用户名: 密码: 验证码:
巴西莓和白藜芦醇对高糖、高蛋白或高脂饮食果蝇寿命的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景
     目前全人类都面临一个人口老龄化的问题。由于人口老龄化导致的生产力下降,严重制约了社会经济的发展。衰老是机体生理状态下降的一种过程,衰老增加疾病易感性从而导致死亡。与衰老相关的寿命长短和健康指标的下降受基因和环境的调节。研究表明,通过调节饮食成分和基因表达可延缓衰老,延长寿命。
     流行病学研究显示,人类寿命的延长和老年相关疾病发病率的降低除了通过体育锻炼以外,应用最广泛和重复性最高的方法是在多种动物模型上限制卡路里,即在保证足够营养的条件下适当的减少能量。卡路里限制可以在酵母菌、线虫、果蝇、小鼠、大鼠和非人类的灵长类——恒河猴等动物中有效延长寿命和减轻衰老相关的慢性疾病。
     卡路里限制虽然能有效的延长寿命,同时还能产生降低血脂、胆固醇含量等有益效果。但是也会产生一些明显的副作用,例如影响机体的新陈代谢,最明显的作用就是会使雌性动物产卵量下降和导致不孕不育等危害。
     那么有没有既能有效延长寿命又能减少严重副作用的方法,人们试图发现替代卡路里限制的方法。而最新的营养基因学研究显示糖和蛋白质含量的变化在几种生物包括:果蝇、金鱼和墨西哥果蝇可以显著的影响寿命。
     在果蝇模型上,糖与蛋白质的比例变化显著调节寿命。标准饮食中含10%的糖和10%酵母(酵母是标准饮食中唯一的蛋白质来源);高糖低蛋白饮食含18%的糖和2%的酵母(糖和酵母的比例为9:1);而低糖高蛋白饮食含2%的糖和18%的酵母(糖和酵母的比例为1:9);在标准饮食的基础上稀释4倍,即含2.50%的糖和2.5%酵母(0.25倍的饮食)即通常所说的卡路里限制饮食。以上饮食都添加了1.5%的琼脂。本人通过前期的研究已证实,糖和酵母的比例变化对野生型果蝇寿命有显著的影响:在总卡路里相同的条件下,与标准饮食相比较,无论雄性还是雌性果蝇,高糖低蛋白饮食延长果蝇的平均寿命,而低糖高蛋白饮食缩短果蝇的平均寿命。卡路里限制饮食(总卡路里减少)对果蝇寿命的延长位于高糖低蛋白饮食组和标准饮食组之间。这些结果说明饮食成分在寿命的调节中起重要作用。
     此外寿命与动物种系的基因类型也有密切关系。在不同饮食对小鼠寿命影响的研究中,40个重组培育的品系在不同的饮食成分下,饮食成分限制仅可延长部分亚类小鼠品系的寿命,而对某些品系甚至使寿命缩短。由此提示,饮食成分限制对寿命的延长作用还依赖于生物体的基因背景。因此评价各种环境因素和基因的相互作用对寿命的调节具有重要意义。
     人们在自然界,特别是水果和蔬菜当中,发现一些抗氧化物质,这些物质可以产生类似卡路里限制的作用,被称为卡路里模拟性物质。这些物质可以明显的延缓衰老,降低机体的新陈代谢。有报道认为巴西莓和白藜芦醇是卡路里模拟性物质。
     巴西莓是一种棕榈树结的果实,最初生长于亚马逊河流域,常用来酿制啤酒和作为食品添加剂。巴西莓是一种强抗氧化剂,可以对抗氧化损伤。巴西莓含有多种植物化学物质,特别是花色苷、原花青素和其他的黄酮类,具有很强的抗氧化活性,特别是对抗超氧化物和过氧化自由基。
     白藜芦醇是一种存在于葡萄皮当中的植物抗毒素,是红酒中的有效成分,可以降低高脂饮食人群的心血管疾病的发病率。白藜芦醇可以减缓许多疾病的进程,如癌症、心血管疾病和神经系统疾病。添加白藜芦醇后可以推迟与衰老相关的认知功能下降,改善胰腺β细胞的功能,减少大鼠的心肌肥厚。白藜芦醇对果蝇寿命是否能够延长存在争议。而且白藜芦醇如果能够延长果蝇的寿命,那么白藜芦醇延长寿命是否和食物的成分有关。以及白藜芦醇和食物的相互作用调节寿命的机制还不太清楚。
     本研究试图明确:①巴西莓和白藜芦醇是否能够延长果蝇的寿命;②巴西莓和白藜芦醇与不同食物的相互作用对果蝇寿命的影响;③巴西莓和白藜芦醇延长果蝇寿命的分子机制。
     2.研究方法
     (1)通过调节食物的蔗糖、酵母和多脂酸含量制备各种成分的果蝇饮食。添加巴西莓和白藜芦醇制备特定饮食。
     (2)记录群体果蝇的生存时间,描绘果蝇的寿命曲线和计算果蝇群体的平均寿命和最大寿命。
     (3)应用定量PCR观察各种转录因子的活性。
     (4)应用RNA干扰技术构建超氧化物歧化酶1功能减弱的果蝇。
     (5)用毛细管喂养法测定不同处理组之间的食物摄入量。
     3.结果
     (1)各种浓度的巴西莓和白藜芦醇对标准饮食的野生型果蝇及高糖低蛋白饮食的野生型果蝇的寿命均没有影响。
     (2)高蛋白低糖饮食条件下,白藜芦醇的浓度达到200μmol/L可以延长野生型雌性果蝇。
     (3)高脂饮食条件下,添加2%的巴西莓可以显著延长雌性果蝇的寿命;白藜芦醇的浓度达到400μmol/L可以延长雌性果蝇的寿命。
     (4)对于超氧化物歧化酶1干扰的果蝇,白藜芦醇的浓度达到200μmol/L可以延长标准饮食的雌性果蝇的寿命;白藜芦醇的浓度达到400μmol/L可以延长高脂饮食的雌性果蝇的寿命。而添加0.5%到2%的巴西莓果浆可以延长标准饮食和高脂饮食雌性果蝇的寿命。以上的各种情况对雄性果蝇的作用影响轻微,甚至有轻微缩短雄性果蝇的寿命。说明饮食营养组成对白藜芦醇和巴西莓在寿命效果的影响具有性别特异性。
     (5)用毛细管喂养法测量,添加巴西莓和白藜芦醇的无琼脂高脂饮食的雌性果蝇连续3天每日食物摄取量。巴西莓和白藜芦醇没有改变这些果蝇每日的食物摄取量,表明巴西莓和白藜芦醇不影响食物摄入量。
     (6)白藜芦醇对寿命的延长与下调衰老相关途径的基因有关。在低糖高蛋白饮食雌性果蝇,白藜芦醇下调6种基因:胰岛素样蛋白3和5(dllp3和dIlp5),GstDl和热休克蛋白68(Hsp68),过氧化物氧化酶基因Prx2540-1和Prx6005。由此提示,添加白藜芦醇能通过减少氧应激反应促进果蝇的存活。在高脂饮食雌性果蝇,白藜芦醇下调低糖高蛋白饮食的6种基因其中的5种:dIlp3,dllp5,gstD1,hsp68和Prx2540-1,同时还减少了Prx2540-2的转录水平。由此进一步支持添加白藜芦醇可以减少果蝇的氧应激损伤。巴西莓上调了1(2)efl基因,抑制了Pepck基因的转录。
     4.结论
     (1)巴西莓增加高脂饮食雌性果蝇的寿命。白藜芦醇增加高蛋白饮食和高脂饮食雌性果蝇的寿命,寿命的延长具有性别特异性,而这种性别特异性的寿命延长又受到饮食成分的调节。
     (2)巴西莓和白藜芦醇可延长标准饮食下超氧化物歧化酶1RNA干扰果蝇的寿命。对高脂饮食下超氧化物歧化酶1RNA干扰果蝇寿命的延长更加进一步支持巴西莓和白藜芦醇可以减少果蝇的氧应激损伤。
     (3)白藜芦醇下调氧化应激相关基因的转录水平,说明白藜芦醇通过减少氧应激反应促进果蝇的存活。
     (4)白藜芦醇成分依赖性延长寿命说明营养成分在干预衰老的过程中起重要作用。
     (5)巴西莓和白藜芦醇不改变果蝇的食物摄取量,说明巴西莓和白藜芦醇的有益作用不是通过卡路里限制起作用。
1. Background
     Aging is a problem for the entire human. Due to this, the ecnomics is obviously inhabited. Aging is a process that leads to physiologic decline and an increased vulnerability to disease and death. While the process of aging is complex, advances in aging research have shown that age-related declines in lifespan and healthspan can often be delayed through genetic and environmental manipulation, e.g. diet or pharmacological agents.
     Epidemiological studies propose that extension of the human lifespan or the reduction of age associated diseases may be achieved by physical exercise and caloric restriction. Calorie restriction (CR) is the most widely used experimental paradigms that extend lifespan in model organisms, which is a condition that calories nutrients are modestly reduced while maintaining adequate nutrition. CR has been reported to extend lifespan and attenuate age-related diseases in a wide variety of organisms including yeast, worms, flies, mice, rats and probably non-human primates, rhesus monkeys.
     Alrough CR can effectively extend the lifespan, and at the same time reduce dyslipidemia and cholesterol, but it also can produce some obviously side effects, such as influence the body metabolism and make the female animal less eggs and infertility. So people want to find some ways replace CR. Recent studies suggest that dietary composition or the ratio of carbohydrate relative to protein is more important than CR in modulating lifespan.
     In flies, the ratio of carbohydrate and protein can obviously modulating lifespan. The standard base diet contained 10% sugar and 10% yeast extract in weight/volume; the CR diet had 2.5% sugar and 2.5% yeast extract; the high sugar-low protein diet consisted of 18% sugar and 2% yeast extract; the low sugar-high protein diet contained 2% sugar and 18% yeast extract; and the high-fat diet had 10% sugar,10% yeast extract and 2% palmitic acid. Compare with the standard food, high sugar diet extend the lifespn in both male and female flies, while high protein diet reduce the lifespan. CR diet extend the lifespan between the standard diet and high sugar diet. So the composition of diet play an important role in modulating lifespan.
     In mice, a study of lifespan in approximately 40 recombinant inbred lines under dietary restriction condition indicates that dietary restriction only extends lifespan in a subset of these mouse lines and even shortens lifespan in some. This suggests that the prolongevity effect of dietary restriction depends on genetic background of the organism.
     Diets rich in botanicals are known to have numerous health benefits to humans. Clinical trials, animal model and cell-based studies, and biochemical analyses demonstrate that plants contain a wide range of nutrients and biologically active phytochemicals that provide numerous health benefits. Fruits and vegetables are rich in phytochemicals, nutrients and anti-oxidants and their consumption may retard aging. Some of them were called the CR-mimic substances. Acai and resveratrol were regarded as the CR-mimic substances.
     Acai is a fruit from the palm tree, Euterpe oleracea Mart, indigenous to the Amazon River area in South America. It is commonly used to make beverages, and served as a food additive, and is even used in folk medicine. Acai contains numerous kinds of phytochemicals, particularly, anthocyanins, proanthocyanidins and other flavonoids. Acai possesses unusually high anti-oxidant activity compared to other plant foods based on various anti-oxidant assays, particularly against the superoxide and peroxyl radicals.
     Resveratrol is identified as a natural compound from grapeskins. It demonstrates that there is an inverse correlation between red wine consumption and the incidence of cardiovascular disease under the fat-rich diets. Resveratrol maybe play an important role in that. After that, there were suceessive reports resveratrol can prevent or slow the progression of some diseases, such as cancer, cardiovascular disease and neurological disorders. However, the mechanisms underlying the interaction of resveratrol and dietary nutrients in modulating lifespan remain elusive. So here we first investigated whether the resveratrol can extend the Drosophila melanogaster's lifespan or not. Second, we investigated the effect of resveratrol on lifespan of Drosophila melanogaster fed diets differing in the concentrations of dietary composition. Finally we want to investigated the underline mechanicism.
     2. Methods
     We record the life curve of Drosophila melanogaster and calculate the mean lifespan and maximam lifespan. Then we compare the different concentration of acai and resveratrol and then vary the dietary composition influence on Drosophila melanogaster's lifespan. Four types of sugar and yeast extract based diets as control diets were prepared. Then we applied the qRT-PCR to detect the transcription of genes in aging-related pathways, including antioxidant peroxiredoxins, insulin-like peptides involved in insulin-like signaling and several downstream genes in Jun-kinase signaling involved in oxidative stress response. After that, we constructed the SOD1 mutant Drosophila melanogaster useing the RNA interference to find the result of acai and resveratrol on SOD1RNAi Drosophila melanogaster. Finally, we test the food intake between the different treated groups. Food intake was measured using the capillary feeder method (CAFE).
     3. Results
     Acai can extend the flies lifespan fed on high fat diets. Resveratrol at up to 200μmol/L in diets did not affect lifespan of wild-type female flies fed a standard, restricted or high sugar-low protein diet, but extended lifespan of females fed a low sugar-high protein diet. resveratrol at 400μmol/L extended lifespan of females fed a high-fat diet. Lifespan extension by resveratrol was associated with down-regulation of genes in aging-related pathways, including antioxidant peroxiredoxins, insulin-like peptides involved in insulin-like signaling and several downstream genes in Jun-kinase signaling involved in oxidative stress response. Furthermore, acai and resveratrol increased lifespan of superoxide dismutase 1 (sod1) RNAi females fed a standard or high-fat diet. No lifespan extension by resveratrol was observed in wild-type and sod1 RNAi males under the culture conditions in this study. We also measured daily food intake of female flies fed with the agar-free high-fat diet supplemented with or without 400μmol/L resveratrol for three consecutive days using the CAFE method. Resveratrol did not change the daily food intake in these flies, indicating that lifespan extension by resveratrol in female flies fed the high-fat diet is not due to the difference in food intake.
     Six genes were found down-regulated by resveratrol. Among them are Drosophila insulin-like peptide 3 and 5 (dIlp3 and dIlp5) involved in insulin-like signaling. Supplementation of resveratrol also down-regulated glutathione S transferase D1(GstDl) and heat shock protein 68 (Hsp68), two downstream targets of Jun kinase (JNK) signaling pathway, which is a major oxidative stress response pathway and is known to modulate lifespan in several model organisms. In addition, two peroxiredoxin (Prx) genes, Prx2540-1 and Prx6005, were down-regulated by supplementation of resveratrol. Taken together, these findings suggest that supplementation of resveratrol promotes the survival of flies by reducing oxidative damage.
     Five of the six genes, dIlp3, dIlp5, gstD1, hsp68 and Prx2540-1, down-regulated by resveratrol in flies fed the low sugar-high protein diet, were also down-regulated by resveratrol in flies fed the high fat diet. Supplementation of resveratrol also reduced the transcript level of Prx2540-2 instead of Prx6005. These findings are consistent with what we observed in the case of the low sugar-high protein diet and further support the notion that supplementation of resveratrol can reduce oxidative damage in flies. Acai can upregulated the 1(2)efl genes and downregulated the Pepck genes.
     4. Conclusion
     The prolongevity effect of acai and resveratrol are influenced by dietary composition, only appear on the high fat or high protein diet. And this effect are gender-specific. They can influence the female, not male. The prolongevity effect on sodl RNAi are further support this. Acai and resveratrol promotes the survival of flies by modulating genetic pathways that can reduce cellular damage. This study reveals the context-dependent effect of resveratrol on lifespan and suggests the importance of dietary nutrients in implementation of effective aging interventions using dietary supplements.
引文
1. Ashburner, M., Golic, K.G., Hawley, R.S. Drosophila:A Laboratory Handbook, second ed. Cold Spring Harbor Laboratory Press. (Eds.),2005.
    2. Bao, Y., Fenwick, R., Phytochemicals in Health and Disease. Marcel Dekker, New York. 2004.
    3. Barzilai, N., Bartke, A.,. Biological approaches to mechanistically understand the healthy life span extension achieved by calorie restriction and modulation of hormones. J. Gerontol. A Biol. Sci. Med. Sci.2009 (64):187-191.
    4. Baumann, L., Woolery-Lloyd, H., Friedman, A. "Natural" ingredients in cosmetic dermatology. J. Drugs Dermatol.2009 (8):s5-s9.
    5. Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K.W., Spencer, R.G., Lakatta, E.G., Le Couteur, D., Shaw, R.J., Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R., Sinclair, D.A., Resveratrol improves health and survival of mice on a high- calorie diet. Nature 2006 (444):337-342.
    6. Chakravarty, K., Cassuto, H., Reshef, L., Hanson, R.W., Factors that control the tissue-specific transcription of the gene for Phosphoenolpyruvate carboxykinase- C. Crit. Rev. Biochem. Mol. Biol.2005(40):129-154.
    7. Colavitti, R., Finkel, T. Reactive oxygen species as mediators of cellular senescence. IUBMB Life 2005(57):277-281.
    8. Del Pozo-Insfran, D., Percival, S.S., Talcott, S.T. Acai (Euterpe oleracea Mart.) polyphenolics in their glycoside and aglycone forms induce apoptosis of HL-60 leukemia cells. J. Agric. Food Chem.2006(54):1222-1229.
    9. Driver, C.J., Cosopodiotis, G., The effect of dietary fat on longevity of Drosophila melanogaster. Exp. Gerontol.1979(14):95-100.
    10. Driver, C.J., Wallis, R., Cosopodiotis, G., Ettershank, G., Is a fat metabolite the major diet dependent accelerator of aging Exp. Gerontol.1986(21):497-507.
    11. Fridovich, I., Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995(64):97-112.
    12. Guarente, L., Picard, F. Calorie restriction-the SIR2 connection. Cell 2005(120): 473-482.
    13. Honzel, D., Carter, S.G., Redman, K.A., Schauss, A.G., Endres, J.R., Jensen, G.S., Comparison of chemical and cell-based antioxidant methods for evaluation of foods and natural products:generating multifaceted data by parallel testing using erythrocytes and polymorphonuclear cells. J. Agric Food. Chem.2008(56):8319-8325.
    14. Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., Scherer, B., Sinclair, D.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003(425):191-196.
    15. Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J.A., Deemer, E.K., Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. J. Agric. Food Chem.2002(50):1815-1821.
    16. Ja, W.W., Carvalho, G.B., Mak, E.M., de la Rosa, N.N., Fang, A.Y., Liong, J.C., Brummel, T., Benzer, S., Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 2007(104):8253-8256.
    17. Jaromin, A., Zarnowski, R., Kozubek, A. Emulsions of oil from Adenanthera pavonina L. seeds and their protective effect. Cell. Mol. Biol. Lett.2006(11): 438-448.
    18. Jasper, H., Benes, V., Schwager, C., Sauer, S., Clauder-Munster, S., Ansorge, W., Bohmann, D., The genomic response of the Drosophila embryo to JNK signaling. Dev. Cell 2001(1):579-586.
    19. Jensen, G.S., Wu, X., Patterson, K.M., Barnes, J., Carter, S.G., Scherwitz, L., Beaman, R., Endres, J.R., Schauss, A.G., In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. J. Agric Food. Chem.2008(56): 8326-8333.
    20. Joseph, J.A., Shukitt-Hale, B., Lau, F.C. Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann. NY Acad. Sci.2007(1100):470-485.
    21. Joseph, J.A., Shukitt-Hale, B., Willis, L.M. Grape juice, berries, and walnuts affect brain aging and behavior. J. Nutr.2009(139):1813S-1817S.
    22. Karpac, J., Jasper, H. Insulin and JNK:optimizing metabolic homeostasis and lifespan. Trends Endocrinol. Metab.2009(20):100-106.
    23. Kenyon, C., The plasticity of aging:insights from long-lived mutants. Cell 2005(120): 449-460.
    24. Kirby, K., Hu, J., Hilliker, A.J., Phillips, J.P., RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc. Natl. Acad. Sci. USA 2002(99):16162-16167.
    25. Landis, G.N., Tower, J. Superoxide dismutase evolution and lifespan egulation. Mech. Ageing Dev.2005(126):365-379
    26. Liu, R.H. Potential synergy of phytochemicals in cancer prevention:mechanism of action. J. Nutr.2004(134):3479S-3485S.
    27. Martin, I., Jones, M.A., Grotewiel, M. Manipulation of Sodl expression ubiquitously, but not in the nervous system or muscle, impacts age-related parameters in Drosophila. FEBS Lett.2009(583):2308-2314.
    28. Missirlis, F., Hu, J., Kirby, K., Hilliker, A.J., Rouault, T.A., Phillips, J.P. Compartment-specific protection of iron-sulfur proteins by superoxide dismutase. J. Biol. Chem.2003(278):47365-47369.
    29. Ou, B., Hampsch-Woodill, M., Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem.2001(49):4619-4626.
    30. Ou, B., Hampsch-Woodill, M., Flanagan, J., Deemer, E.K., Prior, R.L., Huang, D. Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J. Agric. Food Chem.2002(50):2772-2777.
    31. Pacheco-Palencia, L.A., Mertens-Talcott, S., Talcott, S.T., Chemical composition, antioxidant properties and thermal stability of a phytochemical enriched oil from acai (Euterpe oleracea Mart.). J. Agric. Food Chem.2008(56):4631-4636.
    32. Pan, M.H., Lai, C.S., Dushenkov, S., Ho, C.T. Modulation of inflammatory genes by natural dietary bioactive compounds. J. Agric. Food Chem.2009(57):4467-4477.
    33. Pearson, K.J., Baur, J.A., Lewis, K.N., Peshkin, L., Price, N.L., Labinskyy, N., Swindell,W.R., Kamara, D., Minor, R.K., Perez, E., Jamieson, H.A., Zhang, Y., Dunn, S.R., Sharma, K., Pleshko, N., Woollett, L.A., Csiszar, A., Ikeno, Y., Le Couteur, D., Elliott, P.J., Becker, K.G., Navas, P., Ingram, D.K., Wolf, N.S., Ungvari, Z., Sinclair, D.A., de Cabo, R.,. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab.2008(8):157-168.
    34. Perez, V.I., Bokov, A., Remmen, H.V., Mele, J., Ran, Q., Ikeno, Y., Richardson, A. Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta 2009(1790): 1005-1014.
    35. Phillips, J.P., Campbell, S.D., Michaud, D., Charbonneau, M., Hilliker, A.J., Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. USA 1989(86):2761-2765.
    36. Plotkin, M.J., Balick, M.J., Medicinal uses of South American palms. J. Ethnopharmacol.1984(10):157-179.
    37. Qin, Y., Xia, M., Ma, J., Hao, Y., Liu, J., Mou, H., Cao, L., Ling, W. Anthocyanin supplementation improves serum LDL-and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am. J. Clin. Nutr.2009(90),485-492.
    38. Quinn, P.G., Yeagley, D.,2005. Insulin regulation of PEPCK gene expression:a model for rapid and reversible modulation. Curr. Drug Targets Immune Endocr. Metab. Disord.5,423-437.
    39. Rocha, A.P., Carvalho, L.C., Sousa, M.A., Madeira, S.V., Sousa, P.J., Tano, T., Schini-Kerth, V.B., Resende, A.C., Soares de Moura, R. Endothelium-dependent vasodilator effect of Euterpe oleracea Mart, (acai) extracts in mesenteric vascular bed of the rat. Vasc. Pharmacol.2007(46):97-104.
    40. Sabbe, S., Verbeke, W., Deliza, R., Matta, V., Van Damme, P., Effect of a health claim and personal characteristics on consumer acceptance of fruit juices with different concentrations of acai (Euterpe oleracea Mart.). Appetite 2009(53):84-92.
    41. Schauss, A.G., Wu, X., Prior, R.L., Ou, B., Patel, D., Huang, D., Kababick, J.P.. hytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (acai). J. Agric. Food Chem.2006a(54):8598-8603.
    42. Schauss, A.G., Wu, X., Prior, R.L., Ou, B., Huang, D., Owens, J., Agarwal, A., Jensen, G.S. Hart, A.N., Shanbrom, E. Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleracea Mart. (acai). J. Agric. Food Chem.2006b(54):8604-8610.
    43. Sheaffer, K.L., Updike, D.L., Mango, S.E. The target of rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr. Biol 2008(18): 1355-1364.
    44. Srivastava, R.A., Fenofibrate ameliorates diabetic and dyslipidemic profiles in KKAy mice partly via down-regulation of 11beta-HSD1, PEPCK and DGAT2. Comparison of PPARalpha, PPARgamma, and liver x receptor agonists. Eur. J. Pharmacol. 2009(607):258-263.
    45. Stoner, G.D., Foodstuffs for preventing cancer:the preclinical and clinical development of berries. Cancer Prev. Res. (Phila Pa) 2009(2):187-194.
    46. Surh, Y.-J. Dietary Modulation of Cell Signaling Pathways. CRC 2009 Press,
    47. BocaRaton. Wang, M.C., Bohmann, D., Jasper, H., JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005(121):115-125.
    48. Wicks, S., Bain, N., Duttaroy, A., Hilliker, A.J., Phillips, J.P.. Hypoxia rescues early mortality conferred by superoxide dismutase deficiency. Free Radical Biol. Med. 2009(46):176-181.
    49. Wilson, M.A., Shukitt-Hale, B., Kalt, W., Ingram, D.K., Joseph, J.A., Wolkow, C.A. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 2006(5):59-68.
    50. Wright, M.E., Park, Y., Subar, A.F., Freedman, N.D., Albanes, D., Hollenbeck, A., Leitzmann, M.F., Schatzkin, A., Intakes of fruit, vegetables, and specific botanical groups in relation to lung cancer risk in the NIH-AARP Diet and Health Study. Am. J. Epidemiol.2008(168):1024-1034.
    1. Allard JS, Perez E, Zou S, de Cabo R. Dietary activators of Sirtl. Mol Cell Endocrinol 2009;299 (1):58-63.
    2. Ashburner M, Golic KG, Hawley RS. Drosophila:A Laboratory Handbook.2nd edn. Cold Spring Harbor Laboratory Press, Woodbury, NY 2005; (eds)
    3. Bass TM, Grandison RC, Wong R, Martinez P, Partridge L, Piper MD. Optimization of dietary restriction protocols in Drosophila. J Gerontol A Biol Sci Med Sci 2007;62 (10):1071-1081
    4. Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 2007;128(10):546-552
    5. Baur JA. resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 2010;131 (4):261-269
    6. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444 (7117):337-342
    7. Baur JA, Sinclair DA. Therapeutic potential of resveratrol:the in vivo evidence. Nat Rev Drug Discov 2006;5 (6):493-506
    8. Boyd O, Weng P, Sun X, Alberico T, Laslo M, Obenland DM, Kern B, Zou S. Nectarine promotes longevity in Drosophila melanogaster. Free Radic Biol Med 2011; 50 (11):1669-1678
    9. Bross TG, Rogina B, Helfand SL. Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell 2005;4 (6):309-317
    10. Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA 2005;102 (8):3105-3110
    11. Carey JR, Harshman LG, Liedo P, Muller HG, Wang JL, Zhang Z. Longevity-fertility trade-offs in the tephritid fruit fly, Anastrepha ludens, across dietary-restriction gradients. Aging Cell 2008;7 (4):470-477
    12. Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, Light PE, Dyck JR. resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 2008;283 (35):24194-24201
    13. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009;325 (5937):201-204
    14. Desai AK, Grossberg GT, Chibnall JT. Healthy brain aging:a road map. Clinics in geriatric medicine 2010;26 (1):1-16
    15.Fanson BG, Weldon CW, Perez-Staples D, Simpson SJ, Taylor PW. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 2009;8(5):514-523
    16. Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science 2010;328 (5976):321-326
    17. Frankel S, Ziafazeli T, Rogina B. dSir2 and longevity in Drosophila. Exp Gerontol 2011;46(5):391-396
    18. Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 2007; 72:483-488
    19. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425 (6954):191-196
    20. Ingram DK, Roth GS, Lane MA, Ottinger MA, Zou S, de Cabo R, Mattison JA. The potential for dietary restriction to increase longevity in humans:extrapolation from monkey studies. Biogerontology 2006;7 (3):143-148
    21. Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fan AY, Liong AY, Brummel T, Benzer S. Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci USA 2007;104 (20):8253-8256
    22. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, Kennedy BK. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 2005;280 (17):17038-17045
    23. Karpac J, Jasper H. Insulin and JNK:optimizing metabolic homeostasis and lifespan. Trends Endocrinol Metab 2009;20(3):100-106
    24. Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JW, Taylor PW, Soran N, Raubenheimer D. Lifespan and reproduction in Drosophila:New insights from nutritional geometry. Proc Natl Acad Sci USA 2008;105 (7):2498-2503
    25. Lee SM, Yang H, Tartar DM, Gao B, Luo X, Ye SQ, Zaghouani H, Fang D. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes. Diabetologia 2011;54 (5):1136-1146
    26. Liao CY, Rikke BA, Johnson TE, Diaz V, Nelson JF Genetic variation in the murine lifespan response to dietary restriction:from life extension to life shortening. Aging Cell 2010;9(1):92-95
    27. Lithgow GJ, Gill MS, Olsen A, Sampayo JN. Pharmacological intervention in invertebrate aging. AGE 2005;27 (3):213-223
    28. Mair W, Piper MD, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 2005;3(7):233-223
    29. Martin I, Jones MA, Grotewiel M. Manipulation of Sodl expression ubiquitously, but not in the nervous system or muscle, impacts age-related parameters in Drosophila. FEBS Lett 2009;583(13):2308-2314
    30. Masoro EJ. Caloric restriction-induced life extension of rats and mice:A critique of proposed mechanisms. Biochim Biophys Acta 2009; 1790(10):1040-1048
    31. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450 (7170):712-716
    32. Obrenovich ME, Nair NG, Beyaz A, Aliev G, Reddy VP. The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res 2010; 13 (6):631-643
    33. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R. resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 2008;8 (2):157-168
    34. Piper MD, Partridge L, Raubenheimer D, Simpson SJ. Dietary restriction and aging:a unifying perspective. Cell Metab 2011;14 (2):154-160
    35. Pirola L, Frojdo S. resveratrol:one molecule, many targets. IUBMB Life 2008;60 (5):323-332
    36. Radyuk SN, Sohal RS, Orr WC. Thioredoxin peroxidases can foster cytoprotection or cell death in response to different stressors:over- and under-expression of thioredoxin peroxidase in Drosophila cells. Biochem J 2003;371 (3):743-752
    37. Salmon AB, Richardson A, Perez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 2010; 48 (5):642-655
    38. Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 2008;7 (4):478-490
    39. Sun X, Seeberger J, Alberico T, Wang C, Wheeler CT, Schauss AG, Zou S. Acai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 2010;45 (3):243-251
    40. Szkudelska K, Szkudelski T. resveratrol, obesity and diabetes. Eur J Pharmacol 2010; 635 (1-3):1-8
    41.Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 2006; 16 (3):296-300
    42. Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005; 121 (1):115-125
    43. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004;430 (7000):686-689
    44. Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003;300 (5619):650-653
    45. Zeng C, Du Y, Alberico T, Seeberger J, Sun X, Zou S. Gender-specific prandial response to dietary restriction and oxidative stress in Drosophila melanogaster. Fly 2011;5(3):174-180
    46. Zou S, Carey JR, Liedo P, Ingram DK, Muller HG, Wang JL, Yao F, Yu B, Zhou A. The prolongevity effect of resveratrol depends on dietary composition and calorie intake in a tephritid fruit fly. Exp Gerontol 2009;44 (6-7):472-476
    47. Zou S, Carey JR, Liedo P, Ingram DK, Yu B. Prolongevity effects of a botanical with oregano and cranberry extracts in Mexican fruit flies:examining interactions of diet restriction and age. Age (Dordrecht, Netherlands) (2011)
    48. Zou S, Carey JR, Liedo P, Ingram DK, Yu B, Ghaedian R. Prolongevity effects of an oregano and cranberry extract are diet dependent in the Mexican fruit fly (Anastrepha ludens). J Gerontol A Biol Sci 2010;65 (1):41-50
    49. Zou S, Sinclair J, Wilson MA, Carey JR, Liedo P, Oropeza A, Kalra A, de Cabo R, Ingram DK, Longo DL, Wolkow CA. Comparative approaches to facilitate the discovery of prolongevity interventions:effects of tocopherols on lifespan of three invertebrate species. Mech Ageing Dev 2007; 128 (2):222-226
    1. Baur, J.A., et al., resveratrol improves health and survival of mice on a high-calorie diet. Nature,2006.444(7117):p.337-42.
    2. Nanji, A.A. and S.W. French, Alcoholic beverages and coronary heart disease. Atherosclerosis,1986.60(2):p.197-8.
    3. Fremont, L., L. Belguendouz, and S. Delpal, Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci,1999.64(26):p.2511-21.
    4. Howitz, K.T., et al., Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature,2003.425(6954):p.191-6.
    5. Dani, C., et al., Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. J Agric Food Chem,2008.56(11):p.4268-72.
    6. Kaeberlein, M., et al., Substrate-specific activation of sirtuins by resveratrol. J Biol Chem,2005.280(17):p.17038-45.
    7. Bass, T.M., et al., Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev,2007.128(10):p.546-52.
    8. Collins, J.J., K. Evason, and K. Kornfeld, Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp Gerontol,2006.41(10):p.1032-9.
    9. Bauer, J.H., et al., An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci U S A,2004.101(35):p. 12980-5.
    10. Zou, S., et al., The prolongevity effect of resveratrol depends on dietary composition and calorie intake in a tephritid fruit fly. Exp Gerontol,2009.
    11. Valenzano, D.R., et al., resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol,2006.16(3):p.296-300.
    12. Valenzano, D.R. and A. Cellerino, resveratrol and the pharmacology of aging:a new vertebrate model to validate an old molecule. Cell Cycle,2006.5(10):p.1027-32.
    13. Pearson, K.J., et al., resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab, 2008.8(2):p.157-68.
    14. Stefani, M., et al., The effect of resveratrol on a cell model of human aging. Ann N Y Acad Sci,2007.1114:p.407-18.
    15. Yokozawa, T. and Y.J. Kim, Piceatannol inhibits melanogenesis by its antioxidative actions. Biol Pharm Bull,2007.30(11):p.2007-11.
    16. Jang, M., et al., Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science,1997.275(5297):p.218-20.
    17. He, S., C. Sun, and Y. Pan, Red wine polyphenols for cancer prevention. Int J Mol Sci, 2008.9(5):p.842-53.
    18. El-Mowafy, A.M., M. Alkhalaf, and H.A. El-Kashef, resveratrol reverses hydrogen peroxide-induced proliferative effects in human coronary smooth muscle cells:a novel signaling mechanism. Arch Med Res,2008.39(2):p.155-61.
    19. Bastianetto, S. and R. Quirion, Natural extracts as possible protective agents of brain aging. Neurobiol Aging,2002.23(5):p.891-97.
    20. Knutson, M.D. and C. Leeuwenburgh, resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases. Nutr Rev,2008.66(10):p.591-6.
    21. Tessitore, L., et al., resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis,2000.21(8):p.1619-22.
    22. Sun, A.Y., A. Simonyi, and G.Y. Sun, The "French Paradox" and beyond: neuroprotective effects of polyphenols. Free Radic Biol Med,2002.32(4):p.314-8.
    23. Do, G.M., et al., Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice. Biochem Biophys Res Commun,2008.374(1):p.55-9.
    24. Lagouge, M., et al., resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalpha. Cell,2006.127(6):p. 1109-22.
    25. Zhang, J., resveratrol inhibits insulin responses in a SirTl-independent pathway. Biochem J,2006.397(3):p.519-27.
    26. Parker, J.A., et al., resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet,2005.37(4):p.349-50.
    27. Bedalov, A. and J.A. Simon, Neuroscience. NAD to the rescue. Science,2004. 305(5686):p.954-5.
    28. Raval, A.P., et al., resveratrol and ischemic preconditioning in the brain. Curr Med Chem,2008.15(15):p.1545-51.
    29. Anekonda, T.S., resveratrol--a boon for treating Alzheimer's disease? Brain Res Rev, 2006.52(2):p.316-26.
    30. Barger, J.L., et al., A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE,2008.3(6):p. e2264.
    31. Holme, A.L. and S. Pervaiz, resveratrol in cell fate decisions. J Bioenerg Biomembr, 2007.39(1):p.59-63.
    32. Wood, J.G., et al., Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature,2004.430(7000):p.686-9.
    33. Viswanathan, M., et al., A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell,2005.9(5):p.605-15.
    34. Milne, J.C., et al., Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature,2007.450(7170):p.712-6.
    35. Engel, N. and U. Mahlknecht, Aging and anti-aging:unexpected side effects of everyday medication through sirtuinl modulation. Int J Mol Med,2008.21(2):p. 223-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700