用户名: 密码: 验证码:
安徽庐枞盆地成岩成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江中下游成矿带位于扬子板块北缘,是我国最重要的陆内铜金铁多金属成矿带之一,庐枞(庐江~枞阳)盆地位于长江中下游成带中部的安徽省境内,是长江中下游成矿带的重要组成部分。作为断拗区典型代表的庐枞盆地的成岩成矿作用特色显著,矿床类型复杂多样。盆地中发育有白垩纪的四个旋回的钾玄岩系列岩石和多个侵入岩体。随着2006年庐枞盆地泥河大型铁矿床的发现,人们对庐枞盆地的找矿潜力进行了重新评价,并将其作为深部找矿的重要靶区之一,这使得成岩成矿时代、矿床成因、成矿规律及成矿系统之间的演化关系等工作亟待进行。因此,本文选择长江中下游成矿带中的庐枞盆地作为研究对象,在充分收集、整理前人研究成果的基础上,通过大量的野外地质调查和室内分析测试工作,综合运用多学科多方法,尤其是矿床学、蚀变岩石学、成岩成矿同位素地球化学、同位素年代学和流体包裹体地球化学及高精度微区微量分析等手段对对庐枞盆地的成岩成矿作用开展了系统的研究工作,获得的主要认识和进展如下:
     庐枞盆地的侵入岩可以分成两个阶段,其中包含了三种类型的岩石。早阶段的为二长、闪长岩类侵入体,主要分布在盆地的北部,形成时代为134Ma~130Ma,与龙门院旋回和砖桥旋回的火山活动有关。晚期的侵入岩包括正长岩和A型花岗岩,主要分布在盆地的南部,形成时代为129Ma~123Ma,与双庙旋回和浮山旋回的火山活动有关。本文对庐枞盆地内主要矿区内的侵入岩体进行LA-ICP-MS锆石U-Pb定年的结果显示,主要矿区内部侵入岩体的形成时代集中在134Ma~129Ma之间。其中泥河矿区的闪长玢岩、二长斑岩、粗安斑岩、正长岩、正长细晶岩,大岭闪长玢岩,小岭粗安斑岩,大鲍庄闪长玢岩,井边安山斑岩,杨山闪长玢岩以及岳山粗安斑岩属于早阶段的侵入岩,与龙门院旋回和砖桥旋回的火山岩浆活动密切相关。泥河矿区的正长斑岩和马口矿区的石英正长斑岩属于晚阶段的侵入岩,与双庙旋回和浮山旋回的火山岩浆活动有关。对比表明,庐枞盆地主要矿区内的侵入岩的形成时间明显晚于长江中下游成矿带中断隆区与成矿有关的高钾钙碱性侵入岩体的形成时间,但与该区的其它火山岩盆地中的侵入岩浆活动的时代几乎相同。庐枞盆地内的侵入岩是区域第二期(135Ma~127Ma)和第三期(126Ma~123Ma)岩浆作用的产物。
     岩石地球化学特征显示,庐枞盆地四个旋回的火山岩和两期三种类型侵入岩的岩浆具有同源性关系,其岩浆源区为成分接近EMI型富集地幔的交代地幔,交代地幔的形成与古板块的俯冲交代作用有关。岩浆演化经历了岩浆分异、分离结晶作用和同化混染作用,岩浆分异、分离结晶作用主要发生于岩浆房中,早期的龙门院旋回、砖桥旋回火山岩以及早期侵入岩的岩浆分异程度相对较低,而晚期的双庙旋回、浮山旋回火山岩和晚期侵入岩的岩浆分异程度较高,在岩浆演化、上升侵位(喷发)的过程中,发生了一定程度的陆壳同化混染作用。在早白垩世,庐枞盆地的大地构造背景发生了从挤压向拉张过渡的构造背景向典型拉张的构造背景转变,转换的时间约为130Ma。盆地中早阶段的火山侵入岩浆活动(龙门院旋回和砖桥旋回火山岩和早期二长、闪长岩)发生于挤压~拉张过渡的构造背景;而晚期火山侵入岩浆活动(双庙旋回和浮山旋回火山岩和晚期正长岩和晚期A型花岗岩)发生于典型的拉张构造背景。
     运用40Ar-39Ar定年方法对泥河铁矿床、龙桥铁矿床、马鞭山铁矿床、杨山铁矿床、马口铁矿床中的金云母以及井边铜金矿床内石英中流体包裹体进行分析测试得出,上述矿床的形成时代为134Ma~127Ma之间。在上述结果的基础上,我们还根据矿区内与成矿关系最为密切的岩浆岩的形成时代间接的约束约束了其它未进行精确定年矿床的形成时代,最终得到庐枞盆地内成矿作用演化的时间序列为:盘石岭铁矿床的形成时代最早,与砖桥旋回火山喷发活动的时间基本一致(134Ma),脉状铜矿床、热液铅锌矿床的形成时代约为133Ma~132Ma,其时代与砖桥旋回末期的次火山岩或二长岩类侵入体的形成时代基本一致;盆地中玢岩型铁矿床(包括罗河、泥河、杨山、龙桥、大岭、小岭和大鲍庄)的形成时代基本一致,均为130Ma左右,是在较短时间内集中“爆发式”形成的;矾山明矾石矿床形成时代与玢岩铁矿一致或略晚;形成时代最晚的是产于正长岩和A型花岗岩中的Fe-Cu-Au-U矿床,时代大约≤127Ma。
     本文对盆地中主要矿床的地质特征进行了详细的总结和描述,并对主要矿床的蚀变矿化期次进行了划分。在此基础上,我们运用电子探针(EPMA)和激光探针(LA-ICP-MS)对主要矿床中的矿石矿物和脉石矿物(黄铁矿、磁铁矿、辉石、石榴石、磷灰石和硬石膏)进行了元素组成分析。运用这些结果总结了不同矿物在不同成矿阶段和不同矿床中的元素富集规律,并与国内外研究成果进行了对比,初步探讨了元素富集变化规律对成矿流体演化和矿床成因的指示。例如,黄铁矿微量元素LA-ICP-MS面扫描图像显示,泥河铁矿床中形成于磁铁矿阶段的黄铁矿核富集Co,Ni,As和Se这一组元素,而形成于硫化物阶段的黄铁矿边除了含有上述元素之外,还富含Cu、Pb、Zn、Ag、Au和Tl等一些元素,指示了相应成矿阶段流体的性质。对磷灰石中微量元素研究结果表明,泥河铁矿床和马口铁矿床中的磷灰石与宁芜盆地陶村铁矿床中的磷灰石相似,而不同于Kiruna型矿床和IOCG型矿床中的磷灰石,这可能表明庐枞盆地中的铁矿床不属于Kiruna型矿床或IOCG型矿床。泥河铁矿床不同阶段的硬石膏具有不同的颜色,我们尝试性的运用LA-ICP-MS方法对其中的微量元素组成进行了研究,结果显示,Ba、Na、Y和REE的含量从紫色硬石膏(磁铁矿阶段)到红色硬石膏(硫化物阶段)再到白色硬石膏(石英-方解石-硫化物阶段)急剧降低。
     泥河铁矿床的蚀变岩石从空间上可以分为上部浅色蚀变带(晚期),中部深色蚀变带(中期)和下部浅色蚀变带(早期)。蚀变岩石学研究表明,早期矿化蚀变阶段主要形成下部浅色蚀变带,所伴随的物质组分变化有Fe、Ca、Mg从原岩中析出,而有大量的Na从溶液中进入岩石;中期形成矽卡岩的阶段有大量的Fe、Ca、Mg及少量Si的带入,并富含F、P、CO2等挥发分;中期矿化蚀变的末期主要形成矿床中部的绿泥石-绿帘石带,没有明显的组分带入带出现象,主要为挥发份H2O、CO2起作用,使早期无水硅酸盐矿物(辉石、石榴子石)转变为含水硅酸盐矿物(绿泥石、绿帘石)和方解石、菱铁矿等。晚期矿化蚀变阶段主要形成上部浅色蚀变带,伴随有大量的Ca、Fe、S及Si的富集,形成硬石膏矿体及黄铁矿矿体。
     流体包裹体研究表明,从泥河铁矿床磁铁矿化阶段到硫化物阶段,温度逐渐降低,同时泥河铁矿床磁铁矿阶段的温度高于龙桥铁矿床。脉状铜金矿床的成矿流体显示了中等温度特征,矾山明矾石矿床的流体属于浅成低温热液系统。H、O同位素组成表明泥河铁矿床的成矿流体以岩浆水为主,但体现了流体在上升过程中与围岩发生了同位素交换反应,有地壳组分的加入;龙桥铁矿床的成矿流体来源于岩浆,但与地层水和大气降水发生了混合。脉状铜金矿床的成矿流体显示了以更多比例的大气水加入。龙桥铁矿床C同位素研究表明成矿晚期存在岩浆岩和沉积岩(东马鞍山组地层)的双交代作用。S同位素研究表明金属矿床的硫源主要为岩浆硫和含膏盐地层硫的混合。闪长玢岩是整个庐枞盆地中最为重要的成矿流体驱动器,成矿流体在闪长玢岩体的内部和向外运移过程中在不同的位置与围岩发生反应,与地下水发生混合,成矿流体物理化学性质随之改变,从而导致了成矿物质在不同的部位发生沉淀形成矿床。庐枞盆地的成矿流体系统与长江中下游多金属矿床成矿流体子系统中的“玢岩型铁矿”成矿流体系统相似。
     本文在上述研究成果基础上,对盆地中的主要矿床进行了成因分析,并与国内外相关、相似地区和矿床进行了详细对比,建立了陆内环境下庐枞盆地的成矿模式,认为庐枞盆地的成岩成矿作用是一个连续而且成因上相互联系的过程,是与早白垩世岩浆热液活动有关的一个完整成矿系统演化作用的产物。庐枞盆地的成岩成矿作用是长江中下游成矿带以致整个中国东部中生代构造-岩浆-成矿系统演化的有机组成部分,受中国东部中生代燕山期地球动力学背景的制约。早白垩世135Ma后,区域完全进入太平洋构造体制,太平洋板块斜向俯冲、岩石圈拆沉、软流圈上升和地幔隆起作用加剧,区域伸展作用加强,在135Ma-123Ma之间形成了一系列火山岩盆地及其中的铁、铜多金属矿床及非金属。
The Luzong (Lujiang~Zongyang) volcanic basin is located in the central part of theMiddle-Lower Yangtze (Changjiang) River Valley metallogenic belt, the Northern margin of theYangtze block in Anhui Procvince, which is one of the most important polymetallic mineralizationbelt in east-central China. As a representative volcanic basin in the Middle-Lower Yangtze(Changjiang) River Valley metallogenic belt, the Luzong basin shows noticeable feature ofmineralization and magmatism and occured multiplicity deposits, which contains four shoshoniticvolcanic units and many intrusive rocks of cretaceous age. With the Nihe iron deposit wasdiscovered in2006, the evaluation of the mineralization ability of the Luzong basin has beenimproved. In order to clarify the diagenetic and metallogenic epoch, the ore genesis, metallogenicregularity and the relationship between the magmatism and the mineralization many comprehensiveresearch work needs to do. This paper taking the Luzong basin as the subject, based on thesummarise of previous studies, by the means of detailed geological investigation, sampling andmicroscope observation, combine with geochemistry, geochronology, fluid inclusion geochemistryand in-situ laser ablation trace elements analysis methods, aims to achieve a comprehensiveunderstanding of magmatism and mineralization.
     The intrusive rocks in the Luzong basin can be divided into two stages and three types. Theearly stage monzonite-diorite intrusions mainy distributed in the north part of the basin, ages from134Ma to130Ma, which have close relationship with Longmenyuan and Zhuanqiao cycle volcanicactivity. The late stage syenite and A-type granite intrusions distributed in the south part of the basin,ages from129Ma to123Ma, which have close relationship with Shuangmiao and Fushan cyclevolcanic activity. New LA-ICP-MS zircon U-Pb dating results of the intrusive and subvolcanic rocksfrom the the main mineral deposits shows the age range from134Ma to129Ma. The magmatic rocksin the Nihe district (include diorite porphyry, monzonite porphyry, trachyandesite porphyry, syeniteand aplite), the diorite porphyry in the Daling deposits, the trachyandesite porphyry in the Xiaolingdeposits, diorite porphyry in the Dabaozhuang deposit, andesitic porphyry in the Jingbian deposit,diorite porphyry in Yangshan deposits and trachyandesite porphyry in the Yueshan deposit arebelong to the early stage magmatism, the syenite porphyry in Nihe deposit and the quzrtz syeniteporphyry in Makou deposit belongs to the late stage magmatism. Compare with tthe magmaticactivity in the Middle-Lower Yangtze River Valley metallogenic belt, the intrusions in the mainmineral deposit in the Luzong basin were the product of the second(135Ma~127Ma) and thirdperiod(126Ma~123Ma) magmatic activity and obviously later than high-k calc-alkaline intrusionsrelated to skarn-porphyry Cu-Au deposits in uplift areas in the Middle-Lower Yangtze River Valleymetallogenic belt.
     The geochemical features of the four groups volcanic rocks and two stage intrusive rockssuggest that the volcanic rocks and intrusions might be derived from a same source, themetasomatic mantle closing to the enriched mantle I (EMI). The form of the source might berelated to the subduction of the paleo-plate. The evolution of the magma was controlled by thecrystal fractionation mainly and influenced by the crust materials partially in the high-level magmachamber. The Shuangmiao group and Fushan group volcanic rocks and the late stage intrusive rockshows a higher degree crystal fractionation and much more influenced by the crust contaminationthan the Longmenyuan and Zhuanqiao group volcanic rocks and the early stage intrusive rocks. TheThe tectonic setting of Luzong basin existed a change from the transition of compressional to extensional regime to the extensional regime in Early Cretaceous, and the time was about130Ma.
     The magmatic rocks of Longmenyuan and Zhuanqiao stage formed in the transitional setting from
     compressional to extensional regime, and those of the Shuangmiao and Fushan groups formed in
     the extensional regime.
     The40Ar-39Ar dating of phlogopite from Nihe, Longqiao, Mabianshan, Yangshan, Makou andfluid inclusions in quartz from Jingbian deposit shows the mineralization age of these deposit rangefrom133Ma to127Ma. Combine with the age of the magmatic rocks which closely related to themineralization, which can indirect constrain the mineralization ages, of other mineral deposits wecan summarize the time sequence of the mineralization in the Luzong basin as following: thePanshiling iron deposit formed earliest, the age consistent with the Zhuanqiao formation volcanicrocks(~134Ma); the vein-type Cu-Au deposits and the Yueshan Pb-Zn deposit formed in133Ma~132Ma, which consistent with the ages of the subvolcanic rocks or monzonite intrusions ofZhuanqiao formation; the porphyry iron deposits(include Luohe, Nihe, Yangshan, Longqiao, Daling,Xiaoling and Dabaozhuang) are “booming” formed in a short interval, around130Ma; the age of theFanshan alunite deposit might be consistent with or slightly younger than the porphyry iron deposits;the last mineralization event is the Fe-Cu-Au-U mineralization occurs in the late stage syenit and theA-type granite, the age approximately≤127Ma.
     We present the geologic characteristics and subdivided the alteration and the mineralizationstages of the main deposits in the Luzong basin. Detailed mineral chemistry studies on the main oreminerals and gangue minerals (pyrite, magnetite, pyroxene, garnet, apatite and anhydrite) have beendone by means of EPMA and LA-ICP-MSanalyses. These data are used as an indicator of the natureof the hydrothermal fluids involved in the formation of deposits. For instance, the trace elementsLA-ICP-MS map of the pyrite core from magnetite stage of Nihe deposit enriched in Co, Ni, As, andSe. While pyrite rim from sulphide stage is enriched in Cu, Pb, Zn, Ag, Au, Tl and so on. Thegeochemical composition of apatite from the Nihe, Makou and Taocun iron deposit are much similarwhereas shows some differents from the Kiruna type deposit and IOCG deposits, which mightindicate that the iron deposits in the Luzong basin is not belongs to the Kiruna type deposits and theIOCG type deposit. The anhydrite fromdifferent stage of the Nihe iron deposit display different color.The Ba, Na, Y and REE are drasticly decrease from pink color anhydrite(magnetite stage), redcolor anhydrite(sulphide stage) to white color anhydrite(quartz-calcite-sulphide vein stage).
     The alteration in the Nihe iron deposit can be divided into upper leucocratic alteration zone(late stage), middle Melanocratic alteration zone(middle stage), lower leucocratic alterationzone(early stage). The alteration geochemistry study results shows that the early alteration stageresult in the Fe、Ca、Mg add to the solution and the Na add to the wall rock, the skarn alteration ofmiddle stage addition Fe、Ca、Mg and minor Si, with a volume of volatile (F、P and CO2). There isno obvious component addition or loss in the middle alteration stage. However, the volatile (H2Oand CO2) making the anhydrous silicate minerals (pyroxene and garnet) into the hydrous silicateminerals (chlorite and epidote) and calcite, siderite. A large number of Ca、Fe、S and Si enrichment inthe late stage, and formed the anhydrite ore bodies and pyrite ore bodies.
     Fluid inclusion study shows the temperature and the pressure of the mineralization stageore-forming fluids decrease from magnetite stage of the Nihe deposits, magnetite stage of theLongqiao deposit, to the sulfide stage of the Nihe deposits. The vein-type Cu-Au deposits showsmiddle level temperature ore-forming fluids, the ore-forming fluids of the alunite deposit belongs tothe epithermal system. The hydrogen and oxygen isotope composition analyses results indicate thatthe ore-forming fluids of the Nihe iron deposit were predominated by magmatic thermal fluid, theascending ore-forming fluids reacted with the wall rock, and the crust materials were entered ore-forming fluids. The ore-forming fluids of Longqiao iron deposit derived from the magma and mixed with the stratum and meteoric water. The vein-type Cu-Au deposits shows the meteoric waterdominated ore forming fluids. The C isotope study of Longqiao deposit shows the carbon in thefluids of the later mineralization stages is a mixed source from both of the magmatic andsedimentary rocks (the Dongma’anshan Formation). Sulfur isotopic compositions show that thesulfur in the deposit was derived from a mixture of magmatic hydrothermal fluids andcarbonate-evaporite host rocks. The diorite porphyry is an important engine of the ore-forming fluidsin the Luzong basin, with flowing of the ore-forming fluids in different environment, interact withwall rock and mixed with the meteoric water, the changes of principal physicochemical conditions ofore-forming fluids cause different types mineralization occurred in different place. The ore-formingfluids was corresponding to the porphyry iron mineralization system of the Middle and LowerYangtze River Polymetallogenic mineralization system.
     Based on the above comprehensive study results, and compareing with the mineralizationsystem around the world systemic, we discussed the genesis of the main deposits, and propose ametallogenic model of the Luzong basin. This model shows the polymetallic mineralization andmagmatic activity in the Luzong basin is a continuous process, different magmatic rocks anddifferent mineral deposits are the products of the magmatic-hydrothermal system in differentevolution stages. The petrogenetic and metallogenetic of Luzong basin is one part of the Mesozoictectonic-magmatic-metallogenic event controlled by the geodynamic setting of eastern China in theYanshanian period. Widespread volcanic basins and Fe, Cu polymetallic mineralization formedduring135Ma to123Ma in early Cretaceous, in the extensional tectonic setting, whichcorresponding to the subduction of the pacific plate, lithospheric de delamination and asthenosphericupwelling in eastern China.
引文
Ajaji T, Weis D, Giret A and Bouabdellah M.1998. Coeval potassic and sodic calc-alkaline series inthe post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco:geochemical, isotopic and geochronological evidence. Lithos,45:371-393.
    Almi R.1975. Mineralogy and rare earth geochemistry of apatite and xenotime from the Gloserheiagranite pegmatite, Amer. Miner.60:607-620.
    Andersen T.2002. Correction of common Pb in U-Pb analyses that do not report204Pb. ChemicalGeology,192:59-79.
    Andersson UB, Eklund O, Frojdo S and Konopelko D.2006.1.8Ga magmatism in theFennoscandian Shield: Lateral variations in subcontinental mantle enrichment. Lithos,86:110-136.
    Andersson UB, Eklund O, Frojdo S and Konopelko D.2006.1.8Ga magmatism in theFennoscandian Shield: Lateral variations in subcontinental mantle enrichment. Lithos,86:110-136.
    Arribas A Jr, Rytuba JJ, Rye RO, Cunningham CG, Podwysocko MH, Kelly WC, Arronas ASr,Mckee EH, and Smith JG..1989. Preliminary study of the ore deposits and hydrothermalalteration in the Rodalquilar caldera complex, southeastern Spain: U.S. Geol. Survey Open-FileRept,89-327,39p.
    Barton MD and Johnson DA.1996. Evaporitic-source model for igneous-related Feoxide-(REE-Cu-Au-U) mineralization. Geology,24(3):259-262.
    Bea F, Montero P, Garuti G and Zacharini F.1997. Pressuredepende of rare earth elementdistribution in amphibolite and granulite-grade garnets. A LA-ICP-MS study. GeostandardNewslett.21:253-270.
    Bea F, Pereira MD, and Stroh A.1994. Mineral/leucosome trace-element partitioning in aperaluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol.117:291-312.
    Beaty DW, Cunningham CG., Rye RO, Steven TA., and Gonzalez-Urien E.1986. Geology andgeochemistry of the Deer Trail Pb-Zn-Ag-Cu manto deposits, Marysvale district, west-centralUtah. Econ. Geol.,81:1932-1952.
    Belinda F, Rune BL, Andreas G, et al.2002. In situ ananlysis of trace elements in quartz by usinglaser ablation inductively coupled plasma mass spectrometry. Chemical Geology,182:237-247.
    Belousova EA., Walters S, Griffin, W. L. and O’Reilly, SY.2001. Trace-element signatures ofapatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal ofEarth Sciences:48,603-619.
    Benavides J.2006. Iron oxide-copper-gold deposits of the Mantoverde area,northern Chile: Oregenesis and exploration guidelines. Unpublished Ph.D. thesis, Kingston, Ontario, Queen’sUniversity:134-152.
    Bertelli M, Baker T, Cleverley JS, et al.2009. Geochemical modelling of a Zn-Pb skarn: Constrainsfrom LA-ICP-MS analysis of fluid inclusions. Journal of Geochemical Exploration,102:13-26.
    Bethke PM and Rye RO.1979. Environment of ore deposition in the Creede mining district, SanJuan Mountains, Colorado: IV. Source of fluids from oxygen, hydrogen, and carbon isotopestudies: Econ. Geol.,74:1832-1851.
    Bizzarro M, Simonetti A, Stevenson RK, et al.2003. In situ87Sr/86Sr investigation of igneousapatites and carbonates using laser-ablation MC-ICP-MS. Geochimica et Cosmochimica Acta,67(2):289-302.
    Black LP, Kamo SL, Allen CM, et al.2004. Improved206Pb/238U microprobe geochronology by themonitoring of a trace-element related matrix effect;SHRIMP, ID-TIMS, ELA-ICP-MS, andoxygen isotope documentation for a series of zircon standards. Chem Geol,205(1):115-140.
    Bodnar RJ, Burnham CW and Sterner SM.1985. Synthetic fluid inclusions in natural quartz. III.Determination of phase equilibrium properties in the system H2O-NaCl to1000degree and1500bars. Geochim. Cosmochim. Acta,49:1861-1873.
    Bodnar RJ, Vityk MO.1994. Interpretation of microthermometric data for H2O-NaCl fluidinclusions. Blacksburg: Virginia Tech,7:229-242.
    Bookstrom AA.1977. The magnetite deposits of El Romeral, Chile. Economic Geology,72(6):1101.
    Bottaro JL.1987. Geology of the Middle Buttes volcanic complex, Mojave district, Kern, County,California: Unpub. M.Scthesis, San Jose State Univ,94p.
    Bouzari F and Clark AH.2006. Prograde Evolution and Geothermal Affinities of a Major PorphyryCopper Deposit: The Cerro Colorado Hypogene Protore, I Región, Northern Chile, EconomicGeology,101:95-134.
    Bove D, Rye, RO and Hon K.1990. Evolution of the Red Mountain alunite deposits, Lake City,Colorade.[abs]: Geol. Soc., America Abstracts with Programs,20: A353.
    Boyd FR, Pearson DG, Hoal KO, Hoal BG, Nixon PH, Kingston MJ and Mertzman SA.2004.Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos77,573-592.
    Butler IB and Nesbitt RW.1999. Trace element distributions in the chalcopyrite wall of a blacksmoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). Earth and Planetary Science Letters,167:335-345.
    Deyell CL and Dipple GM.2005. Equilibrium mineral-fluid calculations and their application to thesolid solution between alunite and natroalunite in the EI Indio-Pascua belt of Chile andGrgentina. Chemical Geology,215:219-234.
    Calanchi N, Peccerillo A, Tranne CA, Lucchini F, Rossi PL, Kempton P, Barbieri M and Wu TW.2002. Petrology and geochemistry of volcanic rocks from the island of Panarea: implicationsfor mantle evolution beneath the Aeolian island arc (southern Tyrrhenian sea). Journal ofVolcanology and Geothermal Research,115:367-395.
    Callaghan E.1973. Mineral resource potential of Piute County, Utah and adjoining area: Utah Geol.Mineralog. Survey Bull,102-135.
    Carew MJ, Mark G, Oliver NHS, et al.2006. Trace element geochemistry of magnetite and pyrite inFe oxide (±Cu-Au) mineralised systems: Insights into the geochemistry of ore-forming fluids[abs.].2006Goldschmidt Conference, Japan: Geochimica et Cosmochimica Acta,83.
    Carr PF.1998. Subduction-related late Permian shoshonites of the Sydney basin, Australia.Mineralogy and Petrology,63:49-71.
    Chaussidon M. and Lorand JP.1990. Sulphur isotope composition of orogenic spinel lherzolitemassifs from Ariege (N.E. Pyrenees France): An ion microprobe study. Geochim. Goosmochim.Acta.54:2835-2846.
    Chen CH, Lee CY, Lu HY and Hsieh PS.2008a. Generation of Late Cretaceous silicic rocks in SEChina: Age, major element and numerical simulation constraints. Journal of Asian EarthSciences,31:479-498.
    Chen CH, Lee CY and Shinjo R.2008b. Was there Jurassic paleo-Pacific subduction in SouthChina?: Constraints from40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry ofthe Mesozoic basalts. Lithos,106:83-92.
    Chen FK, Hegner E and Todt W.2000. Zircon ages, Nd isotopic and chemical compositions oforthogneisses from the Black Forest, Germany-evidence for a Cambrain magmatic arc.International Journal of Earth Sciences,88:791-802.
    Chen FK, Siebel W, Satir M, et al.2002. Geochronology of the Karadere basement (NW Turkey)and implications for the geological evolution of the Istanbul zone. International Journal of EarthSciences,91:469-481.
    Chernoff C. B. and Carlson WD.1999. Trace element zoning as a record of chemical disequilibriumduring garnet growth. Geology27:555-558.
    Christensen JN, Halliday AN, Lee DC, et al.1995. In suit Sr isotopic analysis by laser ablation[J].Earth Planet Sci Lett,136(1-2):79-85.
    Chu MF, Wang KL, Griffin WL, et al.2009. Apatite composition: tracing petrogenetic process inTranshimalayan granitoids.50(10):1829-1855.
    Claek C, Grguric B, Schmidt Mumm, A.2004. Genetic implications of pyrite chemistry from thePalaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences,northeastern South Australia[J]. Ore Geology Reviews,25:237-257.
    Concei o RV and Green DH.2004. Derivation of potassic (shoshonitic) magmas by decompressionmelting of phlogopite+pargasite lherzolite. Lithos,72:209-229.
    Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S,Tiepolo M, Prelevi D and Venturelli G.2009. Trace elements and Sr-Nd-Pb isotopes of K-rich,shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis ofultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting.Lithos,107:68-92.
    Cooke DR, Hollings P and Walsh JL.2005. Giant porphyry deposits: Characteristics, distributionand tectonic controls. Economic Geology,100(5):801-818.
    Craske TE.1995. Geological aspects of the discovery of the Ernest Henry Cu-Au deposit, northwestQueensland. Australian Institute of Geosciences Bulletin,16:95-109.
    Cunningham CG., Rye RO, Steven TA and Mehnert HH.1984. Origins and exploration signficanceof replacement and vein-type alunite deposits in the Marysvale volcanic field, west centralUtah: Econ. Geol,79:50-71.
    Curtis ML, Leat PT, Riley TR, Storeya BC, Millar IL and Randall DE.1999. Middle Cambrianrift-related volcanism in the Ellsworth Mountains, Antarctica: tectonic implications for thepalaeo-Pacific margin of Gondwana. Tectonophysics,304:275-299.
    Danyushevsky LV, Robinson P, McGoldrick P, et al.2003. LA-ICPMS of sulphides: Evaluation of anXRF glass disc standard for analysis of different sulphide matrixes [abs.]. GoldschmidtConference, Japan, Geochimica et Cosmochimica Acta,67:23.
    Danyushevsky L, Robinson P, McGoldrick P, Large R, Gilbert S.2004. Quantitative multi-elementanalysis of sulphide minerals by laser ablation ICPMS.17th Australian Geological Convention,Hobart,8-13th February,260.
    Davidson J, Tepley III F, Palacz Z, et al.2001. Magma recharge, contamination and residence timesrevealed by in suit laser ablation isotopic analysis of feldspar in volcanic rocke [J]. Earty PlanetSci Lett,184(2):427-442.
    Deen JA, Drexler JW, Rye RO and Munoz JL.1987. A magmatic fluid origin for the Julcani destrict,Peru: Stable isotope evidence [abs]: Geol. Soc. America Abstract with Programs,19:638.
    Defant MJ and Drummond MS.1990. Derivation of some modern arc magmas by melting of youngsubducted lithosphere. Nature,347-662.
    DePaolo DJ.1981. Trace element and isotopic effects of combined wallrock assimilation andfractional crystallization. Earth and Planetary Science Letters,53:189-202.
    DePaolo DJ.1998. Neodymium isotope geochemistry. In: An introduction: Minerals and rocks.Berlin Heidelberg New York: Springer,20:1-187.
    Deyell CL, Rye RO, Landis GP, Bissig T.2005. A lunite and the role of magmatic fluids in theTambo high sulfidation deposit, EI Indio-Pascua belt, Chile. Chemical Geology,215:185-218.
    Deyell CL.2001. Alunite and high sulfidation Au-Ag-Cu mineralization in the EI Indio-Pascua Belt,Chile-Argentina. PhD thesis, Univ. British Columbia, Vancouver, Canada.
    Ding X, Jiang SY and Zhao KD.2006. In-situ U-Pb SIMS dating and trace element (EMPA)composition of zircon from a granodiorite porphyry in the Wushan copper deposit, China.Mineralogy and Petrology,86:29-44.
    Drummond MS and Defant MJ.1990. A model for trondhjenite-tonalite dactite genesis and Crustalgrowth via slab melting: Archean to modern composition. J. Geo. Res.,95:503-521.
    Dupuy C, Liotard JM and Dostal J. Zr/Hf fractional in intraplate basaltic rocks;Crabonatemelasomatism in the mantle source. Geochim Cosmochim Acta,1992,56(6);2417-2423.
    Einaudi MT, Meinert LD and Newberry RJ.1981. Skarn deposits. Econ. Geol.75th AnniversaryVolume:317-391.
    Ewart A.1982. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks withspecial reference to the andesitic-basaltic compositional range. In: R S Thorpe (Editor),Andesites. Wiley, Chichester,25-87.
    Field CW and Gustafson LB.1976. Sulfur isotopes in the porphyry copper deposit at EI Salvado,Chile: Econ. Geol.,71:1533-1548.
    Field CW and Lombardi G.1972. Sulfur isotopic evidence for the supergene origin of alunitedeposits: Mineralium Deposits,7:113-125.
    Flem B, Larsen RB, Grimstvedt A, Mansfeld J.2002. In situ analysis of trace elements in quartz byusing laser ablation inductively coupled mass spectrometry. Chemical Geology182,237-247.
    Frietsch R.1978. On the magmatic origin of iron ores of the Kiruna type. Economic Geology.70:988-990.
    Frutos J and Oyarzún J.1975. Tectonic and geochemical evidence concerning the genesis of El Lacomagnetite lava flow deposits, Chile. Economic Geology.70:988-990.
    Gaspar M.2005. The Crown Jewel gold skarn deposit. Ph.D. Thesis, Washington State University.Available from: http://griffin.wsu.edu/.
    Geijer P.1910. Igneous rocks and iron ores of Kiirunavaara, Luossavaara and Tuolluvaara:Unpublished Ph.D dissertation, Uppsala, Sweden, University of Uppsala,278.
    Geijer P.1931. The iron ores of the Kiruna type: Sveriges Geologiska Undersoking,24:1-39.
    Gilder SA, Gill J, Coe RS, Zhao XX, Liu ZW, Wang GX, Yuan KR, Liu WL, Kuang GD and Wu HR.1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of southChina. Journal of Geophysical Research,101:16137-16154.
    Gow P, Wall V, Oliver N and Valenta R.1994. Proterozoic iron oxide (Cu-U-Au-REE) deposits:Further evidence of hydrothermal origins[J]. Geology,22(7):633.
    Grant, JA.1986. The isocon diagram: a simple solution to Gresens' equation for metasomaticalteration[J]. Economic Geology,81(8):1976.
    Graunch RI.1989. Rare earth elements in metamorphic rocks. In Geochemistry and MineralogicalRare Earth Elements: Rev. Mineralogical Society of America.21:146-167.
    Groves DI, Bierlein FP, Meinert LD and Hitzman MW.2010. Iron oxide copper-gold (IOCG)deposits through Earth history: Implications for origin, lithospheric setting, and distinction fromother epigenetic iron oxide deposits. Economic Geology,105(3):641-654.
    Gunther D, Audetat A, Frischknecht R, et al.1998. Quantitative analysis of major, minor and traceelements in fluid inclusions using laser-ablation inductively-coupled-plasmamass-spectrometry[J]. Journal of Analytical Atomic Spectrometry,13(4):263-270.
    Hall DL, Sterner SM and Bodnar RJ.1988. Freezing point depression of NaCl-KCl-H2O solutions.Econ Geol,83:197-202.
    Harris NBW, Gravestock P and Inger S.1992. Ion-microprobe determinations of trace-elementconcentrations in garnets from anatectic assemblages. Chem. Geol.100:41-49.
    Hart SR.1984. A large scale isotope anomaly in the Southern Hemisphere mantle. Nature.309:753-757.
    Hart SR.1984. A large scale isotope anomaly in the Southern Hemisphere mantle. Nature,309:753-757.
    Hauck SA.1932. Petrogenesis and tectonic setting of middle Proterozoic iron oxide-rich ore deposits:an ore deposit model for Olympic Dam-type mineralization[J]. US Geological Survey Bulletin:4-39.
    Haynes DW.2002. Giant iron oxide-copper-gold deposits: are they in distinctive geologic settings,Cooke D R and Pongratz June (eds.), Giant ore deposits: Characteristics, genesis, andexploration. Centre for Ore Deposits Research Univ. of Tasmania, Hobart.57-78.
    Heald P, Foley NK, Hayba DO.1987. Comparative anatomy of volcanic-hosted epithermal deposits:acid-sulfate and adular-ia-sericite types. Economic Geology,82(1):1-26.
    Hedenquist JW, Abrribas A and Reynolds J.1998. Evolution of an intrusion-centered hydrothermalsystem: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines.Economic Geology,93(4):373-404.
    Hedenquist JW, Arribas A, Jr, and Gonzalez-Urien E.2000. Exploration for epithermal gold deposit.In Hagemann, S.G. and Brown, P.E., eds., Gold2000. Reviews in Economic Geology,13:245-277.
    Heinrich CA, Pettke T, Halter WE, et al.2003. Quantitative multi-element analysis of minerals, fluidand melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry[J].Geochimica et Cosmochimica Acta,67(18):3473-3497.
    Helvac C, Ersoy EY, S zbilir H, Erkül F, Sümer and Uzel B.2009. Geochemistry and40Ar/39Argeochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications foramphibole-bearing lithospheric mantle source, Western Anatolia. Journal of Volcanology andGeothermal Research,185:181-202.
    Hickmott DD and Spear FS.1992. Major-and trace-element zoning in garnets from calcareouspelites in the NW Shelburne Falls Quadrangle, Massachusetts: garnet growth histories inretrograded rocks. J. Petrol.33:965-1005.
    Hickmott DD and Spear FS.1992. Major-and trace-element zoning in garnets from calcareouspelites in the NW Shelburne Falls Quadrangle, Massachusetts: garnet growth histories inretrograded rocks. J. Petrol.33:965-1005.
    Hickmott DD and Spear FS.1992. Major-and trace-element zoning in garnets from calcareouspelites in the NW Shelburne Falls Quadrangle, Massachusetts: garnet growth histories inretrograded rocks. J. Petrol.33:965-1005.
    Hilde TWC.1976.Tectonic history of the western Pacific.In: Drake C L editor.Geodynamics.in:Progress and prospects, American Geophysical Union.
    Hildebrand RS.1986. Kiruna-type deposits: their origin and relationship to intermediate subvolcanicplutons in the Great Bear magmatic zone, northwest Canada: Economic Geology,81:640-659.
    Hildebrand RS.1986. Kiruna-type deposits; their origin and relationship to intermediate subvolcanicplutons in the Great Bear magmatic zone, northwest Canada[J]. Economic Geology,81(3):640.
    Hitzman MW, Oreskes N and Einaudi MT.1992. Geological characteristics and tectonic setting ofproterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research,58(1-4):241-287.
    Hoal KEO, Hoal BG, Erlank AJ and Shimizu N.1994. Metasomatism of the mantle lithosphererecorded by rare earth elements in garnets. Earth Planet. Sci. Lett.126:303-313.
    Hofmann AW.1988. Chemical differentiation of the earth: The relationship between mantle,continental crust, and oceanic crust. Earth Planet Sci Lett,90:297-314.
    Hollanda MHBM, Pimentel MM, Oliveira DC and de SEFJ.2006. Lithosphere-asthenosphereinteraction and the origin of Cretaceous tholeiitic magmatism in Northeastern Brazil: Sr-Nd-Pbisotopic evidence. Lithos,86:34-49.
    Jackson M and Hart S.2006. Strontium isotopes in melt inclusions from Samoan basalts:implications for heterogeneity in the Samoan plume. Earth and Planetary Science Letters,245:260-277.
    Jahn B, Wu F, Lo C, et al.1999. Crust-mantle interaction induced by deep subduction of thecontinetal crust: geochemical and Sr-Nd istotopic evidence from post-collision mafic-ultramaficintrusions of the northern Dabie complex, centrul China. Chemical Geology,157:119.
    Jahn BM.1974. Mesozoic thermal events in southeast China. Nature,248:480-483.
    Jamtveit B. and Hervig RL.1994. Constraints on transport and kinetics in hydrothermal systemsfrom zoned garnet crystals. Science263:505-508.
    Kempe U, Belyatsky BV, Krymsky RS, Kremenetsky AA and Ivanov PA.2001. Sm-Nd and Srisotope systematics of scheelite from the giant Au(-W) Muruntau deposit (Uzbekistan):implications for the age and sources of Au mineralization. Mineralium Deposita,36:379-392.
    Korzhinskii DS.1968. The theory of metasomatic zoning. Miner. Deposita.3:222-231.
    Lamar o CN, Dall’Agnol R, Lafon JM and Lima EF.2002. Geology, geochemistry and Pb-Pb zircongeochronology of the Paleoproterozoic magmatism of Vila Riozinho, Tapajós gold province,Amazonian Craton, Brazil. Precambrian Research,119:189-223.
    Lapierre H, Bosch D, Narros A, Mascle GH, Tardy M and Demant A.2007. The Mamonia Complex(SW Cyprus) revisited: Remnant of Late Triassic intra-oceanic volcanism along the Tethyansouthwestern passive margin. Geological Magazine,144:1-19.
    Large RR, Maslennikow VV, Robert F, et al.2007. Multistage sedimentary and metamorphic originof pyrite and gold in the Giant Sukhoi Log Deposit, Lena gold Province, Russia. EconomicGeology,102:1233-1267.
    Large RR, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P,Thomas H, Singh B, Foster J.2009. Gold and Trace Element Zonation in Pyrite Using a LaserImaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology,104:635-668.
    Le Maitre RW(ed). A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford,989,193.
    Li JW, Zhao XF, Zhou MF, Vasconcelos P, Ma CQ, Deng XD, Sérgio de Souza Z, Zhao YX and WuG.2008. Origin of the Tongshankou porphyry-skarn Cu-Mo deposit, eastern Yangtze craton,Eastern China: Geochronological, geochemical, and Sr-Nd-Hf isotopic constraints. MineraliumDeposita,43(3):315-336.
    Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei G and Qi C.2007. U-Pb zircon, geochemical andSr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from centralGuangdong, SE China: A major igneous event in response to foundering of a subductedflat-slab?. Lithos,96:186-204.
    Liegeois JP and Black R.1987. Alkaline magmatism subsequent to collision in the Pan-African beltof the Adrardes floras(mali) Fitton JG, Upton BGJ, eds. Alkaline igneous rocks, Geol. Soc.London, Spec. Publ.,30:381-401.
    Liew TC and Hofmann AW.1998. Precambrain crustal components, plutonic associations, plateenvironment of the Hereynian foldbelt of central Europe: indications from a Nd and Sr isotopicstudy. Contribution to Mineralogy and Petrology,98:129-138.
    Ling MX, Wang FY, Ding X, Hu YH, Xhou JB, et al.2009. Cretaceous Rigge Subduction along theLower Yangtze River belt, Eastern China. Ecobomic Geology.104:303-321.
    Lombardi, G., and Mattias, P.1979. Petrology and mineralogy of the kaolin and alunitemineralizations of Latium (Italy): Geol. Romana,18:157-214.
    Ludwig KR.2001. ISOPLOT3.0: A Geochronological Toolkit for Microsoft Excel. BerkeleyGeochronology Centre. Special Publication,4:1-70.
    Lundberg B and Smellie JAT.1979. Painirova and Mertainen iron ores: Two deposits of the Kirunairon ore type in northern Sweden. Economic Geology.74:1131-1152.
    MacCready, T, Goleby BR, Goncharov A, Drummond BJ, Lister GS.1998. A framework ofoverprinting orogens based on interpretation of the Mount Isa deep seismic transect. economicgeology,93:13.
    Maniar PD and Piccoli PM.1989. Tectonic discriminatioanitoids. Geological Society of AmericaBulletin,101:615-643.
    Maniar PD and Piccoli PM.1989. Tectonic discrimination of granitoids. Geological Society ofAmerica Bulletin,101:615-643.
    Martin H, Bonin B, Capdevila R, et al.1994. The Kuiqi peralkaline granitic complex(SE China):petrology and geochemistry. Journal of Petrology,35:983-1015.
    Mathur R, Marschik R, Ruiz J, Munizaga F, Leveille RA and Martin W.2002. Age of mineralizationof the Candelaria Fe oxide Cu-Au deposit and the origin of the Chilean iron belt, based onRe-Os isotopes. Economic Geology,97(1):59.
    McDonough WF and Sun SS.1995. The composition of the Earth. Chemical Geology,120:223-253.
    McGoldrick P J, Maier R C.2006. Pyrite trace element halos to northern Australian sediment-hostedZn-Pb-Ag deposits [abs.].2006Goldschmidt Conference, Japan: Geochimica et CosmochimicaActa,:411.
    McIntire WL.1963. Trace element partition coefficients-areview of theory and applications togeology. Geochim. Cosmochim. Acta27:1209-1264.
    McKenzie DP.1989. Some remarks on the movement of small melt fractions in the mantle. Earthand Planetary Science Letters,95:53-72.
    McKenzie DP.1989. Some remarks on the movement of small melt fractions in the mantle. Earthand Planetary Science Letters,95:53-72.
    Meen JK.1987.Formation of shoshonites from calc-alkaline basalt magmas: geochemical andexperimental constrainta from the type locality. Contributions to Mineralogy and Petrology97,333-351.
    Meinert LD.1992. Skarns and skarn deposits. Geosci. Can.19:145-162.
    Meinert LD.1997. Application of skarn deposit zonation models to mineral exploration. Explor. Min.Geol.6:185-208.
    Meschede M.1986. A method of discriminating between different types of mid-ocean ridge basaltsand continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology,1986(56)pp.207-218.
    Middlemost EAK.1994. Naming materials in magma/igneous rock system. Earth Sci. Rev,37:215-224.
    Miguel G, Charles K, Lawrence D M, et al.2008. REE in skarn systems: A LA-ICP-MS study ofgarnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta,72:185-205.
    Moretti R and Ottonello G.1998. An appraisal of endmember energy and mixing properties of therare earth garnets. Geochim. Cosmochim. Acta62:1147-1173.
    Müller D, Rock NMS and Groves DI.1992. Geochemical discrimination between shoshonitic andpotassic volcanic rocks from different tectonic settings: A pilot study. Mineralogy and Petrology,46:259-289.
    Münch U, Blum N and Halbach P.1999. Mineralogical and geochemical features of sulphidechimneys from the MESO zone, Central Indian Ridge[J].Chemical Geology,155:29-44.
    Nagasawa H.1973. Rear earth distribution in alkali rocks from Oki-Dogo Island, Japan, Contrib.Miner. Petrol,39:301-308.
    Nakano T, Takahara H and Norimasa N.1989. Intracrystalline distribution of major elements inzoned garnet from skarn in the Chichibu mine, central Japan; illustration by color-coded maps.Can. Mineral.27:499-507.
    Nash WP.1972. Apatite chemistry and phosphorus fugacity in a differentiated igneous intrusion,Amer. Miner.57:877-886.
    Ohomoto H and Rey RO.1979. Isotopes of sulfur and carbon, Geochemistry of Hydrothermal OreDeposits, Econ. Geol.67:551-579.
    Oliver LR.1996. Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyellmineral field, western Tasmania, Australia. Ore Geology Review,10:231-250.
    Olszewski, WJ, Wirth KR, Gibbs AK, H. E G.1989. The age, origin, and tectonics of the Grao ParaGroup and associated rocks, Serra dos Caarajas, Brazil: Archean continental volcanism andrifting. precambrian research,42:26.
    Oreskes N and Einaudi MT.1990. Origin of rare earth element-enriched hematite breccias at theOlympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Economic Geology,85(1):1.
    Pan Y and Dong P.1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, eastcentral China: intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore GeologyReviews,15(4):177-242.
    Panno SV and Hood WC.1983. Volcanic stratigraphy of the Pilot Knob iron deposits, Iron Country,Missouri. Economic Geology,68:210-221.
    Papageorge M.2001. Iron oxide copper-gold deposits: separating fact from fantasy short course.Geoscience Canada,28(1).
    Parák T.1975. Kiruna iron ores are not “intrusive-magmatic ores of the Kiruna type”. EconomicGeology.70:1242-1258.
    Parák T.1984. On the magmatic origin of iron ores of the Kiruna type, A discussion. EconomicGeology.70:1945-1949.
    Parák T.1985. Phosphorus in different types of ore, sulfide in the iron deposit and the type andorigin of ores at Kiruna. Economic Geology,80:645-665.
    Park CF.1961. A magnetite “flow” in northern Chile. Economic Geology.56:431-436.
    Park CF.1972. The iron ore deposits of the Pacific basin. Economic Geology.67:339-349.
    Paton C, Hergt JM, Phillips D, et al.2007a. New insights into the genesis of Indian kimberlites fromthe Dharwar Cratin via in suit Sr isotope analysis of groundmass perovskite[J]. Geology,35(11):1011-1014.
    Paton C, Woodhead J, Hergt J, et al.2007b. Sr-isotope analysis of kim-berlitic groundmassperovskite via LA-MC-ICPMS[J]. Geostandards and Geoanalytical Research,5:1-10.
    Pearce JA and Norry MJ. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology,1979,69:33-47.
    Pearce J.A.1996. Sources and settings of granitic rocks. Episodes,19:120-125.
    Peccerillo A.1992. Potassic and ultrapotassic rocks: compositional characteristics, petrogenesis andgeologic significance. Episodes,15:243-251.
    Petersen U, Noble DC, Arenas ML and Goodell PC.1977. Geology of the Julcani mining district,Peru: Econ, Geol,72:931-949.
    Philpotts AR.1967. Origin of certain iron-titanium oxide and apatite rocks: Economic Geology.62:303-315.
    Pilet S, Baker MB and Stolper EM.2008. Metasomatized Lithosphere and the Origin of AlkalineLavas. Science,320:916-919.
    Piraijno F.2009. Hydrothermal Processes and Mineral System. Springer,1-1250.
    Pollard PJ.2000. Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Au mineralization,Porter T M(ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A GlobalPerspective. Australian Mineral Foundation, Adelaide.27-41.
    Porter TM.2000. Hydrothermal iron oxide copper gold and related deposits: a global perspective.Australian Mineral Fundation.
    Porter TM.2002. Foundation AM. Hydrothermal Iron Oxide, Copper-gold&Related Deposits: AGlobal Perspective. PGC Publishing.
    Prelevi D, Foley SF, Romer RL and Conticelli S.2008. Mediterranean Tertiary lamproites:multicomponent melts in post-collisional geodynamics. Geochimica et Cosmochimica Acta,72:2125-2156.
    Puchelt H and Emmermann R.1976. Bearing of rare earth patterns of apatites from igneous andmetamorphic rocks, Earth Planet. Sci. Lett.31:279-286.
    Qiu HN and Jiang YD.2007. Sphalerite40Ar/39Ar progressive crushing and stepwise heatingtechniques. Earth Planet. Sci. Lett.256(1-2):224-232.
    Qiu HN and Wijbrans JR.2008. The Paleozoic metamorphic history of the Central Orogenic Belt ofChina from40Ar/39Ar geochronology of eclogite garnet fluid inclusions. Earth Planet. Sci. Lett,268(3-4):501-514.
    R m OT, McLemore VT, Hamilton MA, Kosunen PJ, Heizler M and Haapala I.2003. Intermittent1630-1220Mamagmatism in central Mazatal province: new geochronologic piercing points andsome tectonic implications. Geology,31:335-338.
    Ramos FC, Wolff JA, Tollstrup DL.2004. Measuring87Sr/86Sr variations in minerals andgroundmass frombasalts using LA-MC-ICPMS. Chemical Geology,211:135-158.
    Ratschbacher L, Hacker BR, Webb LE, McWilliams M, Ireland T, Dong S, Calvert A and ChateignerD.2000. Exhumation of the ultrahigh-pressure continental crust in east central China:Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research,105:13303-13338.
    Ridley WI, Lichte FE.1998. Major, trace and ultratrace element analysis by laser ablation ICP-MS,in McKibben M A, Shanks W C III, and Ridley W I. Aplications of Microanalytical Techniquesto Understanding Mineralizing Processes. Reviews in Economic Geology,7:199-215.
    Rios DC, Conceicao H, Davis DW, Pla Cid J, Rosa MLS, Macambir MJB, McReath I, Marinho MMand Davis WJ.2007. Paleoproterozoic potassic-ultrapotassic magmatism: Morro do AfonsoSyenite Pluton, Bahia, Brazil. Precambrian Research,154:1-30.
    Roberts DE and Hudson GRT.1984. The olympic dam copper-uranium-gold dposit, Roxby Downs,South Australia-a reply. Economic Geology,79:1944-1945.
    Roedder E and Bodnar RJ.1980. Geologic Pressure determinations from fluid inclusion studies,Annual Review of Earth and Olanetary Science,8:263-301.
    Rogers NW, James D, Kelley SP, et al.1998. The generation of potassic lavas from the EasternVirunga province, Rwanda. Journal of petrology,39:1223-1247.
    Rollison G.1993. Volumetric closed chemical transfer system, Google Patents.
    Ryan PJ, Lawrence AL and Jenkins RA.1995. The Candelaria copper-gold deposit, Chile. ArizonaGeological Society Digest.20:625-645.
    Rye RO, Stoffregen RE and Bethke PM.1990. Stable isotope systematics and magmatichydrothermal processes in the summitville Cu-Au deposit: U.S. Geol. Survey Open-File Rept,90-626.
    Rye RO, Bethke PM and Wasserman MD.1992. The stable isotope geochemistry of acid sulfatealteration. Economic Geology,87(2):225.
    Rye RO.1993. The evolution of magmatic fluids in the epithermal environment; the stable isotopeperspective. Economic Geology,88(3):733.
    Rytuba JJ, Arribas A Jr., Cunningham CG, Podwysocko MH, McKee EH, and Castroviejo R.1988.Rodalquilar deposits (S.E. Spain), first example of caldera-related epithermal goldmineralization in Europe: Part I. Caldera evolution [abs]: Geol. Soc. America Abstracts withPrograms,19: A351.
    Scarrow JH, Leat PT, Wareham CD and Millar LL.1998. Geochemistry of mafic dykes in theAntarctic Peninsula continental-margin batholith: A record of arc evolution. Contributions toMineralogy and Petrology,131:289-305.
    Scarrow JH, Leat PT, Wareham CD and Millar LL.1998. Geochemistry of mafic dykes in theAntarctic Peninsula continental-margin batholith: A record of arc evolution. Contributions toMineralogy and Petrology,131:289-305.
    Schiano P, Dupre B and Lewin E.1993. Application of trace element concentration variability to thestudy of basalt alteration (Fangataufa atoll, French Polynesia). Chemical Geology,104:99-124.
    Schwandt CS, Papike JJ, Shearer CK. and Brearley AJ.1993. A SIMS investigation of REEchemistry of garnet in garnetite associated with the Broken Hill Pb-Zn-Ag orebodies, Australia.Can. Mineral.31:371-379.
    Sha LK and Chappell BW.1999. Apatite chemical composition,determined by electron microprobeand laser-ablation inductively coupled plasma mass spectrometry, as a probe into granitepetrogenesis. Geochimica et Cosmochimica Acta:63,3861-3881.
    Sheppard SMF and Gustafson LB.1976. Oxygen and hydrogen isotopes in the porphyry copperdeposit at EI Salvador, Chile. Econ. Geol.,71:1549-1559.
    Sillitoe RH.2003. Iron oxide-copper-gold deposits: an Andean view. Mineralium Deposita,38(7):787-812.
    Singoyi B, Danyushevsky L, Davidson GJ, Large R and Khin Zaw.2006. Determination of traceelements in magnetites from hydrothermal deposits using the LA ICP MS technique in:Abstracts of Oral and Poster Presentations from the SEG2006Conference, Keystone, USA,367-368.
    Skirrow RG.1999. Proterozoic Cu-Au-Fe mineral systems in Australia: Filtering key components inexploration models, in Stanley CJ. Et al.(Editor), Mineral deposits: processes to processing,SGA-IAGOD joint Int’l meeting. Proceedings:1361-1364.
    Skirrow R.1999. Proterozoic Cu-Au-Fe mineral systems in Australia: Filtering key components inexploration models. Mineral deposits: Processes to processing: Rotterdam, Balkema,1361-1364.
    Skublov SG and Drugova GM.2000. REE distribution in metamorphic garnets. Herald DGGGMSRAS2:60-61.
    Smith MP, Henderson P, Jeffries TER, Long J and Williams CT.2004. The rare earth elements anduranium in garnets from the Beinn and Dubhaich Aureole, Skye, Scotland, UK: constraints onprocesses in a dynamic hydrothermal system. J. Petrol.45:457-484.
    Souza LH, Viera EAP and Salobo.2000. Alpha deposit: Geology and mineralization. In: Porter T.M.(Editor), Hydrothermal Iron Oxide Copper-Gold And Related Deposits: A Global Perspective.Australian Mineral Foundation, Adelaide:213-224.
    Steiger RH and Jager E.1977. Subcommission on geochronology: convention on the use of decayconstants in geo-and cosmochronology, Earth Planet Science Letter36:359-362.
    Stern RJ.2002. Subduction zones. Reviews of Geophysics,40(4):1012. doi:10.1029/2001RG000108.
    Stoffregen RE and Alpers CN.1987. Woodhouseite and svanbergite in hydrothermal ore deposits:Products of apatite destruction during advanced argillic alteration. Canadian Mineralogist,25,201-211.
    Sun WD, Ding X, Hu YH and Li XH.2007. The golden transformation of the Cretaceous platesubduction in the west Pacific. Earth and Planetary Science Letters,262(3-4):533-542.
    Tatsumoto M and Nakamura Y.1991. DUPAL anomaly in the sea of Japan: Pb, Nd and Sr isotopicvariation at the eastern Eurasian continental margin.Geochim Cosmochim Acta,55:3697-3708.
    Taylor Jr H.1977. Water/rock interactions and the origin of H2O in granitic batholiths: ThirtiethWilliam Smith lecture. Journal of Geological Society,133(6):509.
    Taylor P and Hugh JR.1974. The Application of Oxygen and Hydrogen Isotope Studies to Problemsof Hydrothermal Alteration and Ore Deposition. Economic Geology,69:843-883.
    Taylor SR and McLennan SM.1985. The continental crusts: its composition and evolution.Blackwell, Cambridge, Mass,1-150.
    Taylor SR and McLennan SM.1985. The continental crusts: its composition and evolution.Blackwell, Cambridge, Mass,1-150.
    Tudge A and Thode H.1950. Thermodynamic properties of isotopic compounds of sulphur. Can. J.Research,28.
    Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, van Calsteren P andDeng W.1996. Postcollision, shoshonitic volcanism on the Tibetan, plateau: Implications forconvective thinning of the lithosphere and source of ocean island basalts. Journal of Petrology,37:45-71.
    Ulrich T, Gunther D and Heinrich CA.1999. Gold concentrations of magmatic brines and the metalbudget of porphyry copper deposits. Nature,399(6737):676-679.
    Urusova MA.1975. Volume properties of aqueous solutions of sodium chloride at elevatedtemperatures and pressures. Russian Jurnal of Inorganic Chemistry.20:1717-1721.
    Wang Q, Li JW, Jian P, Zhao ZH, et al.2005. Alkaline syenites in eastern Cathaysia (South China):link to Permian-Triassic transtension. Earth and Planetary Science Letters,230:339-354.
    Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P and Zi F.2007. Partial melting of thickened ordelaminated lower crust in the middle of eastern China: Implications for Cu-Au mineralization.The Journal of Geology,115:149-161.
    Wang Q, DerekA W, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF and Bai ZH.2006.Petrogenesis of Cretaceous adakitic and shoshonitic igneous rock in the Luzong area, AnhuiProvince (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos,89(3-4):424-446.
    Weaver BL, Wood DA, Tarney J, et al. Role of subducted sediment in the genesis of ocean islandbasalts: Geochemical evidence from south Atlantic ocean islands. Geology,1986,14:275-278.
    Weiss Y, Griffin WL, Elhlou S, et al.2008. Comparison between LA-ICP-MS and EPMA analysis oftrace elements in diamonds. Chemical Geology,252(3-4):158-168.
    Whalen JB, Currie KL and Chappell BW.1987. A-type granites: geochemical characteristics,discrimination and petrogenesis. Contributions to Mineralogy and Petrology,95:407-419.
    White ED.1974. Diverse Origins of Hydrothermal Ore Fluids. Economic Geology75THANNIVERSARY VOLUME,270-316.
    Williams PJ, Barton MD, Johnson DA, Fontboté LDe, Haller A., Mark G, Oliver NHS and MarschikR.2005. Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modesof origin. Economic Geology,100th Anniversary volume:371-405.
    Woodhead J, Hergt J, Shelley M, et al.2004. Zircon Hf-isotope analysis with an Excimer laser, depthprofiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology,209:121-135.
    Xie GQ, Mao JW and Li RL.2007. Re-Os molybdenite and Ar-Ar phlogopite dating ofCu-Fe-Au-Mo(W) deposits in southeastern Hubei, China. Mineralogy and Petrology,90:249-270.
    Xue HM, Dong SW and Jian P.2006. Mineral chemistry, geochemistry and U-Pb SHRIMP zircondata of the Yangxin monzonitic intrusive in the fore-land of the Dabie orogen. Science in China(Series D),49:684-695.
    Yang XM, Lentz DR and Sylvester PJ.2006. Gold contents of sulphide minerals in granitoids fromsouthwestern New Brunswick, Canada. Mineralium Deposita,41:369-386.
    Yuan HL, Gao S, Dai MN and Liu XM.2008. Simultaneous determinations of U-Pb age, Hf isotopesand trace element compositions of zircon by excimer laser ablation quadrupole and multiplecollector ICP-MS. Chem Geol,247:100-117.
    Yuan F, Zhou TF, Liu J, Fan Y, David RC and Jowitt SM.2011. Petrogenesis of volcanic andintrusive rocks of the Zhuanqiao stage, Luzong Basin, Yangtze metallogenic belt, east China:implications for ore deposition. International Geology Review,53(5),526-541.
    Zhang H, Menzies MA, Lu F and Zhou X.2000. Major and trace element studies on garnets fromPaleozoic kimberliteborne mantle xenoliths and megacrysts from the North China craton. Sci.China D43:423-430.
    Zhang HF, Sun M, Zhou XH et al.2002. Mesozoic lithosphere destruction beneath the North ChinaCraton: Evidence from majortrace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts.Contrib. Mineral. Petrol,144:241-253.
    Zhang LJ, Zhou TF, Yuan F, Fan Y and David RC.2011. Petrogenetic-metallogenetic setting andtemporal-spatial framework of the Yueshan district, Anhui Province, east-central China.International Geology Review,53(5),542-561.
    Zhao ZF, Zheng YF, Wei CS and Gong B.2004. Temporal relationship between granite cooling andhydrothermal uranium mineralization at Dalongshan in China: a combined radiometric andoxygen isotopic study. Ore Geology Reviews,25:221-236.
    Zhou TF, Wu MA, Fan Y, Duan C, Yuan F, Zhang LJ, Liu J, Qian B, Franco P and David RC.2011.Geological, geochemical characteristics and isotope systematics of the Longqiao iron deposit inthe Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze (Changjiang) River Valley,Eastern China. Ore Geology Reviews. doi:10.1016/j.oregeorev. Key: citeulike:9265728.
    Zhou TF, Fan Y, Yuan F, Lu SM, Shang SG, David Cooke, Sebastien Meffre and Guochun Zhao.2008. Geochronology of the volcanic rocks in the Lu-Zong(Lujiang-Zongyang)basin and itssignificance. Science in China (D),51(10):1470-1482.
    Zhou XM and Li WX.2000. Origin of late Mesozoic igneous rocks in Southeast China: implicationsfor lithosphere subduction and underplating of mafic magmas. Tectonophysics,326:269-287.
    Zhou XM, Sun T, Shen WZ, Shu LS and Niu YL.2006. Petrogenesis of Mesozoic granitoids andvolcanic rocks in South China: A response to tectonic evolution. Episodes,29(1):26-33.
    Zhu YF and Ogasawara Y.2002. Carbon recycled into the deep Earth: Evidence by dolomitedissociation in subduction-zone rocks. Geology,30,947-950.
    Zinlder A and Hart SR.1986. Chemical Geodynamics. Annual review of earth and planetarysciences,14:493-671.
    安徽省地层志.1988.北京:地质出版社.
    安徽省地勘局327地质队.1981.矾山镇幅、将军庙幅1:50000区域地质调查报告,1-225.
    安徽省地勘局327地质队.1985.义津桥幅、枞阳县幅、汤沟镇幅1:50000区域地质调查报告,1-198.
    安徽省地勘局327地质队.1988.盛桥幅、槐林咀幅、石涧埠幅、庐江县幅、开城桥幅.1:50000区域地质报告,1-248.
    安徽省地勘局327地质队.1994.牛埠幅、周潭幅1:50000区域地质报告,1-276.
    安徽省地矿局.1989.安徽庐江罗河铁矿.北京:地质出版社.
    安徽省地矿局.1989.庐江罗河铁矿勘探报告.内部资料.
    安徽省地矿局327地质队.1961.安徽庐江何家大岭铁矿、黄铁矿地质勘探最终报告.
    安徽省地矿局327地质队.1962.安徽庐江明矾石矿大矾山矿区地质勘探总结报告.
    安徽省地矿局327地质队.1977.大包庄铁矿床地质勘探报告.
    安徽省地矿局327地质队.1984.安徽省庐江县何家小岭硫铁矿床详细勘探地质报告.
    安徽省地矿局327地质队.1991.安徽省庐江县龙桥铁矿勘查地质报告.
    安徽省地矿局327地质队.1995.南京大学地球科学系.庐江地区铜铁矿矿查研究.
    安徽省地质调查院.2000.安徽省庐江县泥河铁矿勘探地质报告.
    安徽省地质局327地质队.1988.安徽省庐江县岳山银铅锌矿床(原)详细普查地质报告.
    安徽省地质矿产局327地质队.1962.安徽庐江明矾石矿大矾山矿区地质勘探总结报告.
    安徽省地质矿产勘查局327地质队.2005.安徽省庐江县马鞭山铁矿勘查地质报告.
    安徽省地质矿产勘查局327地质队.2005.安徽省庐江县杨山铁矿勘探报告.
    曹毅等.2008.安徽庐枞地区中生代A型花岗岩类及其岩石包体:在碰撞后岩浆演化过程中的意义.中国地质大学(北京),博士论文.
    査世新,韩忠义.2002.岳山银铅锌矿床地球化学特征.资源调查与环境,23(4):272-280.
    常印佛,刘湘培,吴言昌.1991.长江中下游铜铁成矿带.北京:地质出版社.
    常印佛,刘学圭.1983.关于层控式矽卡岩型矿床.矿床地质,(1):11-20.
    陈江峰,谢智,张巽,周泰禧.2001.安徽的地壳演化: Sr-Nd同位素证据.安徽地质,11(2):123-130.
    陈江峰,喻钢,杨刚,杨胜宏.2005.安徽沿江江南晚中生代岩浆-成矿年代学格架.安徽地质,15(3):161-170.
    陈锦石,储雪雷,绍茂茸.1986.三叠纪海的硫同位素,地质科学,(4):334-336.
    陈文,张彦,张岳桥,金贵善,王清利.2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J].岩石学报,22(004):867-872.
    陈毓川,裴荣富,王登红.2006.三论成矿系列问题.地质学报,80(10):1501-1508.
    陈毓川,盛继福,艾永德.1981.梅山铁矿:一个矿浆热液矿床.中国地质科学院矿床地质研究所文集,(2):26.
    陈岳龙,杨忠芳,赵志丹,等.2005.同位素地质年代学与地球化学.北京:地质出版社,210-270.
    储雪蕾,陈锦石,王守信.1984.安徽罗河铁矿的硫同位素温度及意义.地球化学,(004):350-356.
    邓晋福,戴圣潜,赵海玲,杜建国.2002.铜陵Cu-Au(Ag)成矿区岩浆-流体成矿系统和亚系统的识别.矿床地质,21(4):317-323.
    邓晋福,莫宣学,赵海玲,罗照华,赵国春,戴圣潜.1999.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境.矿床地质,18(4):309-315.
    邓晋福,吴宗絮.2001.下扬子克拉通岩石圈减薄事件与长江中下游Cu, Fe成矿带.安徽地质,11(2):86-92.
    邓晋福,叶德隆,赵海玲,汤德平.1992.下扬子地区火山作用深部过程与盆地形成.武汉:中国地质大学出版社,1-184.
    第五春荣,孙勇,袁洪林,王洪亮,钟兴平,柳小明.2008.河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义.科学通报,53(18):1923-1934.
    董树文,邱瑞龙.1993.安庆-月山地区构造作用与岩浆活动.北京:地质出版社.
    董树文,项怀顺,高锐,吕庆田,李建设,战双庆,卢占武,马立成.2010.长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用.岩石学报,26(9):2529-2542.
    杜杨松,李顺庭,曹毅,秦新龙,楼亚儿.2007.安徽铜陵铜官山矿区中生代侵入岩的形成过程-岩浆底侵、同化混染和分离结晶.现代地质,21(1):71-77.
    杜杨松,秦新龙,田世洪.2004.安徽铜陵铜官山矿区中生代岩浆-热液过程:来自岩石包体及其寄主岩的证据.岩石学报,20(2):339-350.
    段超.2009.安徽庐枞盆地龙桥铁矿床地质地球化学特征和矿床成因研究.硕士学位论文,合肥:合肥工业大学.
    范裕,周涛发,袁峰,陆三明, David Cooke.2008.安徽庐江-枞阳地区A型花岗岩的LA-ICPMS定年及其地质意义.岩石学报,24(8):1715-1725.
    范裕,周涛发,袁峰,钱存超,陆三明, David Cooke.2008.安徽庐江-枞阳地区A型花岗岩的LA-ICP MS定年及其地质意义.岩石学报,24(8):1715-1724.
    范裕,周涛发,袁峰,唐敏惠,张乐骏,马良,谢杰.2010.庐枞盆地高硫化浅成低温热液成矿系统:来自矾山明矾石矿床地质特征和硫同位素地球化学证据.岩石学报.26(12):3657-3666.
    范裕,周涛发,袁峰,张乐骏,钱兵,马良, RC David.2010.宁芜盆地闪长玢岩的形成时代及对成矿的指示意义.岩石学报,26(9):2715-2728.
    范裕,周涛发,袁峰,张乐骏,钱兵,马良,谢杰,杨西飞.2011.宁芜盆地玢岩型铁矿床的成矿时代:金云母40Ar-39Ar同位素年代学研究.85(5):810-820.
    方维萱,柳玉龙,张守林,郭茂华.2009.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式.西北大学学报(自然科学版),39(3):404-413.
    葛宁洁,李平,黄宪安,张少斌,韩忠义.1989.安徽庐江岳山银铅锌矿床的成矿物质来源及物理化学条件探讨[J].中国科学技术大学学报,19(3):365-374.
    郭承基,1958,稀有元素矿物化学,科学出版社,73-74.
    郝秀云,刘文达,王静等.1999.福建紫金山金铜矿床地质特征及成因探讨.黄金地质,20(8):8-11.
    侯可军,2007, LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10):2595-2604.
    侯可军,袁顺达.2010.宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义.岩石学报,26(3):888-902.
    侯增谦,杨竹森,李荫清,曾普胜,蒙义峰,徐文艺,田世洪.2004.碰撞造山过程中流体向前陆盆地大规模迁移汇聚:来自长江中下游三叠纪膏盐建造和区域蚀变的证据.矿床地质,23(3):310-327.
    胡受奚,孙明志.1972.长江中下游成矿带中接触交代型铁、铜矿床中碱质交代作用及有关火成岩的成矿专属性[C].宁芜火山岩地区铁矿会议文献(马鞍山会议).
    胡文瑄.1991.宁芜和庐枞地区陆相火山喷气沉积喷气沉积-热液叠加改造型铁、硫矿床.
    湖北省地层志.1988.北京:地质出版社.
    华仁民,毛景文.1999.试论中国东部中生代成矿大爆发.矿床地质,18(4):300-307.
    黄清涛,尹恭沛.1989.安徽庐江罗河铁矿.北京:地质出版社:13-18.
    江西省地层志.1988.北京:地质出版社.
    蒋少涌,孙岩,孙明志,边立曾,熊永根,杨水源,罗兰,曹钟清,吴亚民.2010.江西九瑞矿集区叠合断裂系统和叠加成矿作用.岩石学报,26(9):2615-2625.
    靳克,许文良,王海青,等.2003.蚌埠淮光“混合花岗岩闪长岩”的形成时代及源区:锆石SHRIMP U-Pb地质年代学证据.地球学报,24(4):331-335.
    靳新娣和朱和平.2000.岩石样品中43种元素的高分辨等离子质谱测定.分析化学,28:563-567.
    李秉伦,谢奕汉.1984.宁芜地区宁芜型铁矿的成因,分类和成矿模式.中国科学(B缉),1:80-86.
    李龙,郑永飞,周建波.2001.中国大陆地壳铅同位素演化的动力学模型.岩石学报,17(1):61-68.
    李全忠,谢智,陈江峰,徐夕生,高天山.2008.大别造山带早白垩世基性岩的同位素特征及下地壳物质对岩浆源区的贡献.岩石学报,24(8):1771-1781.
    李曙光.2001.长江中下游中生代岩浆岩及铜铁成矿带的深部构造背景.安徽地质,11(2):118-123.
    李友枝,周平,唐金荣,施俊法.2007.铁氧化物-铜-金型矿床的地质特征、成矿模式和找矿标志[J].中国地质,34(增刊):6.
    李泽琴,胡瑞忠.2002.中国首例铁氧化物-铜-金-铀-稀土型矿床的厘定及其成矿演化.矿物岩石地球化学通报,21(4):258-260.
    林新多.1998.岩浆-热液过渡型矿床的若干特征.现代地质,12(4):485-492.
    刘昌涛.1994.安徽庐枞盆地硫铁矿床地质特征及控矿因素.化工地质,16(003):163-171.
    刘洪,邱检生,罗清华,徐夕生,凌文黎,王德滋.2002.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学,31(2):129-140.
    刘珺,周涛发,袁峰,范裕,吴明安,陆三明.2007.安徽庐枞盆地中巴家滩岩体的岩石地球化学特征及成因.岩石学报,23(10):561-572.
    楼亚儿,杜杨松.2006.安徽繁昌中生代侵入岩的特征和锆石SHEIMP测年.地球科学,35(4):359-366.
    卢冰,蔺雨时.1990.宁芜型铁矿床成因和成矿模式的探讨.矿床地质,9(1):13-25.
    卢焕章,李秉伦,沈昆等.1990.包裹体地球化学.北京:地质出版社.
    卢焕章.1997.成矿流体.北京:北京科学技术出版社:1-151
    卢焕章.流体地球化学.见:高等地球化学,北京:科学出版社:243-283.
    吕庆田,侯增谦,杨竹森,史大年.2004.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束.中国科学(D辑),34(9):783-794.
    栾世伟.1987.金矿地质与找矿方向.成都:四川科学出版社.78-84.
    马振东单光祥.1997.长江中下游地区多位一体大型、超大型铜矿形成机制的地质、地球化学研究.矿床地质,16(3):225-242.
    毛景文, Holly S,杜安道,周涛发,梅燕雄,李永峰,藏文栓,李进文.2004.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示.地质学报,78(1):121-131.
    毛景文,谢桂青,张作衡等.2005.中国北方大规模成矿作用的期次及大陆动力学背景,岩石学报,21(1):169-188.
    毛景文,余金杰,袁顺达,程彦博,谢桂青,侯可军,向君峰,杨宗喜.2008.铁氧化物-铜-金(IOCG)型矿床:基本特征,研究现状与找矿勘查.矿床地质,27(3):267-278.
    孟良义.1996.长江中、下游铜矿床的成矿模式.中国科学(D辑),26(1):21-25.
    倪若水,汪祥云.1994.安徽庐江龙桥铁矿层新资料及成矿作用多阶段演化模式[J].地质论评,40(006):565-575.
    宁芜研究项目编写小组.1978.宁芜玢岩铁矿.地质出版社.
    牛漫兰,朱光,谢成龙,曹洋,谢文雅,柳小明.2008.郯庐断裂带张八岭隆起南段花岗岩LA-ICP MS锆石U-Pb年龄及其构造意义.岩石学报,24(8):1839-1848.
    戚建中,刘红樱,姜耀辉.2000.中国东部燕山期俯冲走滑体制及其对成矿定位的控制.火山地质与矿产,21(4):244-266.
    钱迈平,厉建华,孙万铨.2002.三叠纪扬子板块的漂亮导致下扬子区石膏、硬石膏矿床的形成.江苏地质,26(3):129-134.
    任启江,1990.安徽庐枞中生代火山岩地区铜、金、硫矿床成矿预测[R].南京:南京大学地球科学系.
    任启江,刘孝善,徐兆文.1991.安徽庐枞中生代火山构造洼地及其成矿作用.地质出版社.
    宋学信,陈毓川,盛继福,艾永德.1981.论火山-浅成矿浆铁矿床.地质学报,55(1):41-54.
    孙卫东,凌明星,杨晓勇,范蔚茗,丁兴,梁华英.2010.洋脊俯冲与斑岩铜金矿成矿.中国科学(D辑),40(2):127-137.
    孙冶东,杨荣勇.1994.安徽庐枞中生代火山岩系的特征及其形成的构造背景.岩石学报,10(001):94-103.
    覃永军,曾键年,曾勇,马振东,陈津华,金希.2010.安徽南部庐枞盆地罗河-泥河铁矿田辉石粗安玢岩体锆石LA-ICP-MS U-Pb定年及其地质意义.地质通报,29(6):851-862.
    覃永军.2010.安徽庐枞盆地燕山期找矿地球动力学背景及成矿模式.中国地质大学(武汉),硕士学位论文.
    汤加富,李怀坤,娄清.2003.郯庐断裂南段研究进展与性质讨论.地质通报,22(6):426-436.
    汤家富.1994.华南变质基底的组成边界与构造演化.安徽地质,13(2):69-70.
    唐永成,吴言昌,储国正等.1998.安徽沿江地区铜金多金属矿床.北京:地质出版社.
    陶奎元,毛建仁,杨祝良,赵宇,邢光福,薛怀民.1998.中国东南部中生代岩石构造组合和复合动力学过程的记录.地学前缘,5(4):183-192.
    王德滋,任启江,邱检生,等.1996.中国东部橄榄安粗岩的火山特征及其成矿作用.地质学报,70(1):23-34.
    王建中,李建威,赵新福,钱壮志,马昌前.2008.铜陵地区朝山矽卡岩型金矿床及含矿岩体的成因:40Ar/39Ar年龄、元素地球化学及多元同位素证据.岩石学报,24(8):1875-1888.
    王强,许继峰,赵振华,熊小林,包志伟.2003.安徽铜陵地区侵入岩成因及其对深部过程的制约.中国科学(D辑),33(4):324-334.
    王强,赵振华,熊小林.2001.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学,30(4):353-360.
    王强,赵振华,许继峰,白正华,王建新,刘成新.2004.鄂东南铜山口,殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因.岩石学报,20(2):351-360.
    王强,赵振华,简平,熊小林,包志伟,戴橦谟,许继峰,马金龙.2005.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约.岩石学报,21(3):795-808.
    王绍伟.2004.重视近20年认识的一类重要热液矿床-铁氧化物-铜-金(-铀)-稀土矿床.国土资源情报,(2):45-52.
    王松山.1983.我国K-Ar法标准样40Ar-40K和40Ar-39Ar年龄测定及放射成因40Ar的析出特征.地质科学,4:315-323.
    王文斌,李文达,谢光华,周华平.1995.长江中下游铜铁多金属矿床铅同位素特征.火山地质与矿产,16(2):67-77.
    王彦斌,刘敦一,蒙义峰,曾普胜,杨竹森,田世洪.2004.安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义.中国地质,25(2):87-91.
    王元龙,张旗,王焰.宁芜火山岩的地球化学特征及意义.岩石学报,2001.17(04):565-575.
    魏菊英,王关玉.1988.同位素地球化学.北京:地质出版社,1118-1241.
    魏燕平,张冠华.1999.安徽庐江龙桥铁矿火山成矿特征.安徽地质,9(2):108-I114.
    吴才来,陈松永,史仁灯,郝美英.2003.铜陵中生代中酸性侵入岩特征及成因.地球学报,20(1):111-121.
    吴福元,李献华,郑永飞,高山.2007. Lu-Hf同位素体系及其岩石学应用.岩石学报23(2):185-220.
    吴礼彬,陈芳,柳丙全,杜建国,许卫,杨道堃.2011.安徽省庐江县罗河式铁矿床地质特征与成矿模式.合肥工业大学学报(自然科学版),34(6):899-904.
    吴利仁,齐进英,王听渡,张秀棋,徐永生.1982.中国东部中生代火山岩.地质学报,56(3):223-234.
    吴利仁.1984.中国科学院,地质硏究所.华东及邻区中,新生代火山岩.科学出版社.
    吴明安,张千明,汪祥云,高昌生,尚世贵,王明华.安徽庐江龙桥铁矿.1996.北京:地质出版社.
    肖波,秦克章,李光明,李金祥,夏代祥,陈雷,赵俊兴.2009.西藏驱龙巨型斑岩Cu-Mo矿床的富S、高氧化性含矿岩浆-来自岩浆成因硬石膏的证据.地质学报,83(12):1860-1868.
    谢成龙,朱光,牛漫兰,柳小明.2008.郯庐断裂带巢湖-庐江段晚中生代火山岩地球化学特征与岩石圈减薄过程.岩石学报,24(8):1823-1839.
    谢成龙,朱光,牛漫兰,王勇生.2007.滁州中生代火山岩LA-ICP MS锆石U-Pb年龄及其构造地质学意义.地质论评,53(5):642-655.
    谢桂青,毛景文,李瑞玲,蒋国豪,赵财胜,赵海杰,侯可军,熊继传.2008.鄂东南地区大型矽卡岩型铁矿床金云母40Ar/39Ar同位素年龄及其构造背景初探.岩石学报,24(8):1917-1927.
    谢桂青,毛景文,李瑞玲,周少东,叶会寿,闫全人,张祖送.2006.长江中下游鄂东南地区大寺组火山岩SHRIMP定年及其意义.科学通报,51(19):2283-2291.
    谢齐文.2004.发现安徽庐江龙桥铁矿层具有泻湖相沉积特征的启示.安徽地质,14(004):318-320.
    谢智,李全忠,陈江峰,高天山.2007.庐枞早白垩世火山岩的地球化学特征及其源区意义.高校地质学报,13(2):235-249.
    邢凤鸣,徐祥.安徽扬子岩浆岩带与成矿.1999.合肥:安徽人民出版社,1-170.
    邢凤鸣.1996.安徽沿长江地区中生代岩浆岩的碱质来源.安徽地质,6(1):15-18.
    徐夕生,范钦成, O'Reilly SY,蒋少涌, Griffin W L,王汝成,邱检生.2004.安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨.科学通报,49(18):1883-1891.
    徐晓春,陆三明,谢巧勤,柏林,储国正.2008.安徽铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义.地质学报,82(4):500-510.
    徐兆文,徐文艺,邱检生,傅斌,牛翠韦.2000.与沙溪斑岩铜(金)矿床有关的石英闪长斑岩地质地球化学特征及形成时代研究.地质与勘探,36(4):36-40.
    许德如,王力,肖勇.2008.“石禄式”铁氧化物-铜(金)-钴矿床成矿模式初探.矿床地质,2008,27(6):681-694.
    薛怀民,董树文,刘晓春.2002.大别山东部白垩纪埃达克质火山岩及其锆石U-Pb年代学.地球化学,31(5):455-463.
    闫峻,陈江峰,谢智,杨刚,喻钢,钱卉.2005.长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约.地球化学,34(5):455-469.
    闫峻,陈江峰,喻钢,钱卉,周泰禧.2003.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据,高校地质学报,9(2):195-206.
    阎桂林,魏燕平.1994.安徽庐江龙桥铁矿含矿地层的古地磁学研究.地球科学:中国地质大学学报,19(005):695-700.
    杨德彬,许文良,裴福萍,等.2005.蚌埠断隆区花岗岩形成时代及岩浆源区性质:锆石LA-ICP-MS U-Pb定年与示踪.地球化学,34(5):443-454.
    杨荣勇,任启江,徐兆文,等.1996.安徽庐枞地区中生代火山岩区巴家滩火山穹隆的研究.地质论评,42(2):136-143.
    杨志明,侯增谦.2009.西藏驱龙超大型斑岩铜矿的成因:流体包裹体及H、O同位素证据.地质学报,83(12):1838-1850.
    姚凤良,孙丰月.2006.矿床学教程.地质出版社.
    于学元,白正华.1981.庐枞地区安粗岩系.地球化学,(1):57-65.
    余金杰,毛景文.2002.宁芜玢岩铁矿磷灰石的稀土元素特征.矿床地质,21(1):65-73.
    余金杰.2003.宁羌地区凹山和太山铁矿床中磷灰石Sr同位素特征及意义.地质论评,49(3):272-276.
    袁峰,周涛发,范裕,黄贻梅,张乐骏.2010.安徽繁昌盆地中生代火山岩锆石LA-ICPMS U-Pb年龄及其意义.岩石学报.26(9):2805-2817.
    袁峰,周涛发,范裕,张乐骏,马良,钱兵.2011.宁芜盆地花岗岩类的锆石U-Pb年龄、同位素特征及其意义.地质学报,85(5):821-833.
    袁峰,周涛发,范裕,张乐骏,唐敏慧,段超,陆三明,钱存超.2008.庐枞盆地中生代火山岩的起源、演化及形成背景.岩石学报,24(8):1691-1702.
    袁见齐.1985.矿床学[M].地质出版社.
    袁顺达,侯可军,刘敏.2010.安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义.岩石学报,26(3):797-808.
    翟裕生,姚书振,林新多等.1992.长江中下游地区铁铜矿床.北京:地质出版社.
    张达,吴淦国,狄永军,臧文拴,邵拥军,余心起,张祥信,汪群峰.2006.铜陵凤凰山岩体SHRIMP锆石U-Pb年龄与构造变形及其对岩体侵位动力学背景的制约.地球科学,31(6):823-830.
    张德会.1997.关于成矿流体地球化学研究的几个问题.地质地球化学,3:49-57.
    张江.2001.紫金山铜金矿床地质地球化学特征.地质与勘探,37(2):17-22.
    张乐骏,周涛发,范裕,袁峰,钱兵,马良.2011.宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究.地质学报,85(5):834-848.
    张乐骏,周涛发,范裕,袁峰.2008.安徽月山岩体的锆石SHRIMP U-Pb定年及其意义.岩石学报,24(8):1725-1732.
    张理刚,陈振胜,刘敬秀.1985.两阶段水-岩同位素交换理论及其勘查应应.北京:地质出版社,12-31.
    张理刚,王可法,李云彤等.1995.东亚岩石圈块体地质.北京:科学出版社.
    张旗,简平,刘敦一,王元龙,钱青,王焰,薛怀民.2003.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学(D辑),33(4):309-314.
    张旗,简平,刘敦一.2003.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学D辑,33(4):309-314.
    张旗,王焰,钱青,杨进辉,王元龙,赵太平,郭光军.2001.中国东部中生代埃达克岩的特征及其构造-成矿意义.岩石学报,17(2):236-244.
    张荣华,刘隆隆,陆成庆.1979.长江中下游某些火山岩铁矿微量元素的地球化学.中国地质科学院文集(1).
    张荣华.1979.长江中下游玢岩铁矿围岩蚀变的地球化学分带.地质学报,53(2):137-152.
    张荣华.1981.长江中下游地区玢岩铁矿和块状黄铁矿床的物理化学条件.地质论评,27(1):24-33.
    张荣华.1979.长江中下游玢岩铁矿围岩蚀变的地球化学分带.地质学报,53(2):137-152.
    张荣华,胡书敏,王军和徐磊明.2002.长江中下游典型火山岩区水-岩相互作用.中国大地出版社,1-168.
    张少斌.1992.从成矿地球化学角度论龙桥铁矿床成因.安徽地质,2(4):42-45.
    张寿稳.2000.安徽庐枞地区高岭土资源及其开发利用.地质与勘探,36(5).
    张兴春.2003.国外铁氧化物铜-金矿床的特征及其研究现状.地球科学进展,18(4):551-560.
    章邦桐,张富生,倪琦生,陈培荣,翟建平,沈渭洲.1988.安庐石英正长岩带的地质和地球化学特征及成因探讨.岩石学报,4(3):1-12.
    郑永飞,陈福坤,龚冰,等.2003.大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据.科学通报,48(2):110-119.
    郑永飞,陈江峰.2000.稳定同位素地球化学.科学出版社.
    周建波,郑永飞,赵子福.2003.山东五莲中生代岩浆岩的锆石U-Pb年龄.高校地质学报,9(2):185-194.
    周涛发,范裕,袁峰,陆三明,尚世贵, Cooke D, Meffre S,赵国春.2008.安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义.中国科学: D辑,38(011):1342-1353.
    周涛发,范裕,袁峰,宋传中,张乐骏,钱存超,陆三明, Cooke DR.2010.庐枞盆地侵入岩的时空格架和对成矿制约.岩石学报,26(9):2694-2714.
    周涛发,范裕,袁峰,张乐骏,马良,钱兵,谢杰.2011.长江中下游成矿带火山岩盆地的成岩成矿作用研究.地质学报,85(5):712-730.
    周涛发,范裕,袁峰.2008.长江中下游成矿带成岩成矿作用研究进展.岩石学报.24(8):1665-1678.
    周涛发,宋明义,范裕,袁峰,刘珺,吴明安.2007.安徽庐枞盆地中巴家滩岩体的年代学研究及其意义.岩石学报,23(10):583-591.
    周涛发,袁峰,岳书仓,刘晓东.2000.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究.中国科学(D辑),30(增刊):122-128.
    周涛发,岳书仓,袁峰.2005.安徽月山矿田成岩成矿作用.北京:地质出版社,1-148.
    周涛发,张乐骏,袁峰,范裕, David R. Cooke.2010.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘.17(2):306-319.
    周涛发,张乐骏,袁峰,等.2010.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘,17(2):306-319.
    周涛发.1993.安徽月山地区闪长岩类及铜矿床的地球化学研究.合肥工业大学博士学位论文.
    周作侠.1986.湖北丰山洞岩体成因探讨.岩石学报,2(1):59-70.
    朱志敏,曾令熙,周家云,罗丽萍,陈家彪,沈冰,饶灿,王汝成,胡欢,胡瑛.2009.四川拉拉铁氧化物铜金矿床(IOCG)形成的矿相学证据.高校地质学报,15(4):485-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700