用户名: 密码: 验证码:
煤储层各向异性波场模拟与特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在煤层气勘探中,煤层孔隙裂隙和层理的存在将导致煤层的各向异性。本文利用交错网格高阶有限差分地震数值模拟和AVO正演模拟相结合的方法,对煤储层各向异性的地震波场特征和波传播规律进行了详细的研究。
     首先,从山西寺河矿区井下实际采取煤样,测试了煤样不同方向的纵横波速度,计算了煤的弹性常数和Thomsen各向异性系数。讨论了纵横波速度与不同围压的关系分析,分析了孔隙度和Thomsen各向异性系数的关系,并通过对煤样进行显微分析和扫描电镜岩石微形貌的研究定性地对煤层的各向异性形成机理进行了分析。
     其次,采用高阶交错网格有限差分方法模拟分析了煤储层不同介质模型的波场响应。通过分析波场快照以及正演的共炮点记录,研究煤层在不同围压下以及不同厚度和不同裂隙流体的煤层对各向异性弹性波波场特征的影响。研究表明,含有裂隙的煤层,在地震记录上有明显的影响,主要表现在反射波的时差、能量特征上,而且Vx和Vz分量具有不同的特征。但这种差异在薄煤层地震波场记录上反映并不明显。
     然后,针对基于Zoeppritz方程的AVO分析在煤层中存在的问题,提出对于薄煤层要利用层状介质公式进行AVO分析的方法。然后从Berkhovski建立的适用于层状介质的公式出发推导了薄煤层中弹性波传播的简化公式,并利用该薄煤层公式研究了薄煤层不同模型的AVO曲线特征,分析了入射子波频率、煤层厚度以及介质的吸收对薄煤层AVO曲线的影响。由Carcione的粘弹性动力学理论推导了薄煤层的粘弹性层状介质的公式,并利用该公式分析了粘弹性各向异性薄煤层模型的AVO曲线特征,并且分析了在煤层裂隙不同流体情况对各向异性薄煤层AVO曲线的影响。
     最后,根据煤样测试的数据和收集到相关的各种地质资料,建立了煤层各向异性层状模型,采用方位AVO正演方法模拟分析该矿区顶板和底板不同围压的方位各向异性,并通过煤层最大振幅方位各向异性正演模拟证明该矿区的煤层存在方位各向异性,为用P波方位各向异性探测提供理论依据
     该论文有图81幅,表16个,参考文献159篇。
In coalbed methane exploration, the presence of porosity, fractures and beddingin a coal seam will lead to the anisotropy of the coal seam. In this paper, seismic wavefield characteristics and wave propagation in anisotropic media of coal reservoirs hasbeen detailed studied by using the method of higher-order staggered gridfinite-difference seismic numerical simulation and AVO forward modeling.
     First of all, we take the coal samples underground from Sihe mine of ShanxiProvince, and test the longitudinal wave velocity and shear wave velocity of coalsamples in different directions, then calculate the elastic constants of the coal samplesand the Thomsen anisotropic coefficients, then analyze the relationships betweenwave velocities and different confining pressures of the test data, analyze therelationships between porosity and the Thomsen anisotropic coefficients. Throughstudying the coal samples for microscopic analysis and scanning electron microscopy,analyze qualitatively the formation mechanism of coal seam anisotropy.
     Secondly, the wave field response of the different media model is analyzed byusing the high-order staggered grid finite-difference numerical simulation. Weresearch the anisotropic characteristics of elastic wave field on different thickness,different confining pressure and fracture fluid of a coal seam by analyzing the shotrecord and snapshot of the wave field.Studies have shown that the coal seams thatcontain cracks, have a significant impact on the seismic records. These effects displaymainly the energy of the reflected wave, the time difference, and the characteristicsdiffer materially between the Vx component and Vz component. However, thisdifference in the thin seam was not apparent records of seismic wave field.
     Then, AVO analysis of a coal seam based on Zoeppritz equation has a lot ofproblems. AVO analysis for thin seam must use of the formulas of the superimposedmedia. From the applicable formula of layered media established by Berkhovski,derivative a simplified formula for elastic wave propagation in thin coal seams, andthen study the AVO curves characteristic of the different thin seam models by the thinseam formula, analyze AVO curves of the thin seam on the incident sub-wavefrequency, seam thickness and media absorption. The underground media actually isviscoelastic anisotropic media. A thin seam of the viscoelastic layered media formulais derived by the Viscoelastic dynamics Carcione theory, and using the viscoelasticanisotropic thin formula analyze the AVO curves characteristic of the coal seammodel, and analyzes the fracture fluid influences on AVO curves of the anisotropic thin coal seam.
     Finally, based upon the test data of coal samples and collecting a variety ofgeological data, we establish a coal seam anisotropic layered model. Using themethod of azimuthal AVO forward modeling simulates azimuthal anisotropy in theroof and floor of mine under different confining pressure. The forward modeling ofthe maximum amplitude of azimuthal anisotropy of a coal seam proved that the coalseams are azimuthal anisotropic media, providing a theoretical basis for the P-waveazimuthal anisotropy detection.
引文
[1] Rudzki M P. Parametric representation of the elastic wave in anisotropic media[M]. Presentedto the Academy of Sciences. Cracow:1911.
    [2] Love A E H. A treatise on the mathematical theory of elasticity [M].4th ed.Cambridge: TheUniversity Press,1927.
    [3] Love A E H. A treatise on the mathematical Theory of elasticity [M]. Dover, New York,1944.
    [4] Bruggeman D.A.G. Berechnung verschiedener physikalischer konstanten vonheterogenensubstanzen[J]. Ann. Phys,(Leipzig),1935,(24):636.
    [5] Stoneley R. The seismological implications of aeolotropy in continental structure[J]. MonthlyNotices Roy. Astron. Sot., Geophys.1949,(5):222-232.
    [6] McCollum B. and Snell F A., A symmetryof sound velocity in stratified formations:Earlygeophysical papers, Society of Exploration Geophysicis,1947:p216-227.
    [7] Weatherby B B, Born W T, Harding R L. Granite and limestone velocity determinations inArbuckle Mountains,Oklahoma[J]. Bull. A.A.P.G.,1934,(18):106-118.
    [8] Ricker, Norman. The form and laws of propagation of seismic wavelets[J]. Geophysics,1953,(18):10-40.
    [9] White J E, Sengbush R L.Velocity measurements in near-surface formations[J]. Geophysics,1953,(17):54-70.
    [10] Postma G W. Wave propagation in a stratified medium[J]. Geophysics,1955,(20):780-806.
    [11] Krey H K. A theorem concerning anisotropy of stratified media and its significance forreflection seismics[J]. Geophysical Prospecting,1956,(4):294-302.
    [12] Anderson D D. Elastic wave propagation in layered anisotropic media[J]. Journal ofGeophysical Research,1961,66(9):2953-2963.
    [13] Hess H H. Seismic anisotropy of the uppermost mantle under ocean[J]. Nature,1964,(203):629-631.
    [14] Backus G E. Possible Forms of Seismic Anisotropy of the Uppermost Mantle under Oceans[J]. J. Geophys Res,1965,(70):3429-3439.
    [15] Crampin S. Shear-coupled higher mode seismic surface waves[J]. Bulletin of theSeismological Society of America,1967,(57):1-8.
    [16] Crampin S. The dispersion of surface waves in multilayered anisotropic media[J]. Geophys. J.R. Astron. Soc.1970,(21):387-402.
    [17] Auld B. Acoustic Fields and Waves in Solids[M]. John Wiley and Sons, New York, London,Sidney, Toronto.1973,(11):277.
    [18] Forsyth D W. A new method for the analysis of multi-mode surface wave dispersion:Application to Love-wave propagation in the East Pacific[J]. Bull. Seism. Soc. Am,1975.(65):323-342.
    [19] Hudson J. Overall properties of cracked solid[J]. ath.Proc.Camb.Phil.Soc.1980,(88):371-384.
    [20] Crampin S. Evaluation of anisotropy by shear-waves plitting[J]. Geophysics,1985,(50):142~152.
    [21] Crampin S. Evidence for aligned cracks in the Earth’s crust[J]. First Break,1985,(3):12-15.
    [22] Crampin S. Anisotropy in exploration seismic[J]. First Break,1984b,(23):19-21.
    [23] Crampin S, et al. Observation of dilatnacy-induced polarization anomalies and earthquakeprediction[J]. Nature,1980,(286):874-877.
    [24] Crampin S. Effective anisotropic elastic constants for wave propagation through crackedsolids[J]. In procFirst Int.Workshop on Seismic Anisotropy, Suzdahl,1982,135-145.
    [25] Crampin S. The geological and industial implications of extensive-dilatancy anisotropy[J].Nature,1987,(328):491-496.
    [26] Brodov L U, et al. Estimating physical parameter of cracked-porous reservoirs by invertingshear-wave splitting[J]. Geophys J R.Astr.Soc,1992,(107):429-432.
    [27] Mueller M C.Prediction of lateral variability in fracture intensity using multi-componentshear-wave surface seismic as a processor to horizontal drilling I the Austin Chalk[J]. Geophys JR, AStr.Soc,1991,(107):409-416.
    [28] Ebrom D.(万有林译).各向异性和油藏开发[M].石油物探译丛,1995,(2):11-16.
    [29]何樵登,张中杰.3D横向各向同性介质中的体波[J].石油地球物理勘探,1990,(2)21-28.
    [30]何樵登,熊维纲主编.应用地球物理教程-地震勘探[M].北京:地质出版社,1991.
    [31]何樵登,张中杰.横向各向同性介质中地震波及其数值模拟[M].长春:吉林大学出版社,1996.
    [32]陈颙,地壳岩石的力学性能—理论基础与实验方法[M].北京:地震出版社,1988.
    [33]冯德益,地震波理论与应用[M].北京:地震出版社,1988.
    [34]郑治真,刘元壮.提取慢S波初至的自适应方法及S波分裂在地震趋势估计中的应用研究[J].中国地震(增),1994,(10):1-8.
    [35]席道瑛,陈林.岩石各向异性参数研究[J].物探化探计算技术,1994,16(1):1-21.
    [36]张碧星,王克协.各向异性双相介质中多极源声波测井理论研究[J].地球物理学报,2000,(5):100-106.
    [37]姚陈,王培德,陈运泰.卢龙地区S波偏振与上地壳裂隙各向异性[J].地球物理学报,1992,35(2):305-315.
    [38]董敏煜,汪和杰. EDA介质中弹性波VSP模拟和横波双折射分析[C].1992年中国地球物理学会第八届学术年会论文集,1992.
    [39]徐中信,张中杰.各向异性介质中利用弹性参数进行岩性勘探的设想[J].石油物探,1988,27(2):67-80.
    [40] Nur A M, Wang Zhijing. Seismic and Acoustic Velocites in Reservoir Rocks[M]. By SEG,Press in USA.1992, Vol.1and Vol.2.
    [41] Cardner G H F. Formation velocity and density-the diagnostic basics for stratigraphic traps[J].Geophysics,1984,49(6):770-780.
    [42] Ostrander W J. Plane-wave reflection conefficients for gas sand at nonnormal angles ofincidence[J]. Geophysics,1984,49(10):1637-1648.
    [43] Tien-when Lo, Karl B Coyner, M Nafi Toksoz.Experimental determination of elasticanisotropy of Berea sandstone, Chicopee shale,and Chelmsford granite[J]. Geophysics,1986,l51(1):164-171.
    [44] Lev Vernik, Amos Nur.Ultasonic velocity and anisotropy of hydrocarbon source sourcerocks[J]. Geophysics,1992,57(5):727-735.
    [45] Zamora M. Poirier J P. Experimental study of acoustic anisotropy and birefringence in dryand saturated Fontainebleau sandston[J]. Geophysics,1990,55(1):1455-1465
    [46] Mukerji T, Mavko G. Pore fluid effects on seismic velocity in anisotropic rocks[J].Geophysics,1994,59(2):233-243.
    [47] Sayers C M. Stress-induced ultrasonic wave velocity anisotropy in fracturedrock[J].Ultrasonic,1988,l26(11):311-317.
    [48]李庆忠.岩石的纵、横波速度规律[J].石油地球物理勘探,1992,27(1):1-12.
    [49]钟森,白尤军,王达昌等.岩心物性测试及参数分析和应用[J].石油地球物理勘探,1994, V29(增刊2):56-68.
    [50]李亚林,谢贤鹏,贺振华等.岩石孔隙流体对纵横波速度影响的实验研究及意义[J].矿物岩石,1998,18(增刊):188-191.
    [51]邓继新,史謌,刘瑞珣等.泥岩、页岩声速各向异性及其影响因素分析[J].地球物理学报,2004,47(5):862-868.
    [52]刘斌,席道瑛,葛宁洁等.不同围压下岩石中泊松比的各向异性.地球物理学报,2002,45(6):880-890.
    [53]席道瑛,刘斌,田象燕.饱和岩石的各向异性及非线性黏弹性响应[J].地球物理学报,2002,45(1):109-118.
    [54] Gang Yn, Keeva Vozoff, David W. Dirney. The influence of confining pressure and watersaturation on dynamic elastic properties of some Permian coals[J]. Geophysics,1993,58(1):30-38.
    [55]董守华.气煤弹性各向异性系数测试[J].地球物理学报,2008,51(3):947-952.
    [56]赵群,郝守玲.煤样的超声速度和衰减各向异性测试[J].石油地球物理勘探,2005,40(6):708-710.
    [57] Cerveny V, Molotkov I. Ray method in seismology.Univ.Karlova,1977.
    [58] Pao Y H, Varatharajulu V.Huygens’ Principle radiation conditions and integral formulas forthe scattering of elastic waves[J]. J.Acoust.Soc.Am,1976,(59):1361-1371.
    [59] Bouchon M.Diffraction of elastic waves by cracks or cavities using the discrete wave numbermethod[J]. J.AcoustSoc.Am,1987,(81):1671-1676.
    [60] Bakamjian B.Boundary integrals:An efficient method for modeling seismic wave propagationin3-D.62th Ann.Internat.Mtg.Sco.Expl.Geophys.ExpandedAbstracts,1992,p1232-1235.
    [61]符力耘,牟永光.弹性波边界元法正演模拟[J].地球物理学报.1994,37(4):521-529.
    [62] Lysmer J,Drake L.A finite element method for seismology,In Alder B,Fernbach S,Bolt BA,Eds.,Methods in computational physics,Seismilogy,Academic Press,1972,p181-216.
    [63] Marfurt K J. Accuracy of finite-difference and finite-element modeling of the scalar andelastic wave equations[J].Geophysics,1984,49(5):533-549.
    [64] Seron F J, Sanz F J, Kindelan M. Finite-element method for elastic wave propagation[M].Comm. Appl. Numerical Methods,1990.
    [65] Seron F J, Sabadell F J, Sabadell F J. A numerical laboratory for simulation and visualizationof seismic wavefields[J].Geophysical Prospocting,1996,(44):603-642.
    [66] Padovani E, Seriani G, Seriani G. Low-and high-order finite element method: experience inseismic modeling[J].Journal of Computational Acoustics,1994,(2):371-422.
    [67] Sarma G S, Mallick K, Gadhinglajkar V R. Nonreflecting boundary condition infinite-element formulation for an elastic wave equation[J].Geophysics,1998,63(3):1006-1023.
    [68]杨宝俊,何樵登.有限元素法的一种频率域计算方法及其应用[J].石油物探,1982,21(1):56-64.
    [69]牟永光.三维复杂介质地震物理模拟[M].北京:石油工业出版社,2003.
    [70]杨顶辉,牟永光.孔隙各向异性介质中基于微观流场的BISQ理论[M].北京:中国地球物理学会年刊,1998,p58-59.
    [71] Gazdag J. Modeling of the acoustic wave equation with transform method[J]. Geophysics,1981,46(6):854-859.
    [72] Kosloff D, Baysal E. Forward modeling by a Fourier Method[J].Geophysics,1982,47(10):1402-1412.
    [73] Fornberg B. The pseudospectral method:Comparisons with finite-differences for the elasticwave equations[J]. Geophysics,1987,52(4):483--501.
    [74] Reshef M, Kosloff D. Three-dimensional acoustic modeling by the Fourier method[J].Geophysics,1988,3(9):1175-1183.
    [75]刘洋,董敏煜.各向异性介质中的方位AVO[J].石油地球物理勘探,1999,34(3):260-268.
    [76]候安宁,何樵登.各向异性介质中弹性波特征的伪谱法模拟研究[J].石油物探,1995,34(2):36-45.
    [77]张文生,何樵登.二维横向各向同性介质的伪谱法正演模拟[J].石油地球物理勘探,1998,33(3):310-319.
    [78]傅旦丹,何樵登.正交各向异性介质地震弹性波场的伪谱法正演模拟[J].石油物探,2001,(40):8-14.
    [79] Dablain M A. The application of high2order differencing to the scalar wave equation[J].Geophysics,1986,51(1):54-66.
    [80] Virieux J. SH-wave propagation in heterogeneous media:velocity-stress finite differencemethod[J]. Geophysics,1984,49(11):1933-1957.
    [81] Virieux J. P-SV wave propagation in heterogeneous media, Velocity-stress finite-differencemethod[J]. Geophysics,1986,51(4):889-901.
    [82] Igel H,Mora P,Riollet B. Anisotropic wave propagation through finite difference grids[J].Geophysics,1995,60(4):1203-1216.
    [83] Dong Z, McMechan G A.3-D viscoelasitc anisotropic modeling of data from amulti–component, multi-azimuth experiment in northeast Texas[J].Geophysics,1995,60(4):1128-1150.
    [84] Ramos-Martinez J, Ortega A A. Shear-wave splitting at vertical incidence in media containingintersecting fracture systems[C].68th Ann. Internat.Mtg, Soc. Expl.Geophys., ExpandedAbstracts,1998.
    [85] Ramos-Martinez J, Ortega A A, McMechan G A.3-D seismic modeling for crackedmedia:shear-wave splitting at zero offset[J]. Geophysics,2000,65(1):211-221.
    [86] Robertsson Johan O A,Blanch J O,Symes W W. Viscoelastic finite-difference modeling[J].Geophysics,1994,59(9):1444-1456.
    [87] Robertsson J O A. A numerical free-surface condition for elastic/viscoelastic finite-differencemodeling in the presence of topography[J]. Geophysics,1996,61(6):1921-1934.
    [88] Graves R W. Simulating seismic wave propagation in3D elastic media using staggered-gridfinite-difference[J]. BSSA,1996,(86):1091-1106.
    [89]侯安宁.各向异性弹性波及其波动方程正反演研究[D].长春:长春地质学院博士学位论文,1994.
    [90]裴正林.三维各向异性介质中弹性波方程交错网格高阶有限差分法数值模拟[J].石油大学学报(自然科学版),2004,28(5),23-29.
    [91]裴正林.三维双相各向异性介质弹性波方程交错网格高阶有限差分法模拟[J].中国石油大学学报(自然科学版),2006,30(2),608-615.
    [92]裴正林.层状各向异性介质中横波分裂和再分裂数值模拟[J].石油地球物理勘探,2006,41(1),17-25.
    [93]周怀来.多波波场正演模拟与波场特征分析研究[D].成都理工大学,2009.
    [94]刘庆敏.高阶差分数值模拟方法研究[S].中国石油大学,2007.
    [95] Reynolds A C.Boundary conditions for the numerical solution of wave propagationproblems[J].Geophysics,1978,43(6):895-904.
    [96] Clayton R,Engquist B.Absorbing boundary conditions for acoustic and elastic waveequations[J].Bull.Seis.Soc.Am,1977,67(6):1529-540.
    [97]董良国.弹性波数值模拟中的吸收边界条件[J].石油地球物理勘探,1999,34(1):45-56
    [98] Kosloff R, Kosloff D.Absorbing boundaries for wave propagation problems[J].J.ComputPhys.1986,(63):363-376.
    [99] Collino F, Tsohka C.Application of the perfectly matched layer model to the linearastodynamic problem in anisotropic heterogeneous media[J]. Geophysics,2001,(66):294-307.
    [100] Zoeppritz K, Erdbebenwellen VIIIB. On the reflection and propagation of seismicwaves[J].Gottinger Naehriehten,1919,(1):66-84.
    [101] Koefoed. On the effect of poissin’s ratios of rock strate on the reflection coefficients ofplane Wave[J]. Geophysical Prospecting,1955,3(4):381-387.
    [102] Bortfeld,R. Approximation to the reflection and transmission coefficients Of planelongitudinal and transverse wave[J].Geophy-sics Prospecting,1961,9(4):485-502.
    [103] Aki, K. I., and Richards, P. G., Quantitative seismology[M]. W. H. Freeman and Co,1980.
    [104] Hilterman, F. Is AVO the seismic signature of lithology? A case history of Ship Shoal\SouthAddition[J]. The Leading Edge,1990,(9):15.
    [105] Ostrander W J.Plane-wave reflection coefficients for gas sands at non-normal angles ofincidence[J]. Geophysics,1984,49(10):1637-1648.
    [106] Shuey. A simplification of the zoeppritz equations[J]. Geophysics,1984,50:609-634.
    [107] Smith, G., and Gidlow, P.1987a, Weighted stacking for rock property estimation anddetection of gas [J]. Geophysical Prospecting,(35):993-1014.
    [108] Smith, G.C., and Gidlow, P.M.1987b, Weighted stacking for rock property estimation anddetection of gas[J]. Geophysical Prospecting,(35):993-1014.
    [109] Rutherford, S.R., and Williams, R.H.1989, Amplitude-versus-offset variations in gassands[J].Geophysics,(54):680-688.
    [110]于静芳.川东南官渡下沙溪庙组储层AVO正演模拟研究[S].成都理工大学,2011.
    [111]张爱敏,汪洋,赵世尊.不同厚度煤层AVO特征及模型研究[J].中国矿业大学学报,1997,26(3),36-41.
    [112]彭苏萍,高云峰,杨瑞召等.AVO探测煤层瓦斯富集的理论探讨和初步实践---以淮南煤田为例[J].地球物理学报,2005,48(6),1475-148.
    [113]彭苏萍,高云峰.含煤地层振幅随偏移距变化正演模型研究[J].科学通报,2005,50(S1):131-137.
    [114]陈同俊,崔若飞,刘恩儒.VTI型构造煤AVO正演模拟[J].煤炭学报,2009,34(4):438-442.
    [115]陈同俊,王新,崔若飞.基于方位AVO正演的HTI构造煤裂隙可探测性分析[J].煤炭学报,2010,35(4):640-644.
    [116]邓小娟,彭苏萍,林庆西等.基于各向异性薄煤层的AVO正演方法研究[J].煤炭学报,2010,35(12):053-2058.
    [117]邓小娟,彭苏萍,杜文凤等.薄煤层P-SV转换波AVO正演研究[J].煤炭学报,2010,37(1):62-66.
    [118]董守华.煤弹性各向异性系数测试与P波方位各向异性系裂缝评价技术[D].徐州:中国矿业大学,2004.
    [119] Crampin S. Effective anisotropic elastic constants for wave propagation through crackedsolids[J]. Geophys J Roy Astr Soc,1984,76:135-145.
    [120]李录明,罗省贤编著.多波多分量地震勘探原理及数据处理方法[M].成都:成都科技大学出版社,1997.
    [121] Winterstein D F. Velocity anisotropy terminology for geophysicis[J].Geophysics.1990,55(8):1070-1088.
    [122] Schoenberg, M.and F.Muir. A calculus for finely layered anisotropic media[J].Geophysics.1989,54(5):581-589.
    [123]王春燕.高阶交错网格有限差分地震波场计算[S].成都:成都理工大学出版社.2007.
    [124]王恩利.基于各向异性的复合介质弹性波场模拟与特征分析[D].吉林大学,2008.
    [125] Tsvankin I. Anisotropic parameters and P-wave velocity for orthorhombic media[J].Geophysics,1997,62(4):1292-1309.
    [126] Helbig. Foundations of elastic anisotropy for exploration seismics[M]. Pergamon Press,1994.
    [127] Musgrave J P. Crystal acoustics Introduction to the study of elastic wave and vibrations incrystals[C].Holden-Day series in mathematical physics. Lolden-Day,San Francisco, Cambridge,London, Amsterdam,1970, p288.
    [128] Berryman J G. Long-wave elastic anisotropy in transversely isotropic media[J]. Geophysics,1979,(44):896-917.
    [129]王晓欢.TTI介质中地震波传播特性研究[S].吉林大学,2006.
    [130]郝重淘,姚陈等.任意空间取向TI介质中体波速度特征分析[J].地震学报,2005,27(2):252-259.
    [131] Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks[J].Geophys J R Astr Soc,1981,(64):133-150.
    [132] Hudson J A. A higher order approximation to the wave propagation constants for a crackedsolid [J].Geophys J R Astr Soc,1986,(87):265-274.
    [133] Grechka V, Tsvankin I. Inversion of azimuthally dependent NMO velocity in transverselyisotropic media with a tilted axis of symmetry[J]. Geophysics,2000,65(1):232-246.
    [134]王德利,何樵登.裂隙型单斜介质中弹性系数的计算及波的传播特性研究[J].吉林大学学报(地球科学版),2002,32(2):91-96.
    [135] Thomsen L. Weak elastic anisotropy[J]. Geophysics,1986,51(10):1954-1966.
    [136] Ruger A. P-wave reflection coefficients for transversely isotropic models with vertical andhorizontal axis symmetry[J]. Geophysics,1997,62(3):713~722
    [137] Lo T, Coyner K B, Toksoz M N. Experimental determination of elastic anisotropy of Bereasandstone, Chicopee shale, and Chelmsford granite[J]. Geophysics,1986,51(1):164-171.
    [138] Ramos-Martinez J, Ortega A A. Shear-wave splitting at vertical incidence in mediacontaining intersecting fracture systems[C].68th Ann. Internat.Mtg.,Soc. Expl. Geophys,Expanded Abstracts,1998.
    [139] Levander A R. Fourth-order finite-difference p-sv seismograms [J].Geophysics.1988,53(11):1425-143.
    [140]董良国.一阶弹性波动方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-419.
    [141]牟永光,裴正林著.三维复杂介质地震数值模拟[M].北京:石油工业出版社,2005.
    [142] Mensch T P. Rasolofosaon. Elastic-wave velocities in anisotropic media of arbitrarysymmetry-Generalization of Thomsen’s parametersε, δ, γ[J]. GeophysiealJournalInternational,1997,128(2):43-64.
    [143]杨德义,彭苏萍,王赟等.含裂隙煤层的地震记录模拟[J].煤田地质与勘探,2007,35(6):61-66.
    [144]李东会,董守华,赵小翠等.煤储层各向异性地震波场模拟[J].物探与化探,2010,34(5):604-609
    [145] Cheng C H. Crack models for a transversely anisotropic medium[J]. Geophys.Res,1993,(98):675-684.
    [146]殷八斤等.AVO技术的理论和实践[M].北京:石油工业出版社,1995.
    [147]汪恩华.适用干AVO分析的层状介质反射系数公式及模型计算[J].石油地球物理勘探,26(4)1991:424-436.
    [148]张爱敏,汪洋,赵世尊.不同厚度煤层AVO特征及模型研究[J].中国矿业大学学报,1997,26(3):36-41.
    [149]王建花.叠前弹性参数反演新方法[D].中国海洋大学,2006.
    [150] Brekbovsky. L. M. Trmslated by Yang. X. R. Wave in layered media[M]. Science Press (inChinese).1960.
    [151]徐仲达,地震波动理论[M],上海:同济大学出版社,1997.
    [152] Carcione J M. Wavefronts in dissipative anisotropic media:Comparison of the plane-wavetheory with numerical modeling[J].Geophysics,1996,61(3):857-861.
    [153] Carcione J M. Reflection and transmission of qP-qS plane waves at a plane boundarybetween viscoelastic transversely isotropic media[J]. Geophys. J. Int.,1997,(129):669-680.
    [154] Carcione J M. Effects of attenuation and anisotropy on reflection amplitude versus offset[J].Geophysics,1998,63(5):1652-1658.
    [155] Carcione J M. Effects of vector attenuation on AVO of offshore reflections[J].Geophysics,1999,64(3):815-819.
    [156] Carcione J M. A model for seismic velocity and attenuation in petroleum source rocks[J].Geophysics,2000,65:1080-1092.
    [157] Carcione J M. Wave fields in real media:wave propagation in anisotropic anelastic andporous media[M]. Pergamon,2001.
    [158] Carcione J M. Amplitude variations with offset of pressure-seal reflections[J]. Geophysics,2001,66(1):283-293.
    [159] Carcione J M. AVO effects of a hydrocarbon source-rock layer [J]. Geophysics,2001,66(2):419-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700