, the helicase binds to the ssDNA substrate most tightly in ATP S state and most weakly inADP state. The helicase has similar affinities for ssDNA in the apo and AMPPNP states.
     4. We performed annealing kinetic assays using non-complementary F-and H-labeledssDNA substrates. It showed that in the cases of both apo and ATP S, the fluorescence signalchange for non-complementary substrates is much smaller than that for complementarysubstrates. This demonstrates that the fluorescence signal change in the assay not simplyresulted from the gathering of ssDNA molecules with the aid of RecQ5, but the real duplexformation. That is, what we have observed reflected the real ssDNA annealing properties ofRecQ5.
     5. We performed annealing kinetic assays with another reaction buffer:20mMTris-acetate,pH7.9,50mM KOAc,10mM Mg(OAc)2,1mM DTT和50mg/ml BSA. Itshowed that ATP S indeed inhibited the annealing activity of RecQ5in the different reactionbuffer. This also demonstrates that our observations reflected the real DNA annealing.
     6. We have compared and analyzed the DNA annealing kinetics、equilibrium DNAbinding kinetics and dissociation kinetics of RecQ5β~(1-662)(the C-terminal deleted fragment ofRecQ5β), in apo state. The DNA annealing kinetics results showed that the maximum initialannealing rate of RecQ5β~(1-662)was significantly (about one order of magnitude) lower thanthat of RecQ5β full length. For RecQ5β~(1-662), it was~3%s~(-1)and RecQ5β full length was~30%s~(-1). The efficient enzyme concentration range was obtained as4.6-16.3nM forRecQ51-662.The equilibrium DNA binding kinetics results showed that efficient annealingoccurs when the coverage of ssDNA by RecQ51-662is in the range of52.9%23.3%,indicating the RecQ51-662-catalyzed DNA annealing also proceeds optimally when thehelicase covers half of the DNA strand, just like the full-length enzyme. It would beinteresting for further studies to see if this observed feature is equally applicable to otherRecQ family helicases. The dissociation kinetics results showed that as in the case of RecQ5full length, the dissociation of RecQ51-662from ssDNA occurred in two phases, a slow oneand a fast one. The slow phase rate is0.450.04s~(-1), almost the same as that of RecQ5fulllength in apo state (0.510.12s~(-1)). It is quite interesting to note that although RecQ5andRecQ51-662have almost the same affinity for ssDNA, the two enzymes have significantlydifferent DNA annealing efficiencies. This indicates that the annealing ability of certainhelicases such as the present RecQ5is not simply resulted from their ssDNA bindingbehaviour, but rather, is an intrinsic property of these helicases that should be determined bytheir specific structures. In the case RecQ5, the C-terminal region is indeed mainlyresponsible for its DNA annealing activity, as previously noted.
     7. We have chosen RecQ5β~(1-467)and RecQ5β~(1-662)(two N-terminal fragments of RecQ5β)to determine the single-turnover kinetic conditions of RecQ5β unwinding:2nM16-bp duplexwith different3’-ssDNA tails (10-50nt) is as the optimum substrate,37°C is as the optimumtemperature, the concentration of dT56is2μM, the concentration of ATP is1.5mM, theenzyme concentration is~(-1)00nM, and for RecQ5β~(1-662),2M DNA trap is needed for betterunwinding.
     8. Under the single-turnover kinetic conditions obtained above, we have systematicallystudied and compared the DNA unwinding kinetic properties of RecQ5β~(1-467)、RecQ5β~(1-567)andRecQ5β~(1-662)(three N-terminal fragments of RecQ5β) with DNA substrates of different3’-ssDNA tail lengths. It showed that, for each fragment, its unwinding amplitude and rate increased with the increase of the3’-tail length in the DNA substrate. The maximumamplitude was73.5%,57.6%and35.5%for RecQ5β~(1-467), RecQ5β~(1-567)and RecQ5β~(1-662),respectively. It indicated that for a substrate with certain length of3’-tail, the unwindingamplitude of RecQ5β was associated with the length of the fragment, namely, it decreasedwith the increase of the length. In addition, for each of the three RecQ5β fragments, when the3’-tail length of the DNA substrates was shorten, one slow unwinding process occurred andwith its increase, the unwinding amplitude of the fast unwinding process increased obviously.RecQ5β-catalyzed DNA unwinding depended on the3’-tail length, that the competence ofRecQ5β-catalyzed DNA unwinding depended on the3’-tail length of the DNA substrate. Itindicates that RecQ5β molecules are cooperative in DNA unwinding. This is a surprisingreport in the helicase SF2, which is different from that of E.coli RecQ helicase.
     9. The N-terminal467amino acids is enough for enabling RecQ5β to unwind DNA, andthe remaining amino acid sequence can inhibit the unwinding activity of RecQ5β. RecQ5βitself has a certain regulatory mechanism to control the activity. The N-terminal467aminoacids contains a complete functional structure of the helicase domain, which is an importantinspiration for RecQ5domain partition.
     10. We have studied the dissociation kinetic behaviors of BLM from DNA substrate indifferent nucleotide states. It found that the low processivity of BLM is mainly resulted fromits high dissociation rate from the substrate when it is in ADP·Pi and ADP states,3.9and4.8s1respectively. That BLM tends to detach from the DNA substrate in ADP·Pi and ADP states,thus it can not unwind efficiently.
引文
Abdel-Monem M, Durwald H, Hoffmann-Berling H.1976. Enzymic unwinding of DNA.2. Chainseparation by an ATP-dependent DNA unwinding enzyme. Eur J Biochem,65:441~449.
    Adda di Fagagna F.2008. Living on a break: cellular senescence as a DNA-damage response. Nat RevCancer,8(7):512~22.
    Aggarwal M, Sommers J A, Morris C, Brosh J.2010. Delineation of WRN helicase function with EXO1inthe replicational stress response. DNA Repair,9(7):765~76.
    Aggarwal M, Brosh R M Jr.2009. Hitting the bull’s eye: novel directed cancer therapy throughhelicase~targeted synthetic lethality. J Cell Biochem,106:758~63.
    Agrelo R, Cheng W H, Setien F, Ropero S, Espada J, Fraga M F, Herranz M, Paz M F, Sanchez~CespedesM, Artiga M J, Guerrero D, Castells A, von Kobbe C, Bohr VA, Esteller M.2006. Epigeneticinactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci U SA,103(23):8822~7.
    Albertson T M, Preston B D.2006. DNA replication fidelity: proofreading in trans. Curr. Biol.16(6):R209~R211.
    Ali J A and Lohman T M.1997. Kinetic Measurement of the Step Size of DNA Unwinding by Escherichiacoli UvrD Helicase. Science,275(5298):377~380.
    Ali J A, N K Maluf, T M Lohman.1999. An oligomeric form of E. coli UvrD is required for optimalhelicase activity. J Mol Biol,293(4):815~34.
    Amaratunga M and Lohman T M.1993. E. coli Rep helicase unwinds DNA by an active mechanism.Biochemistry,32:6815~6820.
    Artandi S E, DePinho R A.2010. Telomeres and telomerase in cancer. Carcinogenesis,31(1):9~18.
    Aygün O, Svejstrup J Q.2010. RecQL5helicase: connections to DNA recombination and RNA polymeraseII transcription. DNA Repair,9(3):345~53.
    Aygün O, Svejstrup J, Liu Y.2008. A RECQ5-RNA polymerase II association identified by targetedproteomic analysis of human chromatin. Proc Natl Acad Sci USA,105(25):8580–8584.
    Aygün O, Xu X, Liu Y, Takahashi H, Kong SE, Conaway RC, Conaway JW, Svejstrup JQ.2009. Directinhibition of RNA polymerase II transcription by RECQL5. J Biol Chem,284(35):23197–23203.
    Bachrati C Z, Borts R H, Hickson I D.2006. Mobile D~loops are a preferred substrate for the Bloom’ssyndrome helicase. Nucleic Acids Res,34:2269~2279.
    Bachrati C Z and Hickson I D.2003. RecQ helicases: suppressors of tumorigenesis and premature aging.Biochem J,374(Pt3):577~606.
    Bhattacharyya S, Sandy A, Groden J.2010. Unwinding protein complexes in Alternative telomeremaintenance. J Cell Biochem,109(1):7~15.
    Bahr A, De Graeve F, Kedinger C, Chatton B.1998. Point mutations causing Bloom’s syndrome abolishATPase and DNA helicase activities of the BLM protein. Oncogene,17:2565~2571.
    Baynton K, Otterlei M, Bj r s M, von Kobbe C, Bohr V A, Seeberg E.2003. WRN interacts physically andfunctionally with the recombination mediator protein RAD52. J Biol Chem,278:36476~86.
    Balajee A S, Machwe A, May A, Gray M D, Oshima J, Martin G M, Nehlin J O, Brosh R, Orren D K, BohrV A.1999. The Werner syndrome protein is involved in RNA polymerase II transcription. Mol. Biol.Cell,10:2655~2668.
    Beese L S, Steitz T A.1991. Structural basis for the3’~5’ exonuclease activity of Escherichia coli DNApolymerase I: a two metal ion mechanism. EMBO J,10:25~33.
    Bennett R J and Keck J L.2004. Structure and function of RecQ DNA helicases. Crit. Rev. Biochem. Mol.Biol,39:79~97.
    Bennett R J, Sharp J A, Wang J C.1998. Purification and characterization of the Sgs1DNA helicaseactivity of Saccharomyces cerevisiae. J. Biol. Chem,273:9644~9650.
    Bennett R J, Keck J L, Wang J C.1999. Binding specificity determines polarity of DNA unwinding by theSgs1protein of S. cerevisiae. J. Mol. Biol,289:235~248.
    Bernstein D A and Keck J L.2003Domain mapping of Escherichia coli RecQ defines the roles ofconserved N-and C-terminal regions in the RecQ family. Nucleic Acids Res,31:2778~2785.
    Bernstein D A and Keck J L.2005. Conferring substrate specificity to DNA helicases: role of the RecQHRDC domain. Structure,13(8):1173~1182.
    Bernstein D A, Zittel M C, Keck J L.2003. High-resolution structure of the E. coli RecQ helicase catalyticcore. EMBO J,22:4910~4921.
    Bianco P R, Brewer L R, Corzett M, Balhorn R, Yeh Y, Kowalczykowski S C, Baskin R J.2001. Processivetranslocation and DNA unwinding by individual RecBCD enzyme molecules. Nature,409(6818):374~8.
    Bischof O, Kim S H, Irving J, Beresten S, Ellis N A, Campisi J.2001. Regulation and localization of theBloom syndrome protein in response to DNA damage. J. Cell Biol,153(2):367~380.
    Bjergbaek L, Cobb J A, Tsai-Pflugfelder M, Gasser S M.2005. Mechanistically distinct roles for Sgs1p incheckpoint activation and replication fork maintenance. EMBO J,24:405~417.
    Bjornson K P, Amaratunga M, Moore K J, Lohman T M.1994. Single-turnover kinetics ofhelicase-catalyzed DNA unwinding monitored continuously by fluorescence energy transfer.Biochemistry,33:14306~14316.
    Blank A, Bobola M S, Gold B, Varadarajan S, D Kolstoe D, Meade E H, Rabinovitch P S, Loeb L A, SilberJ R.2004. The Werner syndrome protein confers resistance to the DNA lesions N3~methyladenineand O6~methylguanine: implications for WRN function. DNA Repair,3:629~638.
    Brosh R M Jr, Driscoll H C, Dianov G L, Sommers J A.2002. Biochemical characterization of theWRN-FEN-1functional interaction. Biochemistry,41:12204~12216.
    Bloom D.1954. Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs. Am J DisChild,88:754~8.
    Brendza K M, Cheng W, Fischer C J, Chesnik M A, Niedziela-Majka A, Lohman T M.2005.Autoinhibition of Escherichia coli Rep monomer helicase activity by its2B subdomain. Proc NatlAcad Sci USA,102(29):10076~81.
    Brosh R M Jr, Li J L, Kenny M K, Karow J K, Cooper M P, Kureekattil R P, Hickson I D, Bohr V A.2000.Replication protein A physically interacts with the Bloom’s syndrome protein and stimulates itshelicase activity. J Biol Chem,275:23500~23508.
    Brosh R M Jr, Karow J K, White E J, Shaw N D, Hickson I D, Bohr V A.2000. Potent inhibition ofWerner and Bloom helicases by DNA minor groove binding drugs. Nucleic Acids Res,28:2420~2430
    Brosh R M Jr, Orren D K, Nehlin J O, Ravn P H, Kenny M K, Machwe A, Bohr V A.1999. Functional andphysical interaction between WRN helicase and human replication protein A. J. Biol. Chem,274:18341~18350.
    Brosh R M Jr, von Kobbe C, Sommers J A, Karmakar P, Opresko P L, Piotrowski J, Dianova I, Dianov GL, Bohr V A.2001. Werner syndrome protein interacts with human Flap endonuclease1andstimulates its cleavage activity. EMBO J,20:5791~5801.
    Brosh R M Jr, Waheed J, Sommers J A.2002. Biochemical characterization of the DNA substratespecificity of Werner syndrome helicase. J Biol Chem,277:23236~23245.
    Bruce A.2003. DNA replication and recombination. Nature,421:431~435.
    Bryant F R, Lehman I R.1985. On the mechanism of renaturation of complementary DNA strands by therecA protein of Escherichia coli. Proc Natl Acad Sci USA,82:297~301.
    Bugreev D V, Mazina O M, Mazin A V.2009. Bloom syndrome helicase stimulates RAD51DNA strandexchange activity through a novel mechanism. J Biol Chem,284(39):26349~59.
    Bugreev D V, Yu X, Egelman E H, Mazin A V.2007. Novel pro-and anti-recombination activities of theBloom's syndrome helicase. Genes Dev,21(23):3085~94.
    Byrd, A K, Raney K D.2004. Protein displacement by an assembly of helicase molecules aligned alongsingle-stranded DNA. Nat Struct Mol Biol,11:531~538.
    Byrd A K, Raney K D.2005. Increasing the length of the single-stranded overhang enhances unwinding ofduplex DNA by bacteriophage T4Dda helicase. Biochemistry,44:12990~12997.
    Chakraborty P, Grosse F.2010. WRN helicase unwinds Okazaki fragment-like hybrids in a reactionstimulated by the human DHX9helicase. Nucl Acids Res,38(14):4722~30.
    Chang S, Multani A S, Cabrera N G, Naylor M L, Laud P, Lombard D, Pathak S, Guarente L, DePinho R A.2004. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet,36(8):877~82.
    Chan K L, North P S, Hickson I D.2007. BLM is required for faithful chromosome segregation and itslocalization defines a class of ultrafine anaphase bridges. EMBO J,26(14):3397~409.
    Chen C Y, Graham J, Yan H.2001. Evidence for a replication function of FFA-1, the Xenopus orthologueof Werner syndrome protein. J Cell Biol,152,985~996.
    Cheng W H, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y, Bohr V A.2008. WRN Isrequired for ATM activation and the S-phase checkpoint in response to interstrand cross-link-inducedDNA double-strand breaks. Mol Biol Cell,19(9):3923~33.
    Cheng W, Hsieh J, Brendza K M, Lohman TM.2001. E. coli Rep oligomers are required to initiate DNAunwinding in vitro. J Mol Biol,310(2):327~50.
    Cheng W, Dumont S, Tinoco I Jr, Bustamante C.2007. NS3helicase actively separates RNA strands andsenses sequence barriers ahead of the opening fork. Proc Natl Acad Sci USA,104(35):13954~9.
    Chen L, Huang S, Lee L, Davalos A, Schiestl R H, Campisi J, Oshima J.2003. WRN, the protein deficientin Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell,2:191~199.
    Chen L, Lee L, Kudlow B A, Dos Santos H G, Sletvold O, Shafeghati Y, Botha E G, Garg A, Hanson N B,Martin G M, Mian I S, Kennedy B K, Oshima J.2003. LMNA mutations in atypical Werner’ssyndrome. Lancet,362(9382):440~5.
    Cheok C F, Wu L, Garcia P L, Janscak P, Hickson I D.2005. The Bloom’s syndrome helicase promotes theannealing of complementary single~stranded DNA. Nucleic Acids Res,33:3932~3941.
    Cheok C F, Bachrati C Z, Chan K L, Ralf C, Wu L, Hickson I D.2005. Roles of the Bloom's syndromehelicase in the maintenance of genome stability. Biochem Soc Trans,33(Pt6):1456~9.
    Chu W K, Hanada K, Kanaar R, Hickson I D.2010. BLM has early and late functions in homologousrecombination repair in mouse embryonic stem cells. Oncogene,29(33):4705~14.
    Chu W K, Hickson I D.2009. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer,9(9):644~54.
    Choudhary S, Doherty K M, Handy C J, Sayer J M, Yagi H, Jerina D M, Brosh R M Jr.2006. Inhibition ofWerner syndrome helicase activity by benzo(a)pyrene diol epoxide can be overcome by replicationprotein A. J Biol Chem,281:6000~6009.
    Choudhary S, Sommers J A, Brosh R M Jr.2004. Biochemical and kinetic characterization of the DNAhelicase and exonuclease activities of Werner syndrome protein. J Biol Chem,279:34603~34613.
    Cobb J A, Bjergbaek L, Shimada K, Frei C, Gasser S M.2003. DNA polymerase stabilization at stalledreplication forks requires Mec1and the RecQ helicase Sgs1. EMBO J,22:4325~4336.
    Cobb J A, Schleker T, Rojas V, Bjergbaek L, Tercero J A, Gasser S M.2005. Replisome instability, forkcollapse, and gross chromosomal rearrangements arise synergistically from Mec1kinase and RecQhelicase mutations. Genes Dev,19:3055~3069.
    Collado M, Serrano M.2010. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer,10(1):51~7.
    Constantinou A, Tarsounas M, Karow J K, Brosh R M Jr, Bohr V A, Hickson I D, West S C.2000.Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA uponreplication arrest. EMBO Rep,1:80~84.
    Cooper M P, Machwe A, Orren D K, Brosh R M, Ramsden D, Bohr V A.2000. Ku complex interacts withand stimulates the Werner protein. Genes Dev,28(7):1647~1655.
    Courcelle J, Donaldson J R, Chow K H, Courcelle C T.2003. DNA damage-induced replication forkregression and processing in Escherichia coli. Science,299:1064~1067.
    Cox M M.2001. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions.Annu. Rev Genet,35:53~82.
    Crabbe L, Jauch A, Naeger C M, Holtgreve-Grez H, Karlseder J.2007. Telomere dysfunction as a cause ofgenomic instability in Werner syndrome. Proc Natl Acad Sci U S A,104(7):2205~10.
    Crabbe L, Verdun R E, Haggblom C I, Karlseder J.2004. Defective telomere lagging strand synthesis incells lacking WRN helicase activity. Science,306(5703):1951~3.
    Cui S, Arosio D, Doherty K M, Brosh R M Jr, Falaschi A, Vindigni A.2004. Analysis of the unwindingactivity of the dimeric RecQ1helicase in the presence of human replication protein A. Nucleic AcidsRes,32,2158~2170.
    Davies S L, North P S, Dart A, Lakin N D, Hickson I D.2004. Phosphorylation of the Bloom’s Syndromehelicase and its role in recovery from S-phase arrest. Mol Cell Biol,24(3):1279~91.
    Davies S L, North P S, Hickson I D.2007. Role for BLM in replication-fork restart and suppression oforigin firing after replicative stress. Nat Struct Mol Biol,14(7):677~9.
    Dessinges M N, Lionnet T, Xi X G, Bensimon D, Croquette V.2004. Single-molecule assay reveals strandswitching and enhanced processivity of UvrD. Proc Natl Acad Sci USA,101(17):6439~44.
    Dhillon K K, Sidorova J, Saintigny Y, Poot M, Gollahon K, Rabinovitch P S, Monnat R J Jr.2007.Functional role of the Werner syndrome RecQ helicase in human fibroblasts. Aging Cell,6(1):53~61.
    Dillingham M S, Wigley D B, Webb M R.2000. Demonstration of unidirectional single-stranded DNAtranslocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry,39(1):205~12.
    Dillingham M S, Wigley D B, Webb M R.2002. Direct measurement of singlestranded DNA translocationby PcrA helicase using the fluorescent base analogue2-aminopurine. Biochemistry,41(2):643~51.
    Doherty K M, Sharma S, Uzdilla L A, Wilson T M, Cui S, Vindigni A, Brosh R M Jr.2005. RECQ1helicase interacts with human mismatch repair factors that regulate genetic recombination. J BiolChem,280:28085~28094.
    Doherty K M, Sommers J A, Gray M D, Lee J W, von Kobbe C, Thoma N H, Kureekattil R P, Kenny M K,Brosh R M Jr.2005. Physical and functional mapping of the RPA interaction domain of the Wernerand Bloom syndrome helicases. J Biol Chem,280:29494~29505.
    Du X, Shen J, Kugan N, Furth E E, Lombard D B, Cheung C, Pak S, Luo G, Pignolo R J, DePinho R A,Guarente L, Johnson F B.2004. Telomere shortening exposes functions for the mouse Werner andBloom Syndrome genes. Mol Cell Biol,24(19):8437~46.
    Dumont S, Cheng W, Serebrov V, Beran R K, Tinoco I Jr, Pyle A M, Bustamante C.2006. RNAtranslocation and unwinding mechanism of HCV NS3helicase and its coordination by ATP. Nature,439(7072):105~8.
    Dutertre S, Ababou M, Onclercq R, Delic J, Chatton B, Jaulin C, Amor-Guéret M.2000. Cell cycleregulation of the endogenous wild type Bloom's syndrome DNA helicase. Oncogene,19(23):2731~8.
    Earnshaw D L, Moore K J, Greenwood C J, Djaballah H AJ, Murray K J, Pope A J.1999. Time-resolvedfluorescence energy transfer DNA helicase assays for throughput screening. J Biomol Screening,4:239~248.
    Epstein C J, Martin G M, Schultz A L, Motulsky A G.1996. Werner’s syndrome: a review of itssymptomatology, natural history, pathologic features, genetics and relationship to the natural agingprocess. Medicine,45:177~221.
    Eladad S, Ye T Z, Hu P, Leversha M, Beresten S, Matunis M J, Ellis N A.2005. Intra-nuclear trafficking ofthe BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet,14(10):1351~65.
    Ellis N A.1997. DNA helicases in inherited human disorders. Curr Opin Genet Dev,7(3):354~63.
    Ellis N A, German J.1996. Molecular genetics of Bloom’s syndrome. Hum Mol Genet,5:1457~1463.
    Ellis N A, Groden J, Ye T Z, Straughen J, Lennon D J, Ciocci S, Proytcheva M, German J.1995. TheBloom’s syndrome gene product is homologous to RecQ helicases. Cell,83(4):655~666.
    Fairman M E, Maroney P A, Wang W, Bowers H A, Gollnick P, Nilsen T W, Jankowsky E.2004. Proteindisplacement by DExH/D "RNA helicases" without duplex unwinding. Science,304(5671):730~4.
    Fischer C J, Lohman T M.2004. ATP-dependent translocation of proteins along single-stranded DNA:models and methods of analysis of pre-steady state kinetics. J Mol Biol,344(5):1265~86.
    Fischer C J, Maluf N K, Lohman T M.2004. Mechanism of ATP-dependent translocation of E.coli UvrDmonomers along single-stranded DNA. J Mol Biol,344(5):1287~309.
    Frank G H and Stephen C K.2001. Biochemical Characterization of the DNA Helicase Activity of theEscherichia coli RecQ Helicase. J Biol Chem,276:232~243.
    Freund A, Orjalo A V, Desprez P Y, Campisi J.2010. Inflammatory networks during cellular senescence:causes and consequences. Trends Mol Med,16(5):238~46.
    Fricke W M, Brill S J.2003. Slx1-Slx4is a second structure-specific endonuclease functionally redundantwith Sgs1~Top3. Genes Dev,17:1768~1778.
    Friedberg E C, Meira L B.2004. Database of mouse strains carrying targeted mutations in genes affectingbiological responses to DNA damage (Version6). DNA Repair,3(12):1617~38.
    Friedberg E C, Wood R D.2007. New insights into the combined Cockayne/xeroderma pigmentosumcomplex: human XPG protein can function in transcription factor stability. Mol Cell,26(2):162~4.
    Friedrich K, Lee L, Leistritz D F, Nürnberg G, Saha B, Hisama F M, Eyman D K, Lessel D, Nürnberg P, LiC, Garcia~F~Villalta MJ, Kets C M, Schmidtke J, Cruz V T, Van den Akker P C, Boak J, Peter D,Compoginis G, Cefle K, Ozturk S, López N, Wessel T, Poot M, Ippel P F, Groff-Kellermann B,Hoehn H, Martin G M, Kubisch C, Oshima J.2010. WRN mutations in Werner syndrome patients:genomic rearrangements, unusual intronic mutations and ethnicspecific alterations. Human Genet,128(1):103~11.
    Galletto R, Jezewska M J, Bujalowski W.2004. Unzipping mechanism of the double-stranded DNAunwinding by a hexameric helicase: Quantitative analysis of the rate of the dsDNA unwinding,processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flowmethod. J Mol Biol,343:83~99.
    Garcia P L, Bradley G, Hayes C J, Krintel S, Soultanas P, Janscak P.2004. RPA alleviates the inhibitoryeffect of vinylphosphonate internucleotide linkages on DNA unwinding by BLM and WRN helicases.Nucleic Acids Res,32:3771~3778.
    Garcia P L, LiuY, Jiricny J, West S C, Janscak P.2004. Human RECQ5β, a protein with DNA helicase andstrand~annealing activities in a single polypeptide. EMBO J,23:2882~2891
    Garinis G A, van der Horst G T, Vijg J, Hoeijmakers J H.2008. Hoeijmakers HJ.DNAdamage and ageing:new-age ideas for an age-old problem. Nat Cell Biol,10(11):1241~7.
    German J.1993. Bloom syndrome: a Mendelian prototype of somatic mutational disease. Medicine,72:393~406.
    German J.1979. Bloom’s syndrome. VIII. Review of clinical and genetic aspects. In: Goodman RM,Motulsky AG, editors. Genetic diseases among Askenazi jews. New York: Raven Press, p.121~39.
    German J.1997. Bloom’s syndrome: XX. The first100cancers. Cytogenet Cell Genet,93:100~6.
    German J.1993. Bloom syndrome: a Mendelian prototype of somatic mutational disease. Medicine,72:393~406.
    German J, Sanz M M, Ciocci S, Ye T Z, Ellis N A.2007. Syndrome~causing mutations of the BLM genein persons in the Bloom syndrome registry. Human Mutat,28:743~53.
    Ghosh A, Rossi M L, Aulds J, Croteau D, Bohr V A.2009. Telomeric D-loops containing8-oxo-2’-deoxyguanosine are preferred substrates for Werner and Bloom syndrome helicases and arebound by POT1. J Biol Chem,284(45):31074~84.
    Goto M.1997. Hierarchical deterioration of body systems in Werner’s syndrome: implications for normalageing. Mech Ageing Dev,98:239~54.
    Goto M, Miller R W, Ishikawa Y, Sugano H.1996. Excess of rare cancers in Werner syndrome (adultprogeria). Cancer Epidemiol Biomarkers Prev,5:239~46.
    Goto M.2000. Werner's syndrome: from clinics to genetics. Clin Exp Rheumatol,18(6):760~6.
    Gorbalenya AEKEV.1993. Helicases: amino acid sequence comparisons and structure-functionrelationships. Curr Opin Struct Bio,3:11.
    Graham D L, Lowe P N, Grime G W, Marsh M, Rittinger K, Smerdon S J, Gamblin S J, Eccleston J F.2002. MgF3-as a transition state analog of phosphoryl transfer. Chem Biol,9:375~381.
    Grant S, Wenger S, Latimer J, Thull D, Burke L.2000. Analysis of genomic instability using multipleassays in a patient with Rothmund-Thomson syndrome. Clin Genet,58(3):209~15.
    Gravel S, Chapman J R, Magill C, Jackson S P.2008. DNA helicases Sgs1and BLM promote DNAdouble-strand break resection. Genes Dev,22(20):2767~72.
    Griffith J D, Comeau L, Rosenfield S, Stansel R M, Bianchi A, Moss H, de Lange T.1999. Mammaliantelomeres end in a large duplex loop. Cell,97(4):503~14.
    Guo R B, Rigolet P, Zargarian L, Fermandjian S, Xi X G.2005. Structural and functional characterizationsreveal the importance of a zinc binding domain in Bloom's syndrome helicase. Nucleic Acids Res,33(10):3109~3124.
    Gupta R, Brosh R M Jr.2008. Helicases as prospective targets for anti-cancer therapy. Anticancer AgentsMed Chem,8:390~401.
    Gyimesi M, Sarlos K, Kovacs M.2010. Processive translocation mechanism of the human Bloom'ssyndrome helicase along single-stranded DNA. Nucl Acids Res,38:4404~14.
    Harmon F G, Kowalczykowski S C.2001. Biochemical characterization of the DNA helicase activity of theEscherichia coli RecQ helicase. J Biol Chem,276:232~243.
    Harmon F G, Kowalczykowski S C.1998. RecQ helicase, in concert with RecA and SSB proteins, initiatesand disrupts DNA recombination. Genes Dev,12:1134~1144.
    Harmon F G, DiGate R J, Kowalczykowski S C.1999. RecQ helicase and topoisomerase III comprise anovel DNA strand passage function: a conserved mechanism for control of DNA recombination. MolCell,3:611~620.
    Harrigan J A, Wilson D M3rd, Prasad R, Opresko P L, Beck G, May A, Wilson S H, Bohr V A.2006. TheWerner syndrome protein operates in base excision repair and cooperates with DNA polymerase β.Nucleic Acids Res,34:745~754.
    Harper J W, Elledge S J.2007. The DNA damage response: ten years after. Mol Cell,28:739~45.
    Hartung F, Plchova H, Puchta H.2000. Molecular characterisation of RecQ homologues in Arabidopsisthaliana. Nucleic Acids Res,28:4275~4282.
    Hartung F, Puchta H.2006. The RecQ gene family in plants. J Plant Physiol,163:287~296.
    Ha T, Rasnik I, Cheng W, Babcock H P, Gauss G H, Lohman T M, Chu S.2002. Initiation and re-initiationof DNA unwinding by the Escherichia coli Rep helicase. Nature,419(6907):638~41.
    Helleday T.2008. Amplifying tumour~specific replication lesions by DNA repair inhibitors-a new era intargeted cancer therapy. Eur J Cancer,44(7):921~7.
    Helleday T, Petermann E, Lundin C, Hodgson B, Sharma R A.2008. DNA repair pathways as targets forcancer therapy. Nat Rev Cancer,8(3):193~204.
    Heyer W D, Ehmsen K T, Liu J.2010. Regulation of homologous recombination in eukaryotes. Annu RevGenet,44:113~39.
    Hicham A M, Gervais C, Gouin G, Hamel M, Rando R F, Bedard J.2000. A novel high throughputscreening assay for HCV NS3helicase activity. Antiviral Res,46:181~193.
    Hickson I D.2003. RecQ helicases: caretakers of the genome. Nat Rev Cancer,3:169~178.
    Hingorani M M and S S Patel.1993. Interactions of bacteriophage T7DNA primase/helicase protein withsingle-stranded and double-stranded DNAs. Biochemistry,32(46):12478~87.
    Hishida T, Han Y W, Shibata T, Kubota Y, Ishino Y, Iwasaki H, Shinagawa H.2004. Role of theEscherichia coli RecQ DNA helicase in SOS signaling and genome stabilization at stalled replicationforks. Genes Dev,18:1886~1897.
    Hoehn H, Bryant E M, Au K, Norwood T H, Boman H, Martin G M.1975. Variegated translocationmosaicism inhuman skin fibroblast cultures. Cytogenet Cell Genet,15:282~98.
    Hope J C, Mense S M, Jalakas M, Mitsumoto J, Freyer G A.2006. Rqh1blocks recombination betweensister chromatids during double strand break repair, independent of its helicase activity. Proc NatlAcad Sci USA,103:5875~5880.
    Huang S, Li B, Gray M D, Oshima J, Mian I S, Campisi J.1998. The premature ageing syndrome protein,WRN, is a3’→5’ exonuclease. Nat Genet,20(2):114~6.
    Huang S, Lee L, Hanson N B, Lenaerts C, Hoehn H, Poot M, Rubin C D, Chen D F, Yang C C, Juch H,Dorn T, Spiegel R, Oral E A, Abid M, Battisti C, Lucci-Cordisco E, Neri G, Steed E H, Kidd A, IsleyW, Showalter D, Vittone J L, Konstantinow A, Ring J, Meyer P, Wenger S L, von Herbay A, WollinaU, Schuelke M, Huizenga C R, Leistritz D F, Martin G M, Mian I S, Oshima J.2006. The spectrum ofWRN mutations in Werner syndrome patients. Human Mutat,27:558~67.
    Hu J S, Feng H, Zeng W, Lin G X, Xi X G.2005. Solution structure of a multifunctional DNA-andprotein-binding motif of human Werner syndrome protein. Proc Natl Acad Sci USA,102:18379~18384.
    Hu Y, Lu X, Barnes E, Yan M, Lou H, Luo G.2005. Recql5and Blm RecQ DNA helicases havenonredundant roles in suppressing crossovers. Mol Cell Biol,25(9):3431–3442.
    Hu Y, Raynard S, Sehorn M G, Lu X, Bussen W, Zheng L, Stark J M, Barnes E L, Chi P, Janscak P, Jasin M,Vogel H, Sung P, Luo G..2007. RECQL5/Recql5helicase regulates homologous recombination andsuppresses tumor formation via disruption of Rad51presynaptic filaments. Genes Dev,21(23):3073–3084.
    Ii M, Brill S J.2005. Roles of SGS1, MUS81, and RAD51in the repair of lagging-strand replicationdefects in Saccharomyces cerevisiae. Curr Genet,48:213~225.
    Jankowsky E, Gross C H, Shuman S, Pyle A M.2000. The DExH protein NPH-II is a processive anddirectional motor for unwinding RNA. Nature,403(6768):447~51.
    Janscak P, Garcia P L, Hamburger F, Makuta Y, Shiraishi K, Imai Y, Ikeda H, Bickle T A.2003.Characterization and mutational analysis of the RecQ core of the Bloom syndrome protein. J Mol Biol,330:29~42.
    Jeong S M, Kawasaki K, Juni N, Shibata T.2000. Identification of Drosophila melanogaster RECQE as amember of a new family of RecQ homologues preferentially expressed in early embryos. Mol GenGenet,263(2):183~193.
    Jeong Y J, Levin M K, Patel S S.2004. The DNA-unwinding mechanism of the ring helicase ofbacteriophage T7. Proc Natl Acad Sci USA,101:7264~7269.
    Jeong Y S, Kang Y, Lim K H, Lee M H, Lee J, Koo H S.2003. Deficiency of Caenorhabditis elegansRecQ5homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair(Amst),2(12):1309-1319.
    Jeyapalan J C, Ferreira M, Sedivy J M, Herbig U.2007. Accumulation of senescent cells in mitotic tissueof aging primates. Mech Ageing Dev,128(1):36~44.
    Jezewska M J and W Bujalowski.1996. Global conformational transitions in Escherichia coli primaryreplicative helicase DnaB protein induced by ATP, ADP, and singlestranded DNA binding. Multipleconformational states of the helicase hexamer. J Biol Chem,271(8):4261~5.
    Jezewska M J and W Bujalowski.2000. Interactions of Escherichia coli replicative helicase PriA proteinwith single-stranded DNA. Biochemistry,39(34):10454~67.
    Johnson D S, Bai L, Smith B Y, Patel S S, Wang M D.2007. Single-molecule studies reveal dynamics ofDNA unwinding by the ring-shaped T7helicase. Cell,129(7):1299~309.
    Kaelin W G.2005. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer,5(9):689~98.
    Kamath-Loeb A S, Johansson E, Burgers P M, Loeb L A.2000. Functional interaction between the Wernersyndrome protein and DNA polymeraseδ. Pro. Natl Acad Sc. USA,97:4603~4608.
    Kamath-Loeb A S, Shen J C, Loeb L A, Fry M.1998. Werner syndrome protein. II. Characterization of theintegral3’→5’ DNA exonuclease. J Biol Chem,273(51):34145~50.
    Kamath-Loeb A S, Welcsh P, Waite M, Adman E T, Loeb L A.2004. The enzymatic activities of theWerner syndrome protein are disabled by the amino acid polymorphism R834C. J Biol Chem,279(53):55499~505.
    Karow J K, Chakraverty R K, Hickson I D.1997. The Bloom's syndrome gene product is a3'-5' DNAhelicase. J Biol Chem,272:30611~30614.
    Karow J K, Newman R H, Freemont P S, Hickson I D.1999. Oligomeric ring structure of the Bloom'ssyndrome helicase. Curr Biol,9:597~600.
    Karow J K, Constantinou A, Li J L, West S C, Hickson I D.2000. The Bloom’s syndrome gene productpromotes branch migration of Holliday junctions. Proc Natl Acad Sci USA,97:6504~6508.
    Kawasaki T, Ohnishi M, Suemoto Y, Kirkner G J, Liu Z, Yamamoto H, Loda M, Fuchs C S, Ogino S.2007.WRNpromoter methylation possibly connects mucinous differentiation, microsatellite instability andCpG island methylator phenotype in colorectal cancer. Mod Pathol,21:150~8.
    Keller C, Keller K R, Shew S B, Plon S E.1999. Growth deficiency and malnutrition in Bloom syndrome.J Pediatr,134(4):472~9.
    Kt laus Geider and Hartmut Hoffmann-Berling.1981. Helical Structure of DNA. Annu Rev Biochem,50:233~260.
    Kitao S, Ohsugi I, Ichikawa K, Goto M, Furuichi Y, Shimamoto A.1998. Cloning of two new humanhelicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes.Genomics,54:443~452.
    Kitao S, Shimamoto A, Goto M, Miller R W, Smithson W A, Lindor N M, Furuichi Y.1999. Mutations inRecQ4L cause a subset of cases of Rothmund~Thomson syndrome. Nat Genet,22(1):82~4.
    Killoran M P, Keck J L.2006. Three HRDC domains differentially modulate Deinococcus radioduransRecQ DNA helicase biochemical activity. J Biol Chem,281(18):12849~12857.
    Killoran M P, Keck J L.2006. Sit down, relax and unwind: structural insights into RecQ helicasemechanisms. Nucleic Acids Res,34(15):4098~105.
    Korolev S, Hsieh J, Gauss G H, Lohman T M, Waksman G.1997. Major domain swiveling revealed by thecrystal structures of complexes of E. coli Rep helicase bound to single~stranded DNA and ADP. Cell,635~647.
    Kusumoto R, Dawut L, Marchetti C, Wan Lee J, Vindigni A, Ramsden D, Bohr V A.2008. Werner proteincooperates with the XRCC4-DNA ligase IV complex in end~processing. Biochemistry,47(28):7548~56.
    Kyng K J, May A, Stevnsner T, Becker K G, K lvr S, Bohr V A.2005. Gene expression responses toDNA damage are altered in human aging and in Werner Syndrome. Oncogene,24(32):5026~42.
    Kyono K, Miyashiro M, Taguchi I.1998. Detection of hepatitis C virus helicase activity using thescintillation proximity assay system. Anal. Biochem,257:120~126.
    Lahkim Bennani~Belhaj K, Rouzeau S, Buhagiar~Labarchède G, Chabosseau P, Onclercq~Delic R, BayartE, Cordelières F, Couturier J, Amor-Guéret M.2010. The Bloom syndrome protein limits the lethalityassociated with RAD51deficiency. Mol Cancer Res,8(3):385~94.
    Lebel M, Spillare E A, Harris C C, Leder P.1999. The Werner syndrome gene product co-purifies with theDNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem,274:37795~9.
    Lee J W, Harrigan J, Opresko P L, Bohr V A.2005. Pathways and functions of the Werner syndromeprotein. Mech Ageing Dev,126:79~86.
    Lee J W, Kusumoto R, Doherty K M, Lin G X, Zeng W, Cheng W H, von Kobbe C, Brosh R M Jr, Hu J S,Bohr V A.2005. Modulation of Werner syndrome protein function by a single mutation in theconserved RecQ domain. J Biol Chem,280:39627~39636.
    Lee J Y and Yang W.2006. UvrD helicase unwinds DNA one base pair at a time by a twopart power stroke.Cell,127(7):1349~60.
    Levin M K, M M Gurja, S S Patel.2003. ATP binding modulates the nucleic acid affinity of hepatitis Cvirus helicase. J Biol Chem,278(26):23311~6.
    Levin M K, Y H Wang, S S Patel.2004. The functional interaction of the hepatitis C virus helicasemolecules is responsible for unwinding processivity. J Biol Chem,279(25):26005~12.
    Levin M K, Wang Y H, Patel S S.2004. The functional interaction of the hepatitis C virus helicasemolecules is responsible for unwinding processivity. J Biol Chem,279(25):26005~12.
    Liao J C, Jeong Y J, Kim D E, Patel S S, Oster G.2005. Mechanochemistry of T7DNA helicase. J MolBiol,350:452~475.
    Liao S, Graham,J, Yan H.2000. The function of Xenopus Bloom’s syndrome protein homolog (xBLM) inDNA replication. Genes Dev,14:2570~2575.
    Li B, Conway N, Navarro S, Comai L, Comai L.2005. A conserved and species-specific functionalinteraction between the Werner syndrome~like exonuclease atWEX and the Ku heterodimer inArabidopsis. Nucleic Acids Res,33:6861~6867.
    Li B, Comai L.2000. Functional interaction between Ku and the Werner syndrome protein in DNA endprocessing. J Biol Chem,275:28349~28352.
    Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A,Haber J E, Foiani M.2005. Rad51-dependent DNA structures accumulate at damaged replicationforks in sgs1mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev,19:339~350.
    Liu J L, Rigolet P, Dou S X, Wang P Y, Xi X G.2004. The zinc finger motif of Escherichia coli RecQ isimplicated in both DNA binding and protein folding. J Biol Chem,279(41):42794~42802
    Liu Y.2010. Rothmund~Thomson syndrome helicase. RECQL4: on the crossroad between DNAreplication and repair. DNA Repair,9:325~30.
    Liu Z, Macias M J, Bottomley M J, Stier G, Linge J P, Nilges M, Bork P, Sattler M.1999. Thethree-dimensional structure of the HRDC domain and implications for the Werner and Bloomsyndrome proteins. Structure,7:1557~1566.
    Li W, Kim S M, Lee J, Dunphy W G.2004. Absence of BLM leads to accumulation of chromosomal DNAbreaks during both unperturbed and disrupted S phases. J Cell Biol,165:801~812.
    Lohman T M.1993. Helicase-catalyzed DNA unwinding. J Biol Chem,268(4):2269~72.
    Lohman T M, Tomko E J, Wu C G.2008. Non-hexameric DNA helicases and translocases: mechanismsand regulation. Nat Rev Mol Cell Biol,9(5):391~401.
    Lohman T M. and K.P.1996. Bjornson, Mechanisms of helicase-catalyzed DNA unwinding. Annu RevBiochem,1996.65:169~214.
    Lo Y C, Paffett K S, Amit O, Clikeman J A, Sterk R, Brenneman MA, Nickoloff JA.2006. Sgs1regulatesgene conversion tract lengths and crossovers independently of its helicase activity. Mol Cell Biol,26:4086~4094.
    Lu J, Mullen J R, Brill S J, Kleff S, Romeo A M, Sternglanz R.1996. Human homologues of yeast helicase.Nature,383:678~679.
    Lucius A L, Maluf N K, Fischer C J, Lohman T M.2003. General methods for analysis of sequential"n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNAunwinding. Biophys J,85(4):2224~39.
    Machwe A, Lozada E M, Xiao L, Orren D K.2006. Competition between the DNA unwinding and strandpairing activities of the Werner and Bloom syndrome proteins. BMC Mol Biol,7:1
    Machwe A, Xiao L, Groden J, Matson S W, Orren D K.2005. RecQ family members combine strandpairing and unwinding activities to catalyze strand exchange. J Biol Chem,280:23397~23407.
    Macris M A, Krejci L, Bussen W, Shimamoto A. Sung P.2006. Biochemical characterization of the RecQ4protein, mutated in Rothmund-Thomson syndrome. DNA Repair,5:172~180.
    Maire G, Yoshimoto M, Chilto-MacNeill S, Thorner P S, Zielenska M, Squire J A.2009. RecurrentRECQL4imbalance and increased gene expression levels are associated with structural chromosomalinstability in sporadic osteosarcoma. Neoplasia,11:260~8.
    Maluf N K, C J Fischer, T M Lohman.2003. A Dimer of Escherichia coli UvrD is the active form of thehelicase in vitro. J Mol Biol,325(5):913~35.
    Mankouri H W, Hickson I D.2004. Understanding the roles of RecQ helicases in the maintenance ofgenome integrity and suppression of tumorigenesis. Biochem Soc Trans,32:957~958.
    Maluf N K, Fischer C J, Lohman T M.2003. A Dimer of Escherichia coli UvrD is the active form of thehelicase in vitro. J Mol Biol,325(5):913~35.
    Mann M B, Hodges C A, Barnes E, Vogel H, Hassold T J, Luo G.2005. Defective sister-chromatidcohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund~Thomsonsyndrome. Hum Mol Genet,14:813~825.
    Matson S W.1991. DNA helicases of Escherichia coli. Prog Nucleic Acid Res Mol Biol,40:289~326.
    Matson S W, Bean D W, George J W.1994. DNA helicases: enzymes with essential roles in all aspects ofDNA metabolism. Bioessays,16(1):13~22.
    Matson S W and Kaiser-Rogers K A.1990. DNA Helicases. Annu Rev Biochem,59:289~329.
    Matson S W, Tabor S, Richardson C C.1983. The gene4protein of bacteriophage T7. Characterization ofhelicase activity. J Biol Chem,258(22):14017~24.
    Mao F J, Sidorova J M, Lauper J M, Emond M J, Monnat R J.2010. The Human WRN and BLM RecQhelicases differentially regulate cell proliferation and survival after chemotherapeutic DNA damage.Cancer Res,70(16):6548~55.
    Martin G M, Sprague C A, Epstein C J.1970. Replicative life-span of cultivated human cells. Effects ofdonor’s age, tissue, and genotype. Lab Invest,23:86~92.
    Martin S A, Hewish M, Lord C J, Ashworth A.2010.Genomic instability and the selection of treatments forcancer. J Pathol,220(2):281~9.
    Martin S A, Lord C J, Ashworth A.2008. DNA repair deficiency as a therapeutic target in cancer. CurrOpin Genet Dev,18(1):80~6.
    Maizels N.2006. Dynamic roles for G4DNA in the biology of eukaryotic cells. Nat Struct Mol Biol,13(12):1055~9.
    McElhinny S A, Pavlov Y I, Kunkel T A.2006. Evidence for extrinsic exonucleolytic proofreading. CellCycle,5:958~962.
    Monnat R J Jr.2007. From broken to old: DNA damage. IGF1endocrine suppression and aging. DNARepair,6(9):1386~90.
    Monnat R J Jr.1992. Werner syndrome: molecular genetics and mechanistic hypotheses. Exp Gerontol,27:447~53.
    Monnat R J Jr.2002. Werner syndrome. In: FletcherC, Unni K, Mertens F, editors. WHO/IARCMonograph on Pathology and Genetics of Tumours of Soft Tissue and Bone Lyon, p.273~4.
    Monnat R J Jr.2001. Cancer pathogenesis in the human RecQ helicase deficiency syndromes. In: Goto M,Miller R W. From premature gray hair to helicase-Werner syndrome: implications for aging andcancer. Tokyo, Japan: Japan Scientific Societies Press, p.83~94.
    Monnat R J Jr.2006. Werner syndrome as a model of human aging. In: Conn PM, editor. Handbook ofmodels for human aging. Amsterdam: Elsevier Academic Press, p.961~76.
    Morozov V, Mushegian A R, Koonin E V, Bork P.1997. A putative nucleic acid-binding domain inWerner’s and Bloom’s syndrome helicases. Trends Biochem.Sci,22:417~418.
    Moser M J, Bigbee W L, Grant S G, Emond M J, Langlois R G, Jensen R H, Oshima J, Monnat Jr R J.2000. Genetic instability and hematologic disease risk in Werner syndrome patients and heterozygotes.Cancer Res,60:2492~6.
    Moser M J, Holley W R, Chatterjee A, Mian I S.1997. The proofreading domain of Escherichia coli DNApolymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res,25:5110~5118.
    Moser M J, Kamath-Loeb A S, Jacob J E, Bennett S E, Oshima J, Monnat R J Jr.2000. WRN helicaseexpression in Werner syndrome cell lines. Nucleic Acids Res,28:648~54.
    Moynahan M E, Jasin M.2010. Mitotic homologous recombination maintains genomic stability andsuppresses tumorigenesis. Nat Rev Mol Cell Biol,11(3):196~207.
    Myong S, Rasnik I, Joo C, Lohman T M, Ha T.2005. Repetitive shuttling of a motor protein on DNA.Nature,437(7063):1321~5.
    Nakayama K, Irino N, Nakayama H.1985. The recQ gene of Escherichia coli K12: molecular cloning andisolation of insertion mutants. Mol Gen Genet,200(2):266~71.
    Nakayama M., Yamaguchi S, Sagisu Y, Sakurai H, Ito F, Kawasaki K.2009. Loss of RecQ5leads tospontaneous mitotic defects and chromosomal aberrations in Drosophila melanogaster. DNA Repair(Amst.),8:232~241.
    Nanduri B, Byrd A K, Eoff R L, Tackett A J, Raney K D.2002. Pre-steady-state DNA unwinding bybacteriophage T4Dda helicase reveals a monomeric molecular motor. Proc Natl Acad Sci USA,99(23):14722~7.
    Neff N F, Ellis N A, Ye T Z, Noonan J, Huang K, Sanz M, Proytcheva M.1999. The DNA helicase activityof BLM is necessary for the correction of the genomic instability of Bloom syndrome cells. Mol BiolCell,10:665~676.
    Nimonkar A V, zsoy A Z, Genschel J, Modrich P, Kowalczykowski S C.2008. Human exonuclease1andBLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci USA,105(44):16906~11.
    Ogburn C E, Oshima J, Poot M, Chen R, Hunt K E, Gollahon K A, Rabinovitch P S, Martin G M.1997. Anapoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations fromwild-type and homozygous mutants. Hum Genet,101:121~5.
    Onoda F, Seki M, Miyajima A, Enomoto T.2000. Elevation of sister chromatid exchange inSaccharomyces cerevisiae sgs1disruptants and the relevance of the disruptants as a system to evaluatemutations in Bloom’s syndrome gene. Mutat Res,459:203~209.
    Opresko P L, Cheng W H, Bohr V A.2004. At the junction of RecQ helicase biochemistry and humandisease. J Biol Chem,279:18099~18102.
    Opresko P L, Laine J P, Brosh R M Jr, Seidman M M, Bohr V A.2001. Coordinate action of the helicaseand3’ to5’exonuclease of Werner syndrome protein. J Bio. Chem,276:44677~22687.
    Opresko P L.2008. Telomere ResQue and preservation-roles for the Werner syndrome protein and otherRecQ helicases. Mech Ageing Dev,129(1~2):79~90.
    Orren D K, Machwe A, Karmakar P, Piotrowski J, Cooper M P, Bohr V A.2001. A functional interactionof Ku with Werner exonuclease facilitates digestion of damaged DNA. Nucleic Acids Res,29:1926~1934.
    Orren D K, Theodore S, Machwe A.2002. The Werner syndrome helicase/exonuclease (WRN) disruptsand degrades D-loops in vitro. Biochemistry,41:13483~13488.
    O’Sullivan R J, Karlseder J.2010.Telomeres: protecting chromosomes against genomic instability. Nat RevMol Cell Biol,11:171~81.
    Otterlei M, Bruheim P, Ahn B, Bussen W, Karmakar P, Baynton K, Bohr V A.2006. Werner syndromeprotein participates in a complex with RAD51, RAD54, RAD54B and ATR in response toICL-induced replication arrest. J Cell Sci,119(24):5137~46.
    Ouyang K J, Woo L L, Zhu J, Huo D, Matunis M J, Ellis N A.2009. SUMO modification regulates BLMand RAD51interaction at damaged replication forks. PLoS Biol,7(12): e1000252.
    Patel S S, Donmez I.2006. Mechanisms of helicases. J Biol Chem,281:8265~18268.
    Patel S S, Picha K M.2000. Structure and function of hexameric helicases. Annu Rev Biochem,69:651~97.
    Eoff R L, Raney K D.2005. Helicase-catalysed translocation and strand separation. Biochem SocTrans,33:1474~1478.
    Pause A N.1992. Sonenberg, Mutational analysis of a DEAD box RNA helicase: the mammaliantranslation initiation factor eIF-4A. EMBO J,11(7):2643~54.
    Perkins T T, Li H W, Dalal R V, Gelles J, Block S M.2004. Forward and reverse motion of single RecBCDmolecules on DNA. Biophys J,86(3):1640~8.
    Perry J J, Yannone S M, Holden L G, Hitomi C, Asaithamby A, Han S, Cooper P K, Chen D J, Tainer J A.2006. WRN exonuclease structure and molecular mechanism imply an editing role in DNA endprocessing. Nat Struct Mol Biol,13:414~422.
    Pichierri P, Rosselli F, Franchitto A.2003. Werner’s syndrome protein is phosphorylated in anATR/ATM-dependent manner following replication arrest and DNA damage induced during S-phaseof the cell cycle. Oncogene,22:1491~500.
    Plank J L, Wu J, Hsieh Ts.2006. Topoisomerase III and Bloom helicase can resolve a mobile doubleHolliday junction substrate through convergent branch migration. Proc Natl Acad Sci USA,103(30):11118~23.
    Plchova H, Hartung F, Puchta H.2003. Biochemical characterization of an exonuclease from Arabidopsisthaliana reveals similarities to the DNA exonuclease of the human Werner syndrome protein. J. Biol.Chem,278:44128~44138.
    Puranam K L and Blackshear P J.1994. Cloning and characterization of RecQL, a potential humanhomologue of the Escherichia coli DNA helicase RecQ. J Biol Chem,269:29838~29845.
    Prince P R, Emond M J, Monnat RJ Jr.2001.Loss of Werner syndrome protein function promotes aberrantmitotic recombination. Genes Dev,15:933~8.
    Prince P R, Ogburn C E, Moser M J, Emond M J, Martin G M, Monnat RJ Jr.1999. Cell fusion corrects the4-nitroquinoline1-oxide sensitivity of Werner syndrome fibroblast cell lines. Human Genet,105:132c8.
    Raney K D, Sowers L C, Millar D P, Benkovic S J.1994. A fluorescence-based assay for monitoringhelicase activity. Proc Natl Acad Sci USA,91:6644~6648.
    Rao V A, Conti C, Guirouilh~Barbat J, Nakamura A, Miao Z H, Davies S L, Saccá B, Hickson I D,Bensimon A, Pommier Y.2007. Endogenous g-H2AX-ATM-Chk2checkpoint activation in Bloom’sSyndrome helicase-deficient cells is related to DNA replication arrested forks. Mol Cancer Res,5(7):713~24.
    Raynard S, Bussen W, Sung P.2006. A double Holliday junction dissolvasome comprising BLM,topoisomerase IIIalpha, and BLAP75. J Biol Chem,281(20):13861~4.
    Ren H, Dou S X, Zhang X D, Wang P Y, Kanagaraj R, Liu J L, Janscak P, Hu J S, Xi X G.2008. Thezinc-binding motif of human RecQ5suppresses the intrinsic strand-annealing activity of its DExHhelicase domain and is essential for the helicase activity of the enzyme. Biochem J,412(3):425~433.
    Rodríguez-López A M, Jackson D A, Iborra F, Cox L S.2002. Asymmetry of DNA replication forkprogression in Werner’s syndrome. Aging Cell,1:30~39.
    Roman L J, A K Eggleston, S C Kowalczykowski.1992. Processivity of the DNA helicase activity ofEscherichia coli recBCD enzyme. J Biol Chem,267(6):4207~14.
    Rothmund A.1868. Ueber cataracten in verbindung mit einer eigentümlichen hautdegenera~tion. Arch KlinExp Ophtal,14(1):159~82.
    Rossi M L, Ghosh A K, Bohr V A.2010. Roles of Werner syndrome protein in protection of genomeintegrity. DNA Repair,9(3):331~44.
    Sangrithi M N, Bernal J A, Madine M, Philpott A, Lee J, Dunphy W G, Venkitaraman A R.2005. Initiationof DNA replication requires the RECQL4protein mutated in Rothmund-Thomson syndrome. Cell,121:887~898.
    Saintigny Y, Makienko K, Swanson C, Emond M J, Monnat Jr RJ.2002. Homologous recombinationresolution defect in Werner syndrome. Mol Cell Biol,22(20):6971~8.
    Sakamoto S, Nishikawa K, Heo SJ, Goto M, Furuichi Y, Shimamoto A.2001. Werner helicase relocatesinto nuclear foci in response to DNA damaging agents and co-localizes with RPA and Rad51. GenesCells,6:421~430.
    Salk D, Au K, Hoehn H, Martin G M.1985. Cytogenetic aspects of Werner syndrome. Adv Exp Med Biol,190:541~6.
    Schellenberg G D, Miki T, Yu C E, Nakura J.2001. Werner syndrome. In: Scriver CR, Beaudet al. Sly WS,Valle D, editors.The Metabolic&Molecular Basis of Inherited Disease. New York: McGraw-Hill, p.785~97.
    Sekelsky J J, Brodsky M H, Rubin G M, Hawley R S.1999. Drosophila and human RecQ5exist indifferent isoforms generated by alternative splicing. Nucleic Acids Res,27:3762–3769.
    Seki M, Miyazawa H, Tada S, Yanagisawa J, Yamaoka T, Hoshino S, Ozawa K, Eki T, Nogami M,Okumura K, Taguchi H, Hanaoka F, Enomoto T.1994. Molecular cloning of cDNA encoding humanDNA helicase Q1which has homology to Escherichia coli RecQ helicase and localization of the geneat chromosome12p2. Nucleic Acids Res,22:4566~4573.
    Serebrov V and Pyle A M.2004. Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3helicase. Nature,430(6998):476~80.
    Shadrick W R, Julin D A.2010. Kinetics of DNA Unwinding by the RecD2Helicase from Deinococcusradiodurans. J Biol Chem,285:17292~17300.
    Sharma S, Sommers J A, Driscoll H C, Uzdilla L, Wilson T M, Brosh RM Jr.2003.The exonucleolytic andendonucleolytic cleavage activities of human exonuclease1are stimulated by an interaction with thecarboxyl-terminal region of the Werner syndrome protein. J Biol Chem,278:23487~23496.
    Sharma S, Sommers J A, Gary R K, Friedrich~Heineken E, Hübscher U, Brosh R M Jr.2005. Theinteraction site of flap endonuclease-1with WRN helicase suggests a coordination of WRN andPCNA. Nucleic Acids Res,33,6769~6781.
    Sharma S, Sommers J A, Wu L, Bohr V A, Hickson I D, Brosh R M Jr.2004. Stimulation of Flapendonuclease-1by the Bloom’s syndrome protein. J Biol Chem,279:9847~9856.
    Sharma S, Stumpo D J, Balajee AS, Bock C B, Lansdorp P M, Brosh R M Jr, Blackshear P J.2007.RECQL, a Member of the RecQ Family of DNA helicases, suppresses chromosomal instability. MolCell Biol,27(5):1784~94.
    Shen J C, Gray M D, Oshima J, Loeb L A.1998. Characterization of Werner syndrome protein DNAhelicase activity: directionality, substrate dependence and stimulation by replication protein A. NucleicAcids Res,26:2879~2885.
    Shen J C, Lao Y, Kamath-Loeb A, Wold M S, Loeb L A.2003. The N-terminal domain of the large subunitof human replication protein A binds to Werner syndrome protein and stimulates helicase activity.Mech Ageing Dev,124:921~930.
    Sidorova J M, Li N, Folch A, Monnat R J Jr.2008. The RecQ helicase WRN is required for normalreplication fork progression after DNA damage or replication fork arrest. Cell Cycle,7:796~807.
    Sidorova J M.2008. Roles of the Werner syndrome RecQ helicase in DNA replication. DNA Repair,7:1776~86.
    Sikora B, Eoff R L, Matson S W, Raney K D.2006. DNA unwinding by Escherichia coli DNA helicase I(TraI) provides evidence for a processive monomeric molecular motor. J Biol Chem,281(47):36110~6.
    Singleton M R, Dillingham M S, Wigley D B.2007. Structure and mechanism of helicases and nucleic acidtranslocases. Annu Rev Biochem,76(1):23~50.
    Siitonen H A, Kopra O, K ri inen H, Haravuori H, Winter RM, S m nen AM, Peltonen L, Kestil M.2003. Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RecQLdiseases. Hum Mol Genet,12(21):2837~44.
    Siitonen H A, Sotkasiira J, Biervliet M, Benmansour A, Capri Y, Cormier-Daire V, Crandall B,Hannula-Jouppi K, Hennekam R, Herzog D, Keymolen K, Lipsanen-Nyman M, Miny P, Plon S E,Riedl S, Sarkar A, Vargas FR, Verloes A, Wang L L, K ri inen H, Kestil M.2009. The mutationspectrum in RecQL4diseases. Eur J Hum Genet,17:151~8.
    Sivaraja M, Giordano H, Peterson M G.1998. Highthroughput screening assay for helicase enzymes. AnalBiochem,265:22~27.
    Sharma S, Doherty K M, Brosh R M Jr.2006. Mechanisms of RecQ helicases in pathways of DNAmetabolism and maintenance of genomic stability. Biochem J,398(3):319~37.
    Sharma S, Otterlei M, Sommers J A, Driscoll H C, Dianov G L, Kao HI, Bambara R A, Brosh R M Jr.2004. WRN helicase and FEN-1form a complex upon replication arrest and together processbranch~migrating DNA structures associated with the replication fork. Mol Biol Cell,15:734~750.
    Sharma S, Sommers J A, Choudhary S, Faulkner J K, Cui S, Andreoli L, Muzzolini L, Vindigni A, Brosh RM Jr.2005. Biochemical analysis of the DNA unwinding and strand annealing activities catalyzed byhuman RECQ1. J Biol Chem,280:28072~28084.
    Shen J C, Gray M D, Oshima J, Kamath-Loeb A S, Fry M, Loeb L A.1998. Werner syndrome protein. I.DNA helicase and DNA exonuclease reside on the same polypeptide. J Biol Chem,273:34139~34144.
    Shen J C, Loeb L A.2000. Werner syndrome exonuclease catalyzes structure-dependent degradation ofDNA. Nucleic Acids Res,28,3260~3268.
    Seidman M M, Bohr V A.2004. The Werner syndrome helicase and exonuclease cooperate to resolvetelomeric D loops in a manner regulated by TRF1and TRF2. Mol Cell,14:763~774.
    Shimamoto A, Nishikawa K, Kitao S, Furuichi Y.2000. Human RecQ5, a large isomer of RecQ5DNAhelicase, localizes in the nucleoplasm and interacts with topoisomerases3and3. Nucleic Acids Res,28(7):1647~1655.
    Speina E, Dawut L, Hedayati M, Wang Z, May A, Schwendener S, Janscak P, Croteau D L, Bohr V A.2010. Human RECQL5beta stimulates flap endonuclease1. Nucleic Acids Res,38(9):2904~16.
    Spudich J A.2001. The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol,2(5):387~92.
    Sugiyama T, New J H, Kowalczykowski S C.1998. DNA annealing by RAD52protein is stimulated byspecific interaction with the complex of replication protein A and single-stranded DNA. Proc NatlAcad Sci USA,95:6049~6054.
    Sun H, Karow J K, Hickson I D, Maizels N.1998. The Bloom's syndrome helicase unwinds G4DNA. JBiol Chem,273(42):27587~92.
    Svendsen J M, Harper J W.2010. GEN1/Yen1and the SLX4complex: solutions to the problem ofHolliday junction resolution. Genes Dev,24(6):521~36.
    Swanson C, Saintigny Y, Emond M J, Monnat R J Jr.2004. The Werner syndrome protein has separablerecombination and viability functions. DNA Repair,3:475~82.
    Szekely A M, Chen Y H, Zhang C, Oshima J, Weissman S M.2000. Werner protein recruits DNApolymerase δ to the nucleolus. Proc Natl Acad Sci USA,97:11365~11370.
    Tanner N K, Cordin O, Banroques J, Doère M, Linder P.2003. The Q motif: a newly identified motif inDEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell,11(1):127~38.
    Taylor W B.1957. Rothmund’s syndrome-Thomson’s syndrome: congenital poikiloderma with andwithout juvenile cataracts. A review of the literature, report of a case, and discussion of therelationship of the two syndromes. AMA Arch Dermatol,75:236~44.
    Thomson M S.1936. Poikiloderma congenitale. Br J Dermatol,48:221~34.
    Thangavel S, Mendoza~Maldonado R, Tissino E, Sidorova J M, Yin J, Wang W, Monnat R J Jr, FalaschiA, Vindigni A.2009. The human RECQ1and RECQ4helicases play distinct roles in DNA replicationinitiation. Mol Cell Biol,30(6):1382~96.
    Tollefsbol T O, Cohen H J.1984. Werner’s sydrome: an underdiagnosed disorder resembling prematureaging. Age,7:75~88.
    Toseland C P, Martinez-Senac M M, Slatter A F, Webb M R.2009. The ATPase Cycle of PcrA Helicaseand Its Coupling to Translocation on DNA. J Mol Biol,392:1020~1032.
    Uemura S, Kawaguchi K, Yajima J, Edamatsu M, Toyoshima Y Y, Ishiwata S.2002. Kinesin-microtubulebinding depends on both nucleotide state and loading direction. Proc Natl Acad Sci USA,99(9):5977~81.
    Umezu K, Nakayama K, Nakayama H.1990. Escherichia coli RecQ protein is a DNA Helicase. Proc NatlAcad Sci USA,87(3):5363~5367.
    van Brabant A J, Ye T, Sanz M, German III J L, Ellis N A, Holloman W K.2000. Binding and melting ofD-loops by the Bloom syndrome helicase. Biochemistry,39:14617~14625.
    Van Maldergem L, Siitonen H A, Jalkh N, Chouery E, De Roy M, Delague V, Muenke M, Jabs E W, Cai J,Wang L L, Plon S E, Fourneau C, Kestil M, Gillerot Y, Mégarbané A, Verloes A.2006. Revisitingthe craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutationsin the RecQL4gene. J Med Genet,43:148~52.
    Velankar S S, Soultanas P, Dillingham M S, Subramanya H S, Wigley D B.1999. Crystal structures ofcomplexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell,97:75~84.
    Versini G, Comet I, Wu M, Hoopes L, Schwob E, Pasero P.2003. The yeast Sgs1helicase is differentiallyrequired for genomic and ribosomal DNA replication. EMBO J,22:1939~1949.
    Vindigni A, Marino F, Gileadi O.2010. Probing the structural basis of RecQ helicase function. BiophysChem,149:67~77.
    von Kobbe C, Thoma N H, Czyzewski B K, Pavletich N P, Bohr V A.2003. Werner syndrome proteincontains three structure specific DNA binding domains. J Biol Chem,278:52997~53006.
    Walpita D, Plug A W, Neff N F, German J, Ashley T.1999. Bloom’s syndrome protein, BLM, colocalizeswith replication protein A in meiotic prophase nuclei of mammalian spermatocytes. Proc Natl AcadSci USA,96:5622~5627.
    Wang L L, Gannavarapu A, Kozinetz C A, Levy M L, Lewis R A, Chintagumpala MM, Ruiz-Maldanado R,Contreras-Ruiz J, Cunniff C, Erickson R P, Lev D, Rogers M, Zackai E H, Plon S E.2003.Association between osteosarcoma and deleterious mutations in the RecQL4gene inRothmund-Thomson syndrome. J Natl Cancer Inst,95:669~74.
    Wang L L, Levy M L, Lewis RA, Chintagumpala M M, Lev D, Rogers M, Plon S E.2001. Clinicalmanifestations in a cohort of41Rothmund-Thomson syndrome patients. Am J Hum Genet,102:11~7.
    Wang Q X, Arnold J J, Uchida A, Raney K D, Cameron C E.2010. Phosphate release contributes to therate-limiting step for unwinding by an RNA helicase. Nucl Acids Res,38:1312~24.
    Wang W, Bambara R A.2005. Human Bloom protein stimulates flap endonuclease1activity by resolvingDNA secondary structure. J Biol Chem,280:5391~5399.
    Wang W.2007. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCAproteins. Nat Rev Genet,8(10):735~48.
    Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A, Otsuki M, Kawabe Y, Tada S, Yagi H, Ishii Y,Enomoto T.2003. Functional relation among RecQ family helicases RecQL1, RecQL5, and BLM incell growth and sister chromatid exchange formation. Mol Cell Biol,23(10):3527~3535.
    Warmerdam D O, Kanaar R.2010. Dealing with DNA damage: relationships between checkpoint andrepair pathways. Mut Res/Rev Mut Res,704(1-3):2~11.
    Werner O.1985. On cataract in conjunction with scleroderma (Hoehn H, Trans.). In: Salk D, Fujiwara Y,Martin G M, editors. Werner’s syndrome and human aging. New York: Plenum Press, p.1~14.
    Wold M S.1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein requiredfor eukaryotic DNA metabolism. Annu Rev Biochem,66:61~92.
    Wong I and Lohman T M.1992. Allosteric Effects of Nucleotide Cofactors on E. coli Rep Helicase-DNABinding. Science,256:350~355.
    Wu L.2007. Role of the BLM helicase in replication fork management. DNA Repair (Amst),6(7):936~44.
    Wu L, Bachrati C Z, Ou J, Xu C, Yin J, Chang M, Wang W, Li L, Brown G W, Hickson I D.2006.BLAP75/RMI1promotes the BLM-dependent dissolution of homologous recombination intermediates.Proc Natl Acad Sci USA,103(11):4068~73.
    Wu L, Davies S L, Levitt N C, Hickson I D.2001. Potential role for the BLM helicase in recombinationalrepair via a conserved interaction with RAD51. J Biol Chem,276(22):19375~81.
    Wu L and Hickson I D.2003. The Bloom’s syndrome helicase suppresses crossing over duringhomologous recombination. Nature,426(6968):870~4.
    Wu L.2008. Wrestling off RAD51: a novel role for RecQ helicases. BioEssays,30(4):291~5.
    Wu Y, Brosh J.2010. Distinct roles of RecQ1in the maintenance of genomic stability. DNA Repair,9(3):315~24.
    Xu H Q, Deprez E, Zhang A H, Tauc P, Ladjimi M M, Brochon J C, Auclair C, Xi X G.2003. TheEscherichia coli RecQ helicase functions as a monomer. J Biol Chem,278(37):34925~34933.
    Xu H Q, Zhang A H, Auclair C, Xi X G.2003. Simultaneously monitoring DNA binding andhelicase-catalyzed DNA unwinding by fluorescence polarization. Nucleic Acids Res,31(14): e70.
    Xu X, Liu Y.2009. Dual DNA unwinding activities of the Rothmund~Thomson syndrome protein, RECQ4.EMBO J,28(5):568~77.
    Xu X, Rochette P J, Feyissa E A, Su T V, Liu Y.2009. MCM10mediates RECQ4association withMCM2-7helicase complex during DNA replication. EMBO J,28(19):3005~14.
    Yang Y, Dou S X, Ren H, Wang PY, Zhang XD, Qian M, Pan BY, Xi XG.2008. Evidence for a functionaldimeric form of the PcrA helicase in DNA unwinding. Nucleic Acids Res,36(6):1976~89.
    Yang Y, Dou S X, Xi X G.2010. Kinetic mechanism of DNA unwinding by the BLM helicase core andmolecular basis for its low processivity. Biochemistry,49(4):656~68.
    Yodh J G, Stevens B C, Kanagaraj R, Janscak P, Ha T.2009. BLM helicase measures DNA unwound beforeswitching strands and hRPA promotes unwinding reinitiation. EMBO J,28(4):405~16.
    Yu C E, Oshima J, Fu Y H, Wijsman E M, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S,Martin G M, Mulligan J, Schellenberg G D.1996. Positional cloning of the Werner's syndrome gene.Science,272(5259):258~62.
    Zhang L, Schwartz G, O’Donnell M, Harrison R.2001. Development of a novel helicase assay usingelectrochemiluminescence. Anal Biochem,293:31~37.
    Zhang X D, Dou S X, Xie P, Wang P Y, Xi X G.2005.RecQ helicase-catalyzed DNA unwinding detectedby fluorescence resonance energy transfer. Acta Biochim Biophys Sin (Shanghai),37(9):593~600.
    Zhang X D, Dou S X, Xie P, Hu J S, Wang P Y, Xi X G.2006. E.coli RecQ is a rapid, efficient andmonomeric helicase. J Biol Chem,281:12655~12663.
    Zhang R, Sengupta S, Yang Q, Linke S P, Yanaihara N, Bradsher J, Blais V, McGowan C H, Harris C C.2005. BLM helicase facilitates Mus81endonuclease activity in human cells. Cancer Res,65:2526~2531.
    Zheng L, Kanagaraj R, Mihaljevic B, Schwendener S, Sartori A A, Gerrits B, Shevelev I, Janscak P.2009.MRE11complex links RECQ5helicase to sites of DNA damage. Nucleic Acids Res,37(8):2645~2657.
    Zheng L, Zhou M, Chai Q, Parrish J, Xue D, Patrick S M, Turchi J J, Yannone S M, Chen D, Shen B.2005.Novel function of the flap endonuclease1complex in processing stalled DNA replication forks.EMBO Rep,6:83~89.
    Zittel M C, Keck J L.2005. Coupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: role of ahighly conserved aromatic-rich sequence. Nucleic Acids Res,33:6982~6991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700