用户名: 密码: 验证码:
明胶/磷酸三钙复合纳米纤维膜的成骨诱导机制及骨修复应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨缺损是临床实践中的常见病例。小范围的骨缺损可以通过机体自身的修复机制逐渐愈合完好并恢复其功能,而当骨缺损范围较大即达到“临界尺寸”时,则需要借助人工植入材料进行骨缺损的辅助治疗。自体骨移植是目前临床上最为有效的治疗方法,被称为骨修复的“金标准”,但存在取材来源有限、供区手术与功能障碍以及有感染的风险等缺陷而使其应用受到限制。为解决该问题,近年来广泛采用天然无机骨修复材料即异体移植骨治疗骨缺损,如小牛骨来源的Bio-Oss、猪骨来源的OsteoBiol。然而,这些异体骨存在加工费时、产品价格昂贵等缺陷。因此,众多学者将目光转移到人工合成材料上,尤其是有机/无机复合材料因其在组成和结构上类似天然骨细胞外基质而在骨修复研究中得到广泛应用,也取得了较好的成果。大量研究表明胶原与磷灰石复合材料在体内外均具有良好的生物学效应。本文就明胶与磷酸三钙(β-TCP)复合纳米纤维膜材料在骨修复中的应用以及对成骨分化的诱导机制进行了研究。
     本研究采用静电纺丝技术成功获得不同磷酸三钙(β-TCP)含量(0,5,10和20wt%)的明胶/β-TCP复合纳米纤维膜材料,扫描电镜观察可见交联处理前的纳米纤维粗细均匀,呈现无规则排布,纤维之间互相交错形成很多孔隙,四种复合纳米纤维的纤维直径均在200-400nm之间,表明β-TCP的掺入不会影响纤维直径的变化。单纯明胶纳米纤维表面光滑,而明胶/β-TCP复合纳米纤维上可见突起于纤维表面的磷灰石颗粒,而且磷灰石颗粒在纤维表面的附着量随着β-TCP的含量增加而增加。透射电镜观察可见磷灰石颗粒被包裹在明胶纤维内部,这将为磷灰石溶解释放钙离子起到调节作用。交联后的纳米纤维之间发生融并,纤维直径增加,而纤维间的孔隙较交联处理前明显减小,从纳米纤维膜的侧面观可见膜材料内部的纤维也发生互相粘连,表明纳米纤维膜完全被交联,这将有利于避免用于细胞培养而使材料发生快速降解,但磷灰石颗粒仍然突起于材料表面,表明明胶/β-TCP复合纳米纤维膜具有一定的表面粗糙度,这将有利于细胞的黏附与增殖。结构与组分分析证实了β-TCP和明胶组分的存在。蛋白吸附实验结果显示复合纳米纤维膜材料的血清蛋白吸附量随着β-TCP含量的增加而增加,而且在24小时内蛋白吸附量呈现时间依赖性。钙离子释放实验结果显示,在不更换培养基的情况下,孵育1天后钙离子即开始释放,在第7天时含20wt%β-TCP的膜材料其钙离子释放浓度趋于饱和,而其它两组钙离子释放浓度在持续孵育第14天后达到饱和状态。在达到饱和浓度的20wt%β-TCP膜材料上表面可见大量磷灰石颗粒沉积,表明发生了钙离子再沉积现象。在定期更换培养基的条件下,20wt%β-TCP膜材料在第7天后仍然有钙离子的继续释放,表明该复合纳米纤维膜释放钙离子在一定时间内存在钙离子“溶解-再沉积-溶解”动态平衡状态。
     将成骨细胞系MG-63和原代分离培养的大鼠骨髓间充质干细胞(rBMSCs)分别接种至四种不同β-TCP含量的纳米纤维膜材料上,培养1和7天后,扫描电镜观察细胞形貌以及细胞黏附率检测结果显示,四种纳米纤维膜材料均有利于MG-63细胞及rBMSCs的黏附与增殖,在磷灰石掺入的纳米纤维上细胞表面分泌大量的细胞外基质,且有许多细胞突形成,激光共聚焦显微镜观察细胞骨架显示细胞骨架肌动蛋白丝的分布及细胞铺展面积均与β-TCP的含量呈正相关。MG-63细胞在膜材料上的ELISA检测结果显示四种膜材料中以20wt%β-TCP膜材料上的成骨分化指标碱性磷酸酶的表达量为最高,以上结果表明20wt%β-TCP复合纳米纤维膜材料可以有效促进成骨细胞的黏附、增殖以及成骨分化。进一步在单纯明胶与20wt%β-TCP膜材料上接种第三代rBMSCs后的7,14和21天,实时荧光定量PCR检测结果显示含20wt%β-TCP膜材料不仅可促进BMSCs的成骨分化关键转录因子RUNX-2、成骨分化基因I型胶原、骨形态发生蛋白BMP-2以及骨钙素BGLAP的上调表达,而且还激活了钙敏感受体CaSR的上调表达,表明明胶/β-TCP复合纳米纤维膜诱导rBMSCs成骨分化与CaSR的激活以及BMP-2信号通路有关。
     本实验在体外研究的基础上,进一步将单纯明胶纳米纤维膜与20wt%β-TCP膜材料分别植入直径为8mm的兔下颌骨临界尺寸缺损模型中,以商品胶原膜为对照,分别在术后4周和12周通过解剖学观察、Micro-CT形态学检测、H-E染色以及免疫组化分析显示,单纯明胶纳米纤维膜的骨修复效果在新生骨形貌、骨痂形成、骨密度、骨容积比例以及骨重塑程度等方面均接近商品胶原膜。相比较,明胶/β-TCP复合纳米纤维膜则具有更好的骨修复质量,且在术后12周与宿主骨形成了良好的骨整合,骨密度接近正常骨组织,表明明胶/β-TCP复合纳米纤维膜具有良好的引导骨再生作用。由此可见,本实验制备的明胶/β-TCP复合纳米纤维膜可以用于骨缺损的修复,同时本研究结果将有望对今后骨修复研究及骨缺损的临床治疗提供切实的理论指导。
Bone defects arising from damage and disease are common phenomenon in clinicalpractice. The smaller defects will heal spontaneously, while the larger bone defectsmeaning ‘critical sized defects’ requied the artificial implants to repair. Althoughautologous bone graft is considered the gold standard in clinical practice, limitedavailability, additional surgery, and potential donor site morbidity limited its widelyapplication. To solve the problem, xenogenic grafts are used to repair the bone defectsclinically due to their ready availability and good osteoconductivity as a result of theirorigin from natural bone tissues of animals, i.e., Bio-Oss derived from bovine femur,and OsteoBiol derived from porcine bone. Nevertheless, the disadvantage of theseproducts are their time-consuming manufacturing process and high price. Therefore,extensive research effort is focused on synthetic materials. Especially, the norganicand organic composite materials in composition and structure similar natural boneextracellular matrix have been widely applied in the bone repair and regenerativemedicine, and have achieved lots of good results. Numerous researches have shownthat collagen and apatite composite materials have good biological effects both invitro and in vivo. In this study, the application of composite nanofibers includinggelatin and thicalcium phosphate (β-TCP) in bone repair and their osteoinductionmechanisms were investigated.
     In the present study, gelatin/β-TCP composite nanofibrous membranes werefabricated via electrospinning with β-TCP nanoparticles content of0,5,10, and20wt%respectively. Scanning electron microscope (SEM) observation showed thatuncrosslinked nanofibers present a homogeneous fiber morphology with the range of200–400nm in diameter for all kinds of nanofibers. This indicated that theincorporation of β-TCP could not affects the fiber diameter. The random arrangedand interlaced fibers formed many pore. Pure gelatin nanofibers presented a smoothsurface morphology, while composite nanofibers incorporated β-TCP showedgranule-like surface appearance. Meanwhile, the apparent granule appearance on thesurface of composite nanofibers increased with the increasing amount of β-TCPnano-particles. Transmission electron microscope (TEM) image showed that islets ofβ-TCP nano-particles were enveloped into gelatin matrices. The diameter of fiber increased clearly distribute to fiber swelling in the procedure of crosslinking treatment,while the pore size decreased significantly in comparison with the as-electrospun one.A phenomenon was observed that thfebers were curled and conglutinat ed with eachother throughout the membrane after being crosslinked. This indicated that all thenanofibrous memberanes were crosslinked absolutely. The apatite particles wereremained on the surface of composite nanofibers. It suggested that gelatin/β-TCPcomposite nanofibrous membranes have some surface roughness, which will benefitcell adhesion and proliferation. The structure integrity and functional groups ofgelatin and β-TCP were retained during the procedure of electrospinning. The resultsof protein adsorption analysis showed that the amount of serum protein adsorptiononto the composite nanofibrous membranes increased with the amount ofincorporated β-TCP, and presented a manner of time dependence within24h.
     The results of calcium ion release test showed that calcium ions released obviouslyafter incubation for one day when the culture medium was not changed. At the7thday, the concentration ofcalcium ions release in20wt%β-TCP containing compositenanofibrous membranes reached the saturation state, while the other two groupsreached the saturation concentration after14days. Moreover, numerous apatiteparticles deposited on the surface of20wt%β-TCP membrane materials from SEMimages. When the medium was changed regularly, calcium ions continue to releaseafter7days for20wt%β-TCP membrane materials. From this phenomenon, it couldbe inferred that a balance between dissolution of β-TCP and formation of mineralitedepositions was detected.
     When MG-63osteoblast cell line and primary cultured rats bone marrowmesenchymal stem cells (rBMSCs) were seeded on the composite nanofibrousmembranes respectively for1and7days, SEM images and cell attachment efficiencyanalysis showed that four kinds of nanofibrous membranes are beneficial to celladhesion and proliferation. For the composite nanofibers incorporated β-TCP groups,plenty of extracellular matrix secreted on the surface of cells and formed apparentprotruding cellular processes. Laser confocal microscope observation showed thatcytoskeletal organization and cell spreading area on the composite nanofibrousmembranes increased with the amount of incorporated β-TCP. ELISA tests showedthat cells in20wt%β-TCP group exhibited highest ALP activity, indicating higheramount of incorporated β-TCP enhanced higher ability of osteogenic differentiation of MG-63cells. These results showed that composite nanofiber membranes with20wt%β-TCP could promote effectively the adhesion and proliferation of osteoblasts.Furthermore, the third generation of rBMSCs were cultured on the pure gelatin and20wt%β-TCP membrane materials respectively after7,14and21days. Real-timequantitative PCR detection results show that the composite nanofibrous membranescontaining20wt%β-TCP not only can promote the upregulation expression ofosteoblast differentiation key transcription factors RUNX-2, type I collagen, BMP-2and bone gamma-carboxyglutamate protein (BGLAP), but also activate the calciumsensitive receptor (CaSR) during the experiment period, suggesting the osteoinductionmechanisms of gelatin/β-TCP composite nanofibrous membrane were related to theactivity of CaSR and BMP-2signaling pathway.
     On the basis of in vitro studies, pure gelatin nanofibrous membranes and compositenanofibrous membranes with20wt%β-TCP were further implanted into rabbitmandibular critical size defect models (8mm in diameter) respectively. Thecommercial collagen membranes were used as control. At4and12weekspost-operation, anatomical observation, Micro-CT detection, H&E staining andimmunohistochemical analysis showed that the bone repair efficiency of pure gelatinnanofibrous membranes was close to that of commercial collagen membranesregarding new bone morphology, callus formation, bone mineral density, bone volumeratio, and bone remodeling degree. By comparison, gelatin/β-TCP compositenanofibrous membranes had better bone repair quality, and formed good boneintergration with host bone at12weeks post-operation. Bone mineral density ofgelatin/β-TCP composite nanofibrous membranes group was close to that of normalbone tissue, sugessting the gelatin/β-TCPcomposite nanofibrous membranes had wellguid bone regeneration effects. These results demonstrated that electrospungelatin/β-TCP composite nanofibrous membranes could be used to bone repairtreatment, and the results would provide the feasible and theoretical guidance forfurther bone regeneration research.
引文
[1] Petite H, Viateau V, Bensaid W, et al. Tissue-engineered bone regeneration [J].Nat Biotechnol,2000,18(9):959-963.
    [2] Develioglu H, Unver Saraydin S, Kartal U. The bone-healing effect of axenograft in a rat calvarial defect model [J]. Dent Mater J,2009,28(4):396-400.
    [3] Develioglu H, Saraydin S, Kartal U, et al. Evaluation of the long-term results ofrat cranial bone repair using a particular xenograft [J]. J Oral Implantol,2010,36(3):167-73.
    [4] Yang YG, Sykes M. Xenotransplantation: current status and a perspective on thefuture [J]. Nat Rev Immunol,2007,7(7):519-531.
    [5] Thomas V, Dean DR, Jose MV, et al. Nanostructured biocomposite scaffoldsbased on collagen coelectrospun with nanohydroxyapatite [J].Biomacromolecules,2007,8(2):631-637.
    [6] Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation ofmesenchymal stem cells in biodegradable sponges composed of gelatin andbeta-tricalcium phosphate [J]. Biomaterials,2005,26(17):3587-3596.
    [7] Eslaminejad MB, Mirzadeh H, Mohamadi Y, et al. Bone differentiation ofmarrow-derived mesenchymal stem cells using beta-tricalciumphosphate-alginate-gelatin hybrid scaffolds [J]. J Tissue Eng Regen Med.2007,1(6):417-424.
    [8] Takahashi Y, Yamamoto M, Tabata Y. Enhanced osteoinduction by controlledrelease of bone morphogenetic protein-2from biodegradable sponge composedof gelatin and beta-tricalcium phosphate [J]. Biomaterials,2005,26(23):4856-4865.
    [9] Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen-apatiteprecipitated nanocomposite for bone regeneration [J]. J Mater Sci Mater Med,2008,19(8):2925-2932.
    [10] Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin–hydroxyapatitebiomimetics for guided tissue regeneration [J]. Adv. Funct. Mater,2005,15:1988-1994.
    [11]廖素三,崔福斋,张伟.组织工程中胶原基纳米骨复合材料的研制[J].中国医学科学院学报,2003,25(1):36-38.
    [12]胡堃,刘斌.骨移植材料发展趋势[J].生物骨科材料与临床研究,2010,7(3):32-38.
    [13] Keatch RP, Schor AM, Vorstius JB, et al. Biomaterials in regenerative medicine:engineering to recapitulate the natural [J]. Curr Opin Biotechnol,2012.http://dx.doi.org/10.1016/j.copbio.2012.01.017.
    [14] Calvo MS, Eyre DR, Gundberg CM. Molecular basis and clinical application ofbiological markers of bone turnover [J]. Endocr Rev,1996,17(4):333-368.
    [15] Stevens MM, George JH. Exploring and engineering the cell surface interface[J]. Science,2005,310(5751):1135-1138.
    [16] Sommerfeldt DW, Rubin CT. Biology of bone and how it orchestrates the formand function of the skeleton [J]. Eur Spine J,2001,10:86-95.
    [17] Donahue HJ, McLeod KJ, Rubin CT, et al. Cell-to-cell communication inosteoblastic networks: cell line-dependent hormonal regulation of gap junctionfunction [J]. J Bone Miner Res,1995,10(6):881-889.
    [18] Schindeler A, McDonald MM, Bokko P, et al. Bone remodeling during fracturerepair: The cellular picture [J]. Semin Cell Dev Biol,2008,19(5):459-466.
    [19] Wettergreen La. Optimization of Bone Scaffold Engineering for Load BearingApplications [M]. Topics in Tissue Engineering2003.
    [20] Samartzis D, Shen FH, Goldberg EJ, et al. Is autograft the gold standard inachieving radiographic fusion in one-level anterior cervical discectomy andfusion with rigid anterior plate fixation?[J]. Spine,2005,30(15):1756-1761.
    [21] Bauer TW, Muschler GF. Bone graft materials. An overview of the basicscience [J]. Clin Orthop Relat Res,2000(371):10-27.
    [22] Greenwald AS, Boden SD, Goldberg VM, et al. Bone-graft substitutes: facts,fictions, and applications [J]. J Bone Joint Surg Am,2001,83(2):98-103.
    [23] Khan SN, Cammisa FP, Jr., Sandhu HS, et al. The biology of bone grafting [J]. JAm Acad Orthop Surg,2005,13(1):77-86.
    [24] Sen MK, Miclau T. Autologous iliac crest bone graft: should it still be the goldstandard for treating nonunions?[J]. Injury,2007,38:75-80.
    [25] Torroni A. Engineered bone grafts and bone flaps for maxillofacial defects: stateof the art [J]. J Oral Maxillofac Surg,2009,67(5):1121-1127.
    [26] Marx RE, Wong ME. A technique for the compression and carriage ofautogenous bone during bone grafting procedures [J]. J Oral Maxillofac Surg,1987,45(11):988-989.
    [27] Gazdag AR, Lane JM, Glaser D, et al. Alternatives to Autogenous Bone Graft:Efficacy and Indications [J]. J Am Acad Orthop Surg,1995,3(1):1-8.
    [28] Einhorn TA, Majeska RJ, Rush EB, et al. The expression of cytokine activity byfracture callus [J]. J Bone Miner Res,1995,10(8):1272-1281.
    [29] Bacher JD, Schmidt RE. Effects of autogenous cancellous bone on healing ofhomogenous cortical bone grafts [J]. J Small Anim Pract,1980,21(4):235-245.
    [30] Johnson LL, Morrison KM, Wood DL. The application of arthroscopicprinciples to bone grafting of delayed union of long bone fractures [J].Arthroscopy,2000,16(3):279-289.
    [31] Roden RD. Principles of bone grafting [J]. Oral Maxillofacial Surg Clin N Am,2010,22:295-300.
    [32] Welch RD, Zhang H, Bronson DG. Experimental tibial plateau fracturesaugmented with calcium phosphate cement or autologous bone graft [J]. J BoneJoint Surg Am,2003,8(2):222-231.
    [33] Dell PC, Burchardt H, Glowczewskie FP. A roentgenographic, biomechanical,and histological evaluation of vascularized and non-vascularized segmentalfibular canine autografts [J]. J Bone Joint Surg Am,1985,67(1):105-112.
    [34] Stevenson S. Biology of bone grafts [J]. Orthop Clin North Am,1999,30(4):543-552.
    [35] Beaman FD, Bancroft LW, Peterson JJ, et al. Bone graft materials and syntheticsubstitutes [J]. Radiol Clin North Am,2006,44(3):451-461.
    [36] Finkemeier CG. Bone-grafting and bone-graft substitutes [J]. J Bone Joint SurgAm,2002,84(3):454-464.
    [37] Putzier M, Strube P, Funk JF, et al. Allogenic versus autologous cancellous bonein lumbar segmental spondylodesis: a randomized prospective study [J]. EurSpine J,2009,18(5):687-695.
    [38] Habibovic P, de Groot K. Osteoinductive biomaterials--properties and relevancein bone repair [J]. J Tissue Eng Regen Med,2007,1(1):25-32.
    [39] Marx RE. Bone and bone graft healing [J]. Oral Maxillofac Surg Clin North Am,2007,19(4):455-466.
    [40] Katz JM, Nataraj C, Jaw R, et al. Demineralized bone matrix as anosteoinductive biomaterial and in vitro predictors of its biological potential [J]. JBiomed Mater Res B Appl Biomater,2009,89(1):127-134.
    [41] Wang JC, Alanay A, Mark D, et al. A comparison of commercially availabledemineralized bone matrix for spinal fusion [J]. Eur Spine J,2007,16(8):1233-1240.
    [42] Docquier PL, Delloye C. Treatment of aneurysmal bone cysts by introduction ofdemineralized bone and autogenous bone marrow [J]. J Bone Joint Surg Am,2005,87(10):2253-2258.
    [43] Tynan JR, Schachar NS, Marshall GB, et al. Pathologic fracture through aunicameral bone cyst of the pelvis: CT-guided percutaneous curettage, biopsy,and bone matrix injection [J]. J Vasc Interv Radiol,2005,16:293-6.
    [44] Knothe UR, Springfield DS. A novel surgical procedure for bridging of massivebone defects [J]. World J Surg Oncol,2005,3(1):7.
    [45] Lieberman JR, Ghivizzani SC, Evans CH. Gene transfer approaches to thehealing of bone and cartilage [J]. Mol Ther,2002,6(2):141-147.
    [46] Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissueengineering [J]. Nat Mater,2009,8(6):457-470.
    [47] Nandi SK, Kundu B, Ghosh SK, et al. Efficacy of nano-hydroxyapatite preparedby an aqueous solution combustion technique in healing bone defects of goat [J].J Vet Sci,2008,9(2):183-191.
    [48] Balcik C, Tokdemir T, Senkoylu A, et al. Early weight bearing of porousHA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bonedefect model of rabbit[J]. Acta Biomater,2007,3(6):985-996.
    [49] Noshi T, Yoshikawa T, Ikeuchi M, et al. Enhancement of the in vivo osteogenicpotential of marrow/hydroxyapatite composites by bovine bone morphogeneticprotein[J]. J Biomed Mater Res,2000,52(4):621-630.
    [50] Santos MH, Valerio P, Goes AM, et al. Biocompatibility evaluation ofhydroxyapatite/collagen nanocomposites doped with Zn2+[J]. Biomed Mater,2007,2(2):135-141.
    [51] Daculsi G, LeGeros RZ, Heughebaert M, et al. Formation of carbonate-apatitecrystals after implantation of calcium phosphate ceramics [J]. Calcif Tissue Int,1990,46(1):20-27.
    [52] Hak DJ. The use of osteoconductive bone graft substitutes in orthopaedic trauma[J]. J Am Acad Orthop Surg,2007,15(9):525-536.
    [53] Hing KA, Wilson LF, Buckland T. Comparative performance of three ceramicbone graft substitutes [J]. Spine J,2007,7(4):475-490.
    [54] Zhang H, Ye XJ, Li JS. Preparation and biocompatibility evaluation ofapatite/wollastonite-derived porous bioactive glass ceramic scaffolds [J].Biomed Mater,2009,4(4):045007.
    [55] Nandi SK, Kundu B, Datta S, et al. The repair of segmental bone defects withporous bioglass: an experimental study in goat [J]. Res Vet Sci,2009,86(1):162-173.
    [56] Dorea HC, McLaughlin RM, Cantwell HD, et al. Evaluation of healing in felinefemoral defects filled with cancellous autograft, cancellous allograft or Bioglass[J]. Vet Comp Orthop Traumatol,2005,18(3):157-168.
    [57] Hench LL, Wilson J. Surface-active biomaterials [J]. Science,1984,226(4675):630-636.
    [58] Neo M, Nakamura T, Ohtsuki C, et al. Ultrastructural study of the A-WGC-bone interface after long-term implantation in rat and human bone [J]. JBiomed Mater Res,1994,28(3):365-372.
    [59] Gatti AM, Zaffe D. Long-term behaviour of active glasses in sheep mandibularbone [J]. Biomaterials,1991,12(3):345-350.
    [60] De Aza PN, Luklinska ZB, Santos C,, et al. Mechanism of bone-like formationon a bioactive implant in vivo [J]. Biomaterials,2003,24(8):1437-1445.
    [61] Suominen E, Kinnunen J. Bioactive glass granules and plates in thereconstruction of defects of the facial bones [J]. Scand J Plast Reconstr SurgHand Surg,1996,30(4):281-289.
    [62] Villaca JH, Novaes AB, Jr., Souza SL, et al. Bioactive glass efficacy in theperiodontal healing of intrabony defects in monkeys [J]. Braz Dent J,2005,16(1):67-74.
    [63] Peltola MJ, Suonpaa JT, Andersson H, et al. In vitro model for frontal sinusobliteration with bioactive glass S53P4[J]. J Biomed Mater Res,2000,53(2):161-166.
    [64] Aitasalo K, Kinnunen I, Palmgren J, et al. Repair of orbital floor fractures withbioactive glass implants [J]. J Oral Maxillofac Surg,2001,59(12):1390-1395.
    [65] Carey LE, Xu HH, Simon CG, et al. Premixed rapid-setting calcium phosphatecomposites for bone repair [J]. Biomaterials,2005,26(24):5002-5014.
    [66] Cherng AM, Chow LC, Takagi S. In vitro evaluation of a calcium phosphatecement root canal filler/sealer [J]. J Endod,2001,27(10):613-615.
    [67] Apelt D, Theiss F, El-Warrak AO, et al. In vivo behavior of three differentinjectable hydraulic calcium phosphate cements [J]. Biomaterials,2004,25:1439-1451.
    [68] Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes [J]. Expert Rev MedDevices,2006,3(1):49-57.
    [69] Park JK, Yeom J, Oh EJ, et al. Guided bone regeneration bypoly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films forperiodontal barrier applications[J]. Acta Biomater,2009,5(9):3394-3403.
    [70] Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinicalcell-based tissue engineering [J]. J Bone Joint Surg Am,2004,86:1541-1558.
    [71] O'Loughlin PF, Morr S, Bogunovic L, et al. Selection and development ofpreclinical models in fracture-healing research [J]. J Bone Joint Surg Am,2008,90:79-84.
    [72] Pearce AI, Richards RG, Milz S, et al. Animal models for implant biomaterialresearch in bone: a review [J]. Eur Cell Mater,2007,13:1-10.
    [73] Verna C, Dalstra M, Wikesjo UM, et al. Healing patterns in calvarial bonedefects following guided bone regeneration in rats. A micro-CT scan analysis[J]. J Clin Periodontol,2002,29(9):865-870.
    [74] Bosch C, Melsen B, Vargervik K. Importance of the critical-size bone defect intesting bone-regenerating materials [J]. J Craniofac Surg,1998,9(4):310-316.
    [75] Cowan CM, Shi YY, Aalami OO, et al. Adipose-derived adult stromal cells healcritical-size mouse calvarial defects [J]. Nat Biotechnol,2004,22(5):560-567.
    [76] Park JW, Jang JH, Bae SR, et al. Bone formation with various bone graftsubstitutes in critical-sized rat calvarial defect [J]. Clin Oral Implants Res,2009,20(4):372-378.
    [77] Koob S, Torio-Padron N, Stark GB, et al. Bone formation andneovascularization mediated by mesenchymal stem cells and endothelial cells incritical-sized calvarial defects [J]. Tissue Eng Part A,17:311-321.
    [78] Behr B, Sorkin M, Lehnhardt M, et al. A Comparative Analysis of theOsteogenic Effects of BMP-2, FGF-2, and VEGFA in a Calvarial Defect Model[J]. Tissue Eng Part A,2012.
    [79] Jiang X, Zhao J, Wang S, et al. Mandibular repair in rats with premineralizedsilk scaffolds and BMP-2-modified bMSCs [J]. Biomaterials,2009,30(27):4522-4532.
    [80] Yang Y, Rossi FM, Putnins EE. Periodontal regeneration using engineered bonemarrow mesenchymal stromal cells [J]. Biomaterials,31(33):8574-8582.
    [81] Gielkens PF, Schortinghuis J, de Jong JR, et al. Vivosorb, Bio-Gide, andGore-Tex as barrier membranes in rat mandibular defects: an evaluation bymicroradiography and micro-CT [J]. Clin Oral Implants Res,2008,19(5):516-521.
    [82] Espitalier F, Vinatier C, Lerouxel E, et al. A comparison between bonereconstruction following the use of mesenchymal stem cells and total bonemarrow in association with calcium phosphate scaffold in irradiated bone [J].Biomaterials,2009,30(5):763-769.
    [83] Maier B, Ploss C, Marzi I. Thoracolumbar spine injuries[J]. Orthopade,2010,39(3):247-255.
    [84] Cheng L, Ye F, Yang R, et al. Osteoinduction of hydroxyapatite/beta-tricalciumphosphate bioceramics in mice with a fractured fibula [J]. Acta Biomater,6(4):1569-1574.
    [85] Neyt JG, Buckwalter JA, Carroll NC. Use of animal models in musculoskeletalresearch [J]. Iowa Orthop J,1998,18:118-23.
    [86] Oortgiesen DA, Meijer GJ, Bronckers AL, et al. Fenestration defects in therabbit jaw: an inadequate model for studying periodontal regeneration [J].Tissue Eng Part C Methods,2010,16(1):133-140.
    [87] Lin CY, Chang YH, Kao CY, et al. Augmented healing of critical-size calvarialdefects by baculovirus-engineered MSCs that persistently express growthfactors [J]. Biomaterials,2012,33(14):3682-3692.
    [88] Pripatnanont P, Nuntanaranont T, Vongvatcharanon S, et al. Osteoconductiveeffects of3heat-treated hydroxyapatites in rabbit calvarial defects [J]. J OralMaxillofac Surg,2007,65(12):2418-2424.
    [89] Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion ofdeproteinized bovine bone and autogenous bone affects bone formation in thetreatment of calvarial defects in rabbits [J]. Int J Oral Maxillofac Surg,2009,38(4):356-362.
    [90] Sawada Y, Hokugo A, Yang Y, et al. A novel hydroxyapatite ceramic bonesubstitute transformed by ostrich cancellous bone: characterization andevaluations of bone regeneration activity [J].J Biomed Mater Res B ApplBiomater,98B (2):217-222.
    [91] Ren T, Ren J, Jia X, et al. The bone formation in vitro and mandibular defectrepair using PLGA porous scaffolds [J]. J Biomed Mater Res A,2005,74(4):562-569.
    [92] Wang H, Li Y, Zuo Y, et al. Biocompatibility and osteogenesis of biomimeticnano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials,2007,28(22):3338-3348.
    [93] Zhang JC, Lu HY, Lv GY, et al. The repair of critical-size defects with poroushydroxyapatite/polyamide nanocomposite: an experimental study in rabbitmandibles [J]. Int J Oral Maxillofac Surg,39(5):469-477.
    [94] Guo J, Meng Z, Chen G, et al. Restoration of Critical-Size Defects in the RabbitMandible Using Porous Nanohydroxyapatite-Polyamide Scaffolds [J]. TissueEng Part A,2012.
    [95] Aslan M, Simsek G, Dayi E. Guided bone regeneration (GBR) on healing bonedefects: a histological study in rabbits [J]. J Contemp Dent Pract,2004,5(2):114-123.
    [96] He H, Huang J, Chen G, et al. Application of a new bioresorbable film to guidedbone regeneration in tibia defect model of the rabbits [J]. J Biomed Mater Res A,2007,82(1):256-262.
    [97] Ouyang EM, Zhang XH, Wang W. Study on the effects of organic removal bytraditional purification process with three-dimensional excitation emissionmatrix fluorescence spectroscopy [J]. Guang Pu Xue Yu Guang Pu Fen Xi,2007,27:1373-1376.
    [98] Aerssens J, Boonen S, Lowet G, et al. Interspecies differences in bonecomposition, density, and quality: potential implications for in vivo boneresearch [J]. Endocrinology,1998,139(2):663-670.
    [99] Gong JK, Arnold JS, Cohn SH. Composition of Trabecular and Cortical Bone[J]. Anat Rec,1964,149:325-331.
    [100] Elsalanty ME, Por YC, Genecov DG, et al. Recombinant human BMP-2enhances the effects of materials used for reconstruction of large cranial defects[J]. J Oral Maxillofac Surg,2008,66(2):277-285.
    [101] Kawai T, Matsui K, Iibuchi S, et al. Reconstruction of critical-sized bone defectin dog skull by octacalcium phosphate combined with collagen [J]. Clin ImplantDent Relat Res,13(2):112-123.
    [102] Kuznetsov SA, Huang KE, Marshall GW, et al. Long-term stable caninemandibular augmentation using autologous bone marrow stromal cells andhydroxyapatite/tricalcium phosphate [J]. Biomaterials,2008,29(31):4211-4216.
    [103] Kikuchi M, Koyama Y, Yamada T, et al. Development of guided boneregeneration membrane composed of beta-tricalcium phosphate and poly(L-lactide-co-glycolide-co-epsilon-caprolactone) composites [J]. Biomaterials,2004,25(28):5979-5986.
    [104] Willie BM, Bloebaum RD, Bireley WR, et al. Determining relevance of aweight-bearing ovine model for bone ingrowth assessment [J]. J Biomed MaterRes A,2004,69(3):567-576.
    [105] Murray R. Animal models for orthopaedic disease--who benefits?[J]. Vet J,2002,163(3):230-231.
    [106] Newman E, Turner AS, Wark JD. The potential of sheep for the study ofosteopenia: current status and comparison with other animal models [J]. Bone,1995,16l:277-284.
    [107] Zhu L, Liu W, Cui L, et al. Tissue-engineered bone repair of goat-femur defectswith osteogenically induced bone marrow stromal cells [J]. Tissue Eng,2006,12(3):423-433.
    [108] Liu G, Zhao L, Zhang W, et al. Repair of goat tibial defects with bone marrowstromal cells and beta-tricalcium phosphate [J]. J Mater Sci Mater Med,2008,19(6):2367-2376.
    [109] Rashid ST, Salacinski HJ, Hamilton G, et al. The use of animal models indeveloping the discipline of cardiovascular tissue engineering: a review [J].Biomaterials,2004,25(9):1627-1637.
    [110] Wang S, Liu Y, Fang D, et al. The miniature pig: a useful large animal modelfor dental and orofacial research [J]. Oral Dis,2007,13(6):530-537.
    [111] Kragstrup J, Richards A, Fejerskov O. Effects of fluoride on cortical boneremodeling in the growing domestic pig [J]. Bone,1989,10(6):421-424.
    [112] Strietzel FP, Khongkhunthian P, Khattiya R, et al. Healing pattern of bonedefects covered by different membrane types--a histologic study in the porcinemandible [J]. J Biomed Mater Res B Appl Biomater,2006,78(1):35-46.
    [113] Polak SJ, Levengood SK, Wheeler MB, et al. Analysis of the roles ofmicroporosity and BMP-2on multiple measures of bone regeneration andhealing in calcium phosphate scaffolds [J]. Acta Biomater,2011,7(4):1760-1771.
    [114] Tiainen H, Wohlfahrt JC, Verket A, et al. Bone formation in TiO(2) bonescaffolds in extraction sockets of minipigs [J]. Acta Biomater,2012.
    [115] Wehrhan F, Amann K, Molenberg A, et al. PEG matrix enables cell-mediatedlocal BMP-2gene delivery and increased bone formation in a porcine criticalsize defect model of craniofacial bone regeneration [J]. Clin Oral Implants Res,2011.
    [116] Stockmann P, Park J, von Wilmowsky C, et al. Guided bone regeneration in pigcalvarial bone defects using autologous mesenchymal stem/progenitor cells-Acomparison of different tissue sources [J]. J Craniomaxillofac Surg,2011.
    [117] Nolen RS. Primate veterinarians promote animal welfare, biomedical research.One-health approach bridges gap between science and medicine [J]. J Am VetMed Assoc,2009,235(4):346-348.
    [118] Zhou M, Peng X, Mao C, et al. Primate mandibular reconstruction withprefabricated, vascularized tissue-engineered bone flaps and recombinanthuman bone morphogenetic protein-2implanted in situ [J]. Biomaterials,2010,31(18):4935-4943.
    [119] Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellularmicroenvironments for morphogenesis in tissue engineering [J]. Nat Biotechnol,2005,23(1):47-55.
    [120] Leone DP, Relvas JB, Campos LS, et al. Regulation of neural progenitorproliferation and survival by beta1integrins [J]. J Cell Sci,2005,118:2589-2599.
    [121] Lapidot T, Dar A, Kollet O. How do stem cells find their way home?[J]. Blood,2005,106(6):1901-1910.
    [122] Klees RF, Salasznyk RM, Kingsley K, et al. Laminin-5induces osteogenic geneexpression in human mesenchymal stem cells through an ERK-dependentpathway [J]. Mol Biol Cell,2005,16(2):881-890.
    [123] Salasznyk RM, Klees RF, Williams WA, et al. Focal adhesion kinase signalingpathways regulate the osteogenic differentiation of human mesenchymal stemcells [J]. Exp Cell Res,2007,313(1):22-137.
    [124] McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, andRhoA regulate stem cell lineage commitment [J]. Dev Cell,2004,6(4):483-495.
    [125] Huang NF, Li S. Regulation of the matrix microenvironment for stem cellengineering and regenerative medicine [J]. Ann Biomed Eng,2011,39(4):1201-1214.
    [126] Woo KM, Jun JH, Chen VJ, et al. Nano-fibrous scaffolding promotes osteoblastdifferentiation and biomineralization [J]. Biomaterials,2007,28(2):335-343.
    [127] Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds forbiomedical applications [J]. Adv Drug Deliv Rev,2007,59(14):1392-1412.
    [128] Gronowicz G, McCarthy MB. Response of human osteoblasts to implantmaterials: integrin-mediated adhesion [J]. J Orthop Res,1996,14(6):878-887.
    [129] Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins,purified integrins, and osteoblast precursor cells than titanium or steel [J]. JBiomed Mater Res,2001,57(2):258-267.
    [130] Price RL, Ellison K, Haberstroh KM, et al. Nanometer surface roughnessincreases select osteoblast adhesion on carbon nanofiber compacts [J]. J BiomedMater Res A,2004,70(1):129-138.
    [131] Zhao W, Teo GS, Kumar N, et al. Chemistry and material science at the cellsurface [J]. Mater Today,2010,13(4):14-21.
    [132] Liu Y, Ji Y, Ghosh K, et al. Effects of fiber orientation and diameter on thebehavior of human dermal fibroblasts on electrospun PMMA scaffolds [J]. JBiomed Mater Res A,2009,90(4):1092-1106.
    [133] Finne-Wistrand A, Albertsson AC, Kwon OH, et al. Resorbable scaffolds fromthree different techniques: electrospun fabrics, salt-leaching porous films, andsmooth flat surfaces [J]. Macromol Biosci,2008,8(10):951-959.
    [134] Chen M, Patra PK, Warner SB, et al. Role of fiber diameter in adhesion andproliferation of NIH3T3fibroblast on electrospun polycaprolactone scaffolds[J]. Tissue Eng,2007,13(3):579-587.
    [135] Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotypeexpression of MC3T3-E1cultured on electrospun polycaprolactone fiber matsfilled with hydroxyapatite nanoparticles [J]. Biomacromolecules,2007,8(8):2602-2610.
    [136] Lee KW, Wang S, Yaszemski MJ, et al. Physical properties and cellularresponses to crosslinkable poly(propylene fumarate)/hydroxyapatitenanocomposites [J]. Biomaterials,2008,29(19):2839-2848.
    [137] Singhvi R, Kumar A, Lopez GP, et al. Engineering cell shape and function[J].Science,1994,264(5159):696-698.
    [138] Badami AS, Kreke MR, Thompson MS, et al. Effect of fiber diameter onspreading, proliferation, and differentiation of osteoblastic cells on electrospunpoly(lactic acid) substrates [J]. Biomaterials,2006,27(4):596-606.
    [139] Venugopal J, Low S, Choon AT, et al. Electrospun-modified nanofibrousscaffolds for the mineralization of osteoblast cells [J]. J Biomed Mater Res A,2008,85(2):408-417.
    [140] Mei F, Zhong J, Yang X, et al. Improved biological characteristics ofpoly(L-lactic acid) electrospun membrane by incorporation of multiwalledcarbon nanotubes/hydroxyapatite nanoparticles [J]. Biomacromolecules,2007,8(12):3729-3735.
    [141] Zhang Y, Venugopal JR, El-Turki A, et al. Electrospun biomimeticnanocomposite nanofibers of hydroxyapatite/chitosan for bone tissueengineering [J]. Biomaterials,2008,29-(32):4314-4322.
    [142] Kuo YC, Chiu KH. Inverted colloidal crystal scaffolds with laminin-derivedpeptides for neuronal differentiation of bone marrow stromal cells [J].Biomaterials,2011,32(3):819-831.
    [143]周游,曾勇,李新志.干细胞在骨科中应用的研究进展[J].中国矫形外科杂志,201,19(14):1185-1200.
    [144] Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymalstem cells and induced chondrogenic and osteogenic lineages in electrospunPLGA nanofiber scaffold [J]. Biomaterials,2007,28(2):316-325.
    [145] Li WJ, Tuli R, Huang X, et al. Multilineage differentiation of humanmesenchymal stem cells in a three-dimensional nanofibrous scaffold [J].Biomaterials,2005,26(25):5158-5166.
    [146] Rim NG, Lee JH, Jeong SI, et al. Modulation of osteogenic differentiation ofhuman mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers [J]. Macromol Biosci,2009,9(8):795-804.
    [147] Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem celldifferentiation to neuronal cells on electrospun nanofibrous substrates for nervetissue engineering[J]. Biomaterials,2009,30(28):4996-5003.
    [148] Dang JM, Leong KW. Myogenic Induction of Aligned Mesenchymal Stem CellSheets by Culture on Thermally Responsive Electrospun Nanofibers [J]. AdvMater,2007,19(19):2775-2779.
    [149] Bashur CA, Shaffer RD, Dahlgren LA, et al. Effect of fiber diameter andalignment of electrospun polyurethane meshes on mesenchymal progenitor cells[J]. Tissue Eng Part A,2009,15(9):2435-2445.
    [150] Soliman S, Pagliari S, Rinaldi A, et al. Multiscale three-dimensional scaffoldsfor soft tissue engineering via multimodal electrospinning [J]. Acta Biomater,2010,6(4):1227-1237.
    [151] Chang MC, Ko CC, Douglas WH. Preparation of hydroxyapatite-gelatinnanocomposite [J]. Biomaterials,2003,24(17):2853-2862.
    [152] Bianco A, Del Gaudio C, Baiguera S, et al. Microstructure andcytocompatibility of electrospun nanocomposites based onpoly(epsilon-caprolactone) and carbon nanostructures [J]. Int J Artif Organs,2010,33(5):271-282.
    [153] Okuda T, Ioku K, Yonezawa I, et al. The slow resorption with replacement bybone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite [J].Biomaterials,2008,29(18):2719-2728.
    [154] Meng J, Zhang Y, Qi X, et al. Paramagnetic nanofibrous composite filmsenhance the osteogenic responses of pre-osteoblast cells [J]. Nanoscale,2010,2(12):2565-2569.
    [155] Liu X, Smith LA, Hu J, et al. Biomimetic nanofibrous gelatin/apatite compositescaffolds for bone tissue engineering [J]. Biomaterials,2009,30(12):2252-2258.
    [156] Gupta D, Venugopal J, Mitra S, et al. Nanostructured biocomposite substratesby electrospinning and electrospraying for the mineralization of osteoblasts [J].Biomaterials,2009,30(11):2085-2094.
    [157] Yung CW, Wu LQ, Tullman JA, et al. Transglutaminase crosslinked gelatin as atissue engineering scaffold [J]. J Biomed Mater Res A,2007,83(4):1039-1046.
    [158] LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates [J].Clin Orthop Relat Res,2002(395):81-98.
    [159] Mckee MG, Wilkes GL, Colby RH, et al. Correlations of Solution Rheologywith Electrospun Fiber Formation of Linear and Branched Polyesters [J].Macromolecules,2004,37:1760-1767.
    [160] Kaur G, Valarmathi MT, Potts JD, et al. Regulation of osteogenic differentiationof rat bone marrow stromal cells on2D nanorod substrates [J]. Biomaterials,2010,31(7):1732-1741.
    [161] Anselme K. Osteoblast adhesion on biomaterials [J]. Biomaterials,2000,21(7):667-681.
    [162] Fan YW, Cui FZ, Hou SP, et al. Culture of neural cells on silicon wafers withnano-scale surface topograph [J]. J Neurosci Methods,2002,120(1):17-23.
    [163] Crouch AS, Miller D, Luebke KJ, et al. Correlation of anisotropic cell behaviorswith topographic aspect ratio [J]. Biomaterials,2009,30(8):1560-1567.
    [164] Lee JH, Rim NG, Jung HS, et al. Control of osteogenic differentiation andmineralization of human mesenchymal stem cells on composite nanofiberscontaining poly[lactic-co-(glycolic acid)] and hydroxyapatite [J]. MacromolBiosci,2010,10(2):173-182.
    [165] Smith IO, Liu XH, Smith LA, et al. Nanostructured polymer scaffolds for tissueengineering and regenerative medicine [J]. Wiley Interdiscip Rev NanomedNanobiotechnol,2009,1(2):226-236.
    [166] Wilson CJ, Clegg RE, Leavesley DI, et al. Mediation of biomaterial-cellinteractions by adsorbed proteins: a review [J]. Tissue Eng,2005,11:1-18.
    [167] Rechendorff K, Hovgaard MB, Foss M, et al. Enhancement of proteinadsorption induced by surface roughness [J]. Langmuir,2006,22(26):10885-10888.
    [168] Woo KM, Seo J, Zhang R, et al. Suppression of apoptosis by enhanced proteinadsorption on polymer/hydroxyapatite composite scaffolds [J]. Biomaterials,2007,28(16):2622-2230.
    [169] Nguyen MN, Lebarbe T, Zouani OF, et al. Impact of RGD NanopatternsGrafted onto Titanium on Osteoblastic Cell Adhesion [J]. Biomacromolecules,2012,13(3):896-904.
    [170] Rosa AL, Beloti MM. Effect of cpTi surface roughness on human bone marrowcell attachment, proliferation, and differentiation [J]. Braz Dent J,2003,14(1):16-21.
    [171] Huang Z, Cheng SL, Slatopolsky E. Sustained activation of the extracellularsignal-regulated kinase pathway is required for extracellular calcium stimulationof human osteoblast proliferation [J]. J Biol Chem,2001,276(24):21351-21358.
    [172] Dvorak MM, Riccardi D. Ca2+as an extracellular signal in bone [J]. CellCalcium,2004,35(3):249-255.
    [173] Bernhardt A, Lode A, Mietrach C, et al. In vitro osteogenic potential of humanbone marrow stromal cells cultivated in porous scaffolds from mineralizedcollagen [J]. J Biomed Mater Res A,2009,90(3):852-862.
    [174] Chai YC, Roberts SJ, Schrooten J, et al. Probing the osteoinductive effect ofcalcium phosphate by using an in vitro biomimetic model [J]. Tissue Eng Part A,2011,17:1083-1097.
    [175] Matsubara T, Kida K, Yamaguchi A, et al. BMP2regulates Osterix throughMsx2and Runx2during osteoblast differentiation [J]. J Biol Chem,2008,283(43):29119-29125.
    [176] Thimm J, Mechler A, Lin H, et al. Calcium-dependent open/closedconformations and interfacial energy maps of reconstituted hemichannels [J]. JBiol Chem,2005,280(11):10646-10654.
    [177] Raya A, Kawakami Y, Rodriguez-Esteban C, et al. Notch activity acts as asensor for extracellular calcium during vertebrate left-right determination [J].Nature,2004,427(6970):121-128.
    [178] Yamauchi M, Yamaguchi T, Kaji H, et al. Involvement of calcium-sensingreceptor in osteoblastic differentiation of mouse MC3T3-E1cells [J]. Am JPhysiol Endocrinol Metab,2005,288(3):608-616.
    [179] Dvorak MM, Siddiqua A, Ward DT, et al. Physiological changes in extracellularcalcium concentration directly control osteoblast function in the absence ofcalciotropic hormones [J]. Proc Natl Acad Sci U S A,2004,101(14):5140-5145.
    [180] Maeda H, Nakano T, Tomokiyo A, et al. Mineral trioxide aggregate inducesbone morphogenetic protein-2expression and calcification in humanperiodontal ligament cells [J]. J Endod,2010,36(4):647-652.
    [181] Barradas AM, Fernandes HA, Groen N, et al. A calcium-induced signalingcascade leading to osteogenic differentiation of human bone marrow-derivedmesenchymal stromal cells [J]. Biomaterials,2012,33(11):3205-3215.
    [182] Nauth A, Schemitsch EH. Stem cells for the repair and regeneration of bone [J].Indian J Orthop,2012,46(1):19-21.
    [183] Carano RA, Filvaroff EH. Angiogenesis and bone repair [J]. Drug DiscovToday2003,8(21):980-989.
    [184] Munksgaard B. Bone Grafting Techniques for Maxillary Implants [M].2005.
    [185]陈红亮,孙勇.引导骨再生技术在口腔颌骨缺损中的应用回顾及展望[J].西南国防医药,2009,19(7):752-753.
    [186]包崇云,陈治清.引导骨再生膜及其应用研究进展[J].中国口腔种植学杂志,2000,5(2):95-100.
    [187]梁恒燕,葛振林.引导骨再生(GBR)技术在口腔正畸领域的研究进展[J].现代口腔医学杂志,2012,26(1):51-54.
    [188] Taguchi Y, Amizuka N, Nakadate M, et al. A histological evaluation for guidedbone regeneration induced by a collagenous membrane [J]. Biomaterials,2005,26(31):6158-6166.
    [189] Becker J, Neukam FW, Schliephake H. Restoration of the lateral sinus wallusing a collagen type I membrane for guided tissue regeneration [J]. Int J OralMaxillofac Surg,1992,21(4):243-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700