用户名: 密码: 验证码:
园林废弃物堆肥化处理及其产品的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国园林废弃物日益增多的现状,从生态资源角度出发,在阐述园林废弃物生态功能的基础上,改变以往作为固体废弃物予以清除的做法,通过堆肥化处理进行人工干预,促进园林废弃物的生态利用;着重介绍了外源添加剂对堆肥过程及产品质量的影响;同时,将园林废弃物堆肥产品部分或全部替代进口泥炭基质进行高档花卉栽培研究,既解决了大量泥炭开采造成的湿地环境破坏、又解决了园林废弃物资源的循环再利用问题,而且还能大幅度降低基质栽培成本,具有重要的研究价值和现实意义。本文研究结论如下:
     (1)添加竹酢液和菌剂对堆肥过程中的温度、pH值、EC值变化有影响,且对堆肥产品中的全N、全P、全K、Mg、Fe和S的质量分数具有显著影响,并存在交互作用;堆肥过程中全P和全K质量分数呈上升趋势,氮以氨气形式挥发损失,全氮质量分数的上升幅度较小;加入菌剂会加速氮的损失,而一定稀释倍数的竹酢液具有保氮作用。
     (2)添加一定量的竹酢液可有效促进菌剂的活性,加速堆肥过程中有机碳、有机质的消耗;堆肥产品总腐植酸含量分别较原料降低了19%-40%,处理A下降最多,处理Ⅰ下降最少;除处理G外,各处理产品C/N比均<20;发芽指处理B-Ⅰ均大于0.8;综合分析,认为处理Ⅰ添加稀释1000倍竹酢液2 L+0.5%“有机废物发酵菌曲”的园林废弃物堆肥效果最好。
     (3)在堆肥初期堆体高温过后,加入赤砂糖和过磷酸钙进行园林废弃物二次堆肥,可有效提高堆体二次升温幅度,缩短堆肥时间,降低堆肥产品的pH和EC值。堆肥过程中,各营养元素含量均呈上升趋势;有机碳含量呈下降趋势,且处理Ⅰ下降最多。各处理堆肥产品C/N比均小于20,且处理F值最小。堆肥过程中,总腐植酸含量较原材料减少5%~10%,但其与有机碳的比例较原材料增加了1%~10%。
     (4)二次堆肥处理的可溶性有机物荧光激发光谱与发射光谱图显示,从堆肥初期至堆肥结束后,光谱均红移至富里酸波长(450 nm-460 nm)附近。并通过可溶性有机物紫外可见吸收光谱中SUVA254、SUVA280、A226-400和E280/E472的数值比较分析,随着各数值的增加,腐殖质类物质增多,堆肥物质的稳定度增强。综合分析,处理F添加0.5%赤砂糖和过磷酸钙(C:P=1:100)的园林废弃物二次堆肥效果最好。
     (5)使用处理Ⅰ的堆肥产品进行青苹果竹芋栽植试验,分别对处理OP(100%)、OP+CGW(50%+50%)、CGW(100%)进行物理性质分析,三种基质容重均<0.4g·cm-3,且大小孔隙比在1:2-4之间,符合理想基质范围。通过对栽培植物前后的粒径分析,认为基质在使用后均有一定的降解现象,OP、OP+CGW和CGW粒径>1 mm时分别降低39%,21%和9%。处理OP+CGW栽植青苹果竹芋的株高、生物量和冠幅等生长状况均优于OP处理;植株根系90%集中在直径0 mm~5.0 mm之间,处理CGW在2 mm~10 mm时显著小于OP和OP+CGW (P<0.05),>10mm时显著大于OP和OP+CGW (P<0.05)。综合分析,使用园林废弃物堆肥产品可以部分或者全部替代泥炭基质用于青苹果竹芋培育,且OP+CGW处理效果最好。
     (6)使用园林废弃物二次堆肥最优处理F产品进行火焰火鹤栽植试验,处理T2-T7(10%~100%V)的容重和总孔隙度与T1处理差别不大,通气孔隙随替代比例的上升呈下降趋势。各处理基质的pH值、EC值随替代比例增大而增加,且pH值有显著差异,EC值差异不显著(P<0.05)。处理T2-T7的植株株高、总鲜重、根鲜重和佛焰苞数均大于T1处理。综合分析,认为园林废弃物产品可以100%替代进口泥炭进行火焰火鹤栽培,但是最优替代比例为10%-70%。
With increasing green waste in China, appropriate artificial intervention and promotion of their eco-utilization was probed, based on the composting treatment as a view of ecological resource and function. The green waste was suggested to recycle in the greenland ecosystem instead of being removed as solid wastes so as to promote the self-maintenance mechanism of greenland. The effects of additives on the process of composting and quality of products were mainly discussed; meanwhile, this study examined the feasibility of using compost products made from green waste replace some or all of the peat substrate which is commonly used for the cultivation of the ornamental plant. The application of green waste residues could solve the restriction about peat use due to greatly-reduced peat resources and wetland conservation destruction, improve the recycling of waste resources, and reduce the cost of substrate cultivation. Results showed that:
     (1) The results showed that the addition of bamboo vinegar and bacterial reagent affected the temperature, pH, EC, total N, P, K during composting; and furthermore, there existed interaction between bamboo vinegar and bacterial reagent. Total concentrations of P and K increased during composting, while total N increased less because of ammonia volatilization. Compared with the control, the addition of bacterial reagent accelerated the N loss, but the addition of a certain concentration of bamboo vinegar can keep more N.
     (2) The addition of a certain amount of bamboo vinegar can effectively promote bacterial reagent activity during composting; the concentrations of organic carbon and organic matter in compost products were lower than those in raw materials. The concentrations of total humic acid in compost products were reduced by 19%-40%from raw materials, and the lowest concentration was found in treatment A product, but the highest in treatment I product. Expect the treatment G, the C/N ratio was lower than 20 for products from other treatments. The germination index (GI) of the treatments B-I was greater than 0.8. The combination of 1:1000 (v:v) bamboo vinegar of 2L and bacteria reagent of organic waste of 0.5% had the best effect on green waste compost.
     (3) In the stage of the first temperature drop, the addition of red sugar and superphosphate promoted the speed of finished compost (30 d), and reduced the pH and EC values of the compost products. During the composting, the concentrations of nutrient elements increased; but the concentration of organic carbon decreased with the maximal decrease found in treatment I. The C/N ratio was lower than 20 in all compost products with the lowest in treatment F. The concentration of total humic acid was decreased by 5%-10%, but was increased the proportion in organic carbon by 1 %-10%, when compared with raw materials.
     (4) During composting, DOM (dissolved organic carbon) was extracted from compost and purified. The spectroscopic characteristics of the DOM were determined using ultraviolet-visible (UV-Vis), and fluorescence spectroscopy (FS). The result showed that at the final stage of composting, the UV-Vis and FS were similar in shape among all treatments, which focused on the fulvic acid (FA).When DOM from all samples was the same, the specific ultraviolet absorbance values at 254 nm and 280 nm (SUVA254 and SUVA280), the area of spectrum obtained from 226 nm to 400 nm (A226-400) and the ratio between the absorbance value at 280 nm and that at 472 nm (E280/E472) were increasing during composting, respectively, resulting in the non-humic substances being translated into humic substances, and the aromatization. The combination of 0.5% red sugar and superphosphate (C:P=1:100) had the best effect on the second stage of green waste compost.
     (5) This study examined the feasibility of using compost substrate made from green waste (The combination of 1:1000 (v:v) bamboo vinegar of 2L and bacteria reagent of organic waste of 0.5%) replace some or all of the original peat substrate (OP) commonly used for the cultivation of the ornamental plant Calathea rotundifola cv. Fasciata. The three growing media were OP (100%), OP+ CGW (50% each), and CGW (100%), which had the bulk density of<0.4g·cm-3, and the value of air space:water-filled porosity between 1:2-4, falling into the ideal ranges. The particle-size analysis of media at the start and end of the cultivation showed that media were degraded after planting, but CGW reduced media degradation; at the end of the 6-month experiment, the fraction of particles>1 mm was decreased by 39%,28%,14%in OP, OP+CGW and CGW, respectively. Plant growth was greatest with OP+CGW, and total biomass, plant height, crown diameter and other characteristics were greater than OP. Nearly 90% of root length was mainly distributed within the diameter of 0 mm-5.0 mm; and the specific root length in CGW was significantly lower than other treatments within the diameter of 2.0 mm-10.0 mm, in contrast, that of CGW was significantly higher than other treatments within the diameter of> 10.0 mm (P<0.05). The results indicated that, the CGW replace some or all of OP commonly used for the cultivation of the ornamental plant Calathea rotundifola cv. Fasciata, and the OP+CGW was the best.
     (6) This study examined the feasibility of using compost substrate made from green waste (the combination of 0.5% red sugar and superphosphate (C:P=1:100)) replace some or all of the original peat substrate (T1) commonly used for the cultivation of the ornamental plant Anthurium andraeanum. The bulk density and total porosity in T2-T7 (10%-100%V) were not significantly different from T1, but the decreasing air space was related with the increased volume of green waste substrate. The pH and EC values were increasing along with the increased proportion of compost product, and there existed significant differences for pH value (P<0.05). The plant height, fresh biomass, fresh root weight and the
     number of spathes in T2-T7 were bigger than T1. The results indicated that, the green waste compost
     product could replace all of OP commonly used for the cultivation of the ornamental plant Anthurium
     andraeanum, and the 10%-70% green waste compost product as peat substitute was the best.
引文
1. 鲍士旦.土壤农化分析[M].中国农业出版社,2008.
    2. Hewitt E. J.(崔澄译).植物营养研究的砂培与水培法[M].北京:科学出版社,1965,38-471.
    3. 柴晓利,张华,赵由才.固体废弃物堆肥原理与技术[M].北京:化学工业出版社,2005,10.
    4. 陈洋.白腐真菌处理堆肥中五氯酚和Pb污染[D].湖南大学,2007.
    5. 陈秀月,王羽骋,邱宗渭.蚕沙栽培基质的调制研究[J].江苏蚕业,1997,2:1-6.
    6. 陈宝梁.表面活性剂在土壤有机污染修复中的作用及机理[D].浙江:浙江大学博士论文,2004.
    7. 陈玉成.表面活性剂对植物吸收土壤重金属的影响[D].武汉:武汉大学博士论文,2005.
    8. 程斐,孙朝晖,赵玉国.芦苇末有机栽培基质的基本理化性能分析[J].南京农业大学学报2001,24(3):19-22.
    9. 陈秀月,王羽骋,邱宗渭.蚕沙栽培基质的调制研究[J].江苏蚕业,1997,2:1-6.
    10.曹慧娟.植物学[M].中国林业出版社,1992,75-77.
    11.蔡艳萍和汪有良.人工复合基质对微型盆栽月季生长发育影响的研究[J].汀苏林业科技,2003,3:12-15.
    12.党秋玲,李鸣晓,席北斗,等.堆肥过程多阶段强化接种对细菌群落多样性的影响[J].环境科学,2011,32(9):2689-2695
    13.冯兴元.德国的废物管理政策与循环经济[J].世界知识,2004,21:53.
    14.国外有机物废弃物堆肥化处理日益受重视[OL].2007, http://www.hbzhaohe.com /shouwnews.asp?id=56.
    15.郭瑞超,唐军荣,胥辉,等.木质生物质能源的开发利用现状与展望[J].林业调查规划,2007,2(1):90-94.
    16.郭世荣.固体栽培基质研究、开发现状及发展趋势[J].农业上程学报,2005,z2:1-4.
    17.郭世荣.无上栽培学[M].北京:中国农业出版社,2003,134-144.
    18.葛红英,江胜德.穴盘种苗生产[M].北京:中国林业出版社,2003,1-6.
    19.高定,黄启飞,陈同斌.新型堆肥调理剂的吸水特性及应用[J].环境工程,2002,20(3):48-50.
    20.高俊风.植物生理学实验指导[M].高等教育出版社,2006
    21.高文俊,许庆方,玉柱,等.添加剂对柠条青贮影响的研究[J].草业科学,2011,2(2):323-326.
    22.关丽霞,韩德伟,王振龙,杨智.青苹果竹芋的组织快繁技术[J].北方园艺,2007,(6):223.
    23.胡霭堂主编.植物营养学(下册)[M].北京:中国农业大学出版社,2003,(下册):11.
    24.胡杨.观赏植物无上栽培基质研究进展[J].草原与草坪,2002,97(2):8-9,18.
    25.黄利斌,李荣锦,上成.国外城市有机地表覆盖物应用研究概况[J].林业科技开发,2008,2(6):1-8.
    26.黄淑芹,闫承琳,李光哲.浅谈木塑复合材料及其生产工艺[J].木材加工机械,2011,(3):38-41.
    27.黄懿梅,曲东,李国学.调理剂在锯末堆肥中的保氮效果[J].环境科学,2003,24(2):156-160.
    28.黄国锋,钟流举,张振钿,等.有机固体废弃物堆肥的物质变化及腐熟度评价[J].应用生态学报,2003,14(5):813-818.
    29.姜雅.日本循环经济立法概况及对中国的启示[J].国土资源情报,2006,(1):48-49.
    30.江胜德主编.现代园艺栽培介质[M].北京:中国林业出版社,2006.
    31.晋建勇,孟宪民,刘静.欧洲园艺泥炭的开发与环境问题[J].腐植酸,2006,6:17-21,48.
    32.贾兰虹.有机废弃物再生环保型基质在观赏植物上的应用[J].东北农业大学学报,2005,36(3):314-316.
    33.贾永霞,郭世荣,李娟.复配芦苇末基质在甜椒育苗上的应用效果[J].沈阳农业大学学报,2006,37(3):419-422.
    34.康红梅,张启翔,唐菁,等.栽培基质的研究进展.土壤通报,2005,36(1):124-127.
    35.吕子文,方海兰,黄彩娣.美国园林废弃物的处置及对我国的启示[J].中国园林,2007,23(8):90-94.
    36.吕子文,方海兰.园林废弃物的利用[J].园林,2008,5:23-26.
    37.李慧君,殷宪强,谷胜意,等.污泥及污泥堆肥对改善上壤物理性质的探讨[J].陕西农业科学,2004,1:29-31.
    38.李富.美国循环经济及对我国商业发展的启示[J].国际商业技术,2006,3:16-18.
    39.李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报,2003,22(2):252-256.
    40.李谦盛,郭世荣,李式军.利用工农业有机废弃物生产优质无上栽培基质[J].自然资源学报,2002,17(4):515-519.
    41.李太元,田广燕,王浩然,等.木醋液抑菌效果观察[J].延边大学农学学报,2005,27(1):17-20.
    42.李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    43.李永胜,杜建军,刘士哲,等.保水剂对番茄生长及水分利用效率的影响[J].生态环境.2006,15(1):140-144.
    44.李季,彭生平.堆肥工程实用手册[M].化学工业出版社、农业科技出版中心,2005.
    45.李谦盛,郭世荣,翁忙玲,等.不同配比芦苇末基质应用于甜椒穴盘育苗的效果[J].江西农业大学学报(自然科学版),2003,25(3):347-350.
    46.李吉进,郝晋珉,邹国元,等.高温堆肥碳氮循环及腐殖质变化特征研究[J].生态环境,2004,13(3):332-334.
    47.李吉进,郝晋珉,邹国元,等.添加剂在猪粪堆肥过程中的作用研究[J].土壤通报,2004,35(4),483-486.
    48.李贵民,赵红霞,孟凡珍,等.安祖花无上栽培研究进展[J].山东农业大学学报,2005,36(2):322-324.
    49.刘石彩,蒋剑春,刘汉超,等.农林废弃物制成型炭生产过程对环境的影响[J].林产化工通讯,2004,38(5):23-26.
    50.刘传富,孙润仓,张爱萍,等.农林废弃物处理工业废水的研究进展[J].现代化工,2006,26(Supp):84-87.
    51.刘慧超,庞荣丽,辛保平.蔬菜无上栽培研究进展现代[J].农业科技,2009,(1):34-35,37
    52.刘燕.园林花卉学[M].中国林业出版社,2004,35
    53.李鸣晓,何小松,刘骏,等.鸡粪堆肥水溶性有机物特征紫外吸收光谱研究[J].光谱学与光谱分析,2010,30(11):3081-3085.
    54.罗太明,苏政荣,彭超,等.桑枝食用菌栽培技术初探[J].蚕学通讯,2011,31(2):47-49.
    55.连兆煌.无上栽培技术与原理[M].北京:中国农业出版社,1994,60-73.
    56.罗玮,曾光明.城市生活垃圾堆肥过程控制技术的现状和发展[J].环境污染治理技术与设备, 2004,5(2):6-10.
    57.马荣.德国循环经济的发展概况[J].中国环保产业,2005,5:43.
    58.马良进,张听,陈晓玲,等.竹酢液与杀菌剂混配的抑菌效果[J].东北林业大学学报,2008,36(8):41-42.
    59.苗建青.论循环经济的效率问题--日本废弃物回收政策研究[J].外国经济与管理,2005,27(12):51-57,63.
    60.母军,于志明,李黎,等.木材剩余物的木酢液制备及其成分分析[J].北京林业大学学报,2008a,30(2):239-132.
    61.母军,于志明,吴文强,等.竹酢液对蔬菜生长调节效果的初步研究[J].竹子研究汇刊,2006,25(4):36-40.
    62.母军,胡卿卿,李黎.竹酢液对蔬果的储鲜包装效果影响研究[J].包装工程,2008b,29(3):49-52.
    63.麦德恩,林怡如,叶德铭.椰纤之理化性质及应用潜力[J].台湾花卉园艺,2002,4:14-17.
    64.毛洪玉,韩晓日,张晶.不同基质材料对仙客来幼苗生长的影响[J].土壤通报.2006,37(3):543-545.
    65.曲音波,纤维素乙醇产业化[J].化学进展,2007,19,(7/8):1098-1108.
    66.日本环境省.2002年循环型社会白书[M].东京:株式会社,2004,2.
    67.尚秀华,谢耀坚,彭彦.育苗基质用的有机废弃物腐熟堆沤技术研究进展[J].桉树科技,2009,26(1):64-70
    68.时连辉.几种农业废弃物堆腐基质理化特性及在园林覆盖和栽培上的应用[D].山东:山东农业大学,2008.
    69.孙克君,阮琳林,鸿辉.园林有机废弃物堆肥处理技术及堆肥产品的应用[J].中国园林,2009,(4):12-14.
    70.尚秀华,谢耀坚,彭彦.育苗基质用的有机废弃物腐熟堆沤技术研究进展[J].桉树科技,2009,26(1):64-70
    71.孙向丽,张启翔.混配基质在品红无土栽培中的应用[J].园艺学报,2008,35(12):1831-1836.
    72.孙向阳,栾亚宁,王惠,等.花卉栽培基质DB11/T 770-2010[DB].北京市地方标准,2011.
    73.田吉林,汪寅虎.设施无上栽培基质的研究现状、存在问题与展望(综述)[J].上海农业科学,2000,16(4):87-92.
    74.田赟,上海燕,孙向阳,等.农林废弃物环保型基质再利用研究进展与展望[J].土壤通报,2011,42(2):497-502.
    75.唐雪东,李亚东,丁绍文,等.不同基质和硫磺粉对越橘上壤和叶片矿质营养的影响[J].吉林农业大学学报,2007,29(3):279-283.
    76.唐菁,康红梅.几种栽培花卉基质的理化特性研究[J].上壤通报,2006,37(2):291-293.
    77.王成,郄光发,彭镇华.有机地表覆盖物在城市林业建设中的应用价值[J].应用生态学报,2005,16(11):2213-2217.
    78.上武魁.北京园林绿化废弃物资源化利用与选址布局研究[D].北京林业大学,2010.
    79.王雁,孙哗,李振坚,等.3种石斛在不同基质中的光合特性研究[J].林业科学研究.2008,21(6):778-782.
    80.王景和,栾庆书,孟广华,等.利用林木落叶林间栽培食用菌研究[J].辽宁林业科 技,2000,(1):37-38,47.
    81.王敦球,曾全方,左华,等.竹醋酸在堆肥中的保氮作用[J].环境工程,2006,24(1):70-72.
    82.王向荣,王政权,韩有志,等.水曲柳和落叶松不同根序之间细根直径的变异研究[J].植物生态学报,2005,29(6):871-877.
    83.吴文强,赵永志,母军,等.木酢液对3种叶菜产量和品质的影响[J].中国蔬菜,2008,(5):29-30.
    84.吴暄,宗良纲,刘新,等.竹酢液对有机栽培黄瓜生长的影响及其对蚜虫的防治效果[J].中国生物防治,2009,25(4):309-311.
    85.魏自民,席北斗,赵越.生活垃圾微生物强化堆肥技术[M].北京,中国环境科学出版社,2008.
    86.魏自民,席北斗,赵越,等.生活垃圾微生物堆肥水溶性有机物光谱特性研究[J].光谱学与光谱分析,2007,27(4):735-738.
    87.徐永艳.我国无土栽培发展的动态研究[J].云南林业科技,2002,3:90-94.
    88.徐康,杨霞,杜建仪,等.不同基质对仙客来生长开花的影响[J].浙江林业科技,1998,18(5):10-13.
    89.谢勇,杜建军,李永胜.保水剂对基质栽培菜心生长及水分利用效率的影响[J].水土保持研究.2008,15(4):228-230,233.
    90.席北斗,赵越,魏自民,等.生活垃圾三阶段温度控制堆肥接种法对有机氮变化规律的影响[J].环境科学,2007,2(1):220-224.
    91.勇强,刘超纲,余世袁.农林废弃物的高效生物利用[J].化工时刊,1999,8:5-7.
    92.勇强.植物纤维资源高效生物利用[J].林业科技开发,2002,16(3):6-8.
    93.叶安珊.我国农业废弃物资源化问题探讨[J].经济前沿,2008,6:29-31.
    94.闫湘.丹麦的环境保护[J].生态经济,2007,10:151-154.
    95.杨朝飞.加强禽畜粪便污染防治迫在眉睫[J].环境保护,2001,(2):32-35.
    96.于学军,杨国亭,郭兴顺.木醋液在林业育苗上的应用研究[J].防护林科技,2005,64(1):38-39.
    97.于鑫,孙向阳,徐佳等.北京市园林绿化废弃物现状调查及再利用对策探讨[J].山东林业科技,2009,183(4):5-7,11.
    98.俞天智,滕秀兰,杜金州.1998.大亚湾土壤胡敏酸的荧光光谱特征[J].光谱学与光谱分析,18(6):746-750.
    99.于旻,何春霞.国内外木塑复合材料研究进展[J].工程塑料应用,2011,39(8):92-95.
    100.尹永强,何明雄,韦峥宇,等.堆肥腐熟机理研究进展[J].安徽农业科学,2008,36(23):10053-10055,10058.
    101.江定钦,徐志平,阮琳.园林垃圾堆肥化过程中理化性质的变化及堆肥对几种园林植物生长的影响[J].中国园林,2004,8:63-65.
    102.袁荣焕,彭续亚,吴振松,等.城市生活垃圾堆肥腐熟度综合指标的确定[J].重庆建筑大学学报,2003,25(4):54-58.
    103.张庆费,辛雅芬.城市枯枝落叶的生态功能与利用[J].上海建设科科,2005,2:40-41,55.
    104.张源盛,余昌明,韦丽娜,等.无土栽培基质对菊花生长发育及产量的影响[J].浙汀农业学报,1998,10(3):158-160.
    105.张承龙.农业废弃物资源化利用技术现状及其前景[J].中国资源综合利用J,2002,(2):14-16.
    106.张启翔,孙向丽.几种有机废弃物作为一品红代用基质的研究[J].北京林业大学学报,2009, 31(3):46-51.
    107.张云舒,张殿宇,徐万里.蘑菇渣复合基质特性及对番茄幼苗生长的影响[J].西北农业学报,2008a,17(3):242-245.
    108.张云舒,张殿宇,范燕敏.酱渣复合基质在番茄育苗上的使用效果研究[J].安徽农业科学,2008b,36(26):11441-11443.
    109.张殿宇,张云舒,朱建雯.蘑菇渣复合基质特性及对辣椒苗质量的影响[J].北方园艺,2009,3:39-41.
    110.张军,雷梅,高定,等.堆肥调理剂研究进展[J].生态环境,2007,16(1):239-247.
    111.张桥,吴启堂,黄焕忠,等.未消化城市污泥与稻草堆肥过程中的养分变化研究[J].农业环境保护,2002,21(6):489-492.
    112.张文标,李文珠,方伟,等.不同收集温度的竹酢液组分及形成过程[J].竹子研究汇刊,2008,27(4):44-49.
    113.周跃华,聂艳丽,赵永红,等.国内外固体基质研究概况[J].中国生态农业学报,2005,13(4):40-43.
    114.邹丽敏,丁蕴铮,张广增,等.硬覆盖对城市街路行道树上壤呼吸的影响[J].中国城市林业,2004,2(1):34-37.
    115.朱能武.固体废物处理与利用[M].北京大学出版社,2006,79-80.
    116.赵由才.生活垃圾资源化原理与技术[M].北京:化学工业大学出版社,1996,141-145.
    117.赵明梅,牛明芬,何随成,等.鸡粪高效降解菌群对堆肥的影响[J].中国资源综合利用,2008,26(1):28-30.
    118.占新华,周立祥,沈其荣,等.污泥堆肥过程中水溶性有机物光谱学变化特征[J].光谱学与光谱分析,2001,21(4):470-474.
    119. Aslam D. N., Vandergheynst J. S. Predicting phytotoxicity of compost-amended soil from compost stability measurements [J]. Environmental Engineering Science,2008,25(1):72-81.
    120. Agassi M., Hadas A., Benyamini Y., et al. Mulching effects of composted MSW on water perolation and compost degradation rate [J]. Compost Science and Utilization,1998,6(3):34-41.
    121. Alvarenga P., Goncalves A. P., Fernandes R. M., et al. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass [J]. Science of the Total Environment,2008a,406(1-2):43-56.
    122. Alvarenga P., Palma P., Goncalves A. P., et al. Evaluation of tests to assess the quality of mine-contaminated soils [J]. Environmental Geochemistry and Health,2008b,30 (2):95-99.
    123. Atrl S., Schellbery T. Efficient management of household solid waste:a general equilibrium model [J]. Public Finance Review,1995,23(1):3-39.
    124. Abad M., Fornes F., Carrion C., et al. Physical properties of various coconut coir dusts compared to peat [J]. HortScience,2005,40,2138-2144.
    125. Arja H. V., Maritta H. S. Evolution of microbiological and chemical parameters during manure and straw co-composting in drum composting system [J]. Agriculture. Ecosystems and Environment, 1997,66(1):19-29.
    126. Bates T. R., Lynch J.P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability [J]. Plant, Cell and Environment,1996.19:529-538
    127. Bernal M. P., Paredes C., Sanchez-Monedero M.A., et al. Maturity and stability parameters of composts prepared with a wide range of organic wastes [J]. Biores Technol,1998,63:91-99
    128. Benito M., Masaguer A., Moliner A., et al. Chemical and physical properties of pruning waste compost and their seasonal variability [J]. Bioresour. Technol,2006,97,2071-2076.
    129. Beaver T. Adding coal ash to the composting mix [J]. BioCycle,1995.36(3):88-89.
    130. Black R. J., Gilman E. F., Knox G. W., et al. Mulches for the landscape [R]. Gainesville:Florida Cooperative Extension Service,University of Florida,1994.
    131. Boldrin A. and Christensen T.H. Seasonal generation and composition of garden waste in Aarhus (Denmark) [J]. Waste manage.2010,30,551-557.
    132. Borghi A. D., Gallo M., Borghi M. D. A survey of life cycle approaches in waste management [J]. Int. J. Life Cycle Assess,2009,14,597-610.
    133. Bozkurt S, Lucisano M, Moreno L, et al. Peat as a potential analogue for the long-term evolution in landfills [J]. Earth-Science Reviews,2001,53(1-2):95-147.
    134. Brewer L. J. and Sullivan D. M. Maturity and stability evaluation of composted yard trimmings [J]. Compost Sci. Util.,2003,11,96-112.
    135. Bryson L.J. Propagation media:what a grower needs to know [J]. Proceedings of the International Plant Propagators'Society Meeting,1987,36:396-399.
    136. Bilderback T. E., Warren S. L., Owen, Jr J. S., Albano J. P. Healthy substrates need physicals tool [J]. Hort. Technol,2005,15,747-751.
    137. Bugbee, G. J. and Frink, C. R., Quality of potting soils. Conn. Agr. Exp. Station [M]. Bull. New Haven, CT, USA.1983, pp,812.
    138. Bunt, A. C. Physical properties of mixtures of peats and minerals of different particle size and bulk density for potting substrates [J]. Acta Hort,1984,150,143-154.
    139. Benito M., Masaguer A., Moliner A., et al. Chemical and physical properties of pruning waste compost and their seasonal variability [J]. Bioresour. Technol,2006,97,2071-2076.
    140. Chanyasak V, Kubota H. Carbon/ orgnic nitrogen ratio in water extract as measure of composting degradation [J]. Ferment Technol.,1981,59:215-219.
    141. Chefetz B, Hadar Y, Chen Y. Dissolved organic carbon fractions formed during composting of municipal solid waste:properties and significance [J]. Acta hydrochim Hydrobiol.,1998,26 (3):172-179.
    142. Chefetz B. P., Hatcher G., Hadar Y., et al. Chemical and biological characterization of organic matter during composting of municipal solid waste [J]. J. Environ. Qual.,1997,25:776-785.
    143. Cho K. M., Lee S. M., Math R. K., et al. Culture-independent analysis of microbial succession during composting of swine slurry and mushroom cultural waste [J]. Journal of microbiology and biotechnology,2008,18(12):1874-1883.
    144. Chong C. Experiences with wastes and composts in nursery substrates [J]. Hort technology,2005, 15(4):739-747.
    145. Carlile W. R. The use of composted materials in growing media [J]. Acta hort,2008,779:32 1.328.
    146. Canadell J., Jackson R.B., Ehleringer J. R., et al. Maximum rooting depth of vegetation types at the global scale [J]. Oecologia,1996,108(4):583-595.
    147. De Boodt M., and Verdonck O. The physical properties of the substrates in horticulture [J]. Acta Hortic,1972,26,37-44.
    148. Dawson G. F., Probert E. J. A sustainable product needing a sustainable procurement commitment: the case of greem waste in Wales [J]. Sustainable Development,2007,15(2):69-82.
    149. Droussi Z., D'orazio V., Hafidi M.. et al. Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products [J]. Journal of Hazardous, 2009,163(2-3):1289-1297.
    150. Emeterio I. G., Perez G. V. Evaluation of city refuse compost maturity:a review [J]. Bio Wastes, 1989,27:115-142.
    151. Eiland F., Leth M., Klamer M., et al. C and N turnover and lignocellulose degradation during composting of Miscanthus straw and liquid pig manure [J]. Compost Science & Utilization,2001, 9(3):186-196.
    152. Eklind Y, Kirchmann H. Composting and storage of organic household waste with different litter amendments II Nitrogen runtover and losses [J]. Bioresourse Technology,2000,74:125-133.
    153. Finstein M. S., Miller F. C., Strom P. F. Monitoring and evaluating composting process performance [J]. Journal water pollution control fedention.1986,58(4):223-278.
    154. Fitter A.H. Functional significance of Root Morphology and Root System Architecture. In:Fitter A.H.,Atinson,D.,Read,D.J.,Usher,M.B., (eds.). Ecological Interaction in soil Plant Microbes and Animals. Special Bulletin Number 4 of British Ecological Society [D]. Oxofrd:Blaekwell Scientific Publication,1985,87-106.
    155. Fitter A. H., Stickland T. R. Architectural analysis of plant root systems. Ⅱ. Influence of nutrient supply on architecture in contrasting plant species [J]. New Phytologist,1991,118 (3):383-389.
    156. Fraser B. S., Lau A. K. The effects of process control strategies on composting rate and odor emission [J]. Compost Science and Utilization,2000,8 (4):274-283.
    157. Gerald K. Quality control and use of composed organic wasters as components of growing media in the Federal Repuplic of Germany [J]. Acta Horticulturae,1991,294:89-99.
    158. Gholz H. L., Perry C. S., Cropper W. P., et al. Litterfall, decomposition, and nitrogen and phosphorous dynamics in a chronosequence of slash pine (Pinus elliottii) plantations [J]. For.Sci. 1985,31:463-478.
    159. Garcia C., Hernandez T., Costa F., et al. Evaluation of the maturity of municipal waste compost using simple chemical parameters [J]. Communications in Soil Science and Plant Analysis,1992, 23(13-14):1501-1512.
    160. Gohieke C. G. PrineiPles of composting [M] The Bioeycle Guide to the Art and Seience of Composting. Emmuas, AP:J. G Press,1991,873.
    161. Garcia C., Hernandez T,. Costa F., et al. Evaluation of the maturity of municipal waste compost using simple chemical parameters [J]. Communications in Soil Science & Plant Analysis,1992, 23(13&14):1501-1512.
    162. Hall J. E. Soil ingestion of swage sludge and animal slurries [J]. Fertilizer.1988.4:63-68.
    163. Hue N. V., Liu J. Predicting compost stability [J]. Compost Sci Util,1995,3:8-15.
    164. Hanan J. J., Olympios C., Pittas C. Bulk density, porosity, percolation and salinity control in shallow, freely draining potting soils [J]. J. Am. Soc. Hort. Sci.,1981,106,742-746.
    165. Hicklenton P. R., Rodd V., Warman P. R. The effectiveness and consistency of source-separated municipal solid waste and bark compost as components of container growing media [J]. Sci Hort., 2001,91,365-378.
    166. Handreck K. A., Black N. D. Growing Media for Ornamental Plants and Turf [M]. New South Wales University Press, Sydney,1994, pp.111.
    167. Haug R. T. Enginering principles of sludge composting [J]. Water Pollution Control Federation, 1979 (51):2189-2206.
    168. Hoitink H. A. J., Keener H. M., Krause C. R.. Key steps to successful composting [J]. Bio-Cycl. 1993,9(8):30-33.
    169. Higgins A., Suhr J., Rahman M., et al. Shredded rubber tires as a bulking agent in sewage sludge composting [J]. Waste Management & Research,1986,4(4):367-386.
    170. Hoover R., Composition, molecular structure, and physicochemical properties of tuber and root starches:a review [J]. Carbohydrate Polymers,2001,45(3):253-267.
    171. Inbar Y., Chen Y., Hadar M. Humic substrance formed during the composting of organic matter [J]. Soil Sci Soc Am J,1990,54,1316-1323.
    172. Jamali M. K., Kazi T. G., Arain M. B., et al. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge [J]. J. Hazard. Mater,2009,164,1386-1391.
    173. Jayasinghe G. Y, Tokashiki Y., Arachchi I. D. L., et al. Sewage sludge sugarcane trash based compost and synthetic aggregates as peat substitutes in containerized media for crop production [J]n. J. Hazard. Mater,2010a,174,700-706.
    174. Jayasinghe G. Y., Arachchi I.D. L., Tokashiki Y. Evaluation of containerized substrates developed from cattle manure compost and synthetic aggregates for ornamental plant production as a peat alternative [J]. Resour Conserv Recycl,2010b,54,1412-1418.
    175. Jayasinghe G. Y., Tokashiki Y, Kinjo K., et al. Evaluation of the use of synthetic red soil aggregates (SRA) and zeolite as substrate for ornamental plant production[J]. J. Plant Nutr.,2010c, 33,2120-2134.
    176. Jimenez E. I., Garcia V. P. Composting of domestic refuse and sewage sludge. I. Evolutiong of temperature, pH, C/N ration and action-exchange capacity [J]. Resources, Conservation and Recycling,1991, (3):45-60.
    177. Koibuchi K., Yamamoto M., Fukada Y., et al. Vehicle stability control in limit cornering by active brake [J]. International Congress & Exposition,1996,85(4):184-193
    178. Kidder G. Converting yard wastes into landscape assets[R]. Gainesville:Florida Cooperative Extension Service, University of Florida,2003.
    179. Kishimoto S. Method ofproducing and using wood vinegar and wood charcoal decrease agriculturefertilizer [M]. Tokyo:Nesan Gyoson Bunka Kyokai,1991:1-10.
    180. Leifeld J. Calorimetric characterization of grass during its decomposition [J]. Journal of Thermal Analysis and Calorimetry,2008,93(2):651-655.
    181. Li G. J., Xu Z. H. The application of polyurethane ether foam to soilless culture as an reusable and environment sound substrate [J]. Acta Agriculture Zhejiangesis,2001,13(2):61-66.
    182. Linda C. S. Impact of mulches on landscape plants and the environment-a review [J]. Journal of Environmental Horticulture,2007,25 (4):239-249.
    183. Lynch J. P. Root architecture and plant productivity [J]. Plant Physiology,1995,109:7-13.
    184. Mohan D., Pittman J. C. U., Steele P. H. Pyrolysis of wood/biomass for bio-oil:a critical review [J]. Energy Fuel.,2006,20,848-889.
    185. Morel T. L., Conlin F., Germon J., et al. Methods for the evaluation of the maturity of municipal refuse compost. In:Gasser J KRed. Composting of Agricultural and Other Wastes [M]. London & New York:Elsevier Applied Science Publishers.1985,56-72.
    186. Mugnai S., Pasquini T., Azzarello E.,et al. Evaluation of composted green waste in ornamental container-grown plants:effects on growth and plant water relations [J]. Compost Science & Utilization,2007,15(4):283-287.
    187. McCartney D., Eftoda G. Choosing bulking agents for windrow composting [J]. BioCycle,2002, 43(1):47.
    188. Molineux C. J., Fentiman C. H., Gauge A. C. Characterising alternative recycled waste materials for use as green roof growing media in the U.K. Ecol. Eng.,2009,35,1507-1513.
    189. Nadelhoffer K. J., Aber J. D. and Melillo J. M. Fine Roots,Net primary production, and Soil Nitrogen Availability:A New Hypothesis [J]. Ecolog.,1985,66:1377-1390.
    190. Neal J. C., Wagner D. F. Physical and chemical properties of coal cinders as a container media component [J]. Hort Science,1983,18(5):693-695.
    191. De Rouin N., Caron J., Parent L. E. Influence of some artificial substrate on productivity and DRIS diagnosis of greenhouse tomatoes [J]. Acta Horticulturae,1988,221:45-52.
    192. Nishijima W., Gerald E., Speitle J., et al. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon [J]. Chemosphere,2004,56:113-119.
    193.Noguera P., Abad M., Puchades R., et al. Influence of particle size on physical and chemical properties of coconut coir dust as a container medium [J]. Commum Soil Sci Plant Anal,2003,34, 593-605.
    194. Oxana N. B. and Richard J. H. A comparison of the properties of manufactured soils produced from composting municipal green waste alone or with poultry manure or grease trap/septage waste [J]. Biol. Fert. Soils.,2010,46,271-281.
    195. Offord C. A., Muir S., Tyler J. L. Growth of selected Australian plants in soilless media using coir as substitute for peat [J]. Australian Journal of Experimental Agriculture,1998,38(8):879-887.
    196. Partanen P., Hultman J., Paulin L., et al. Bacterial diversity at different stage of the composting process [J]. BMC Microbiology,2010,10:94.
    197. Penningsfeld F. Substratesfor protected cropping [J]. Acta Horticulturae,1978,82,13-22.
    198. Prasad M., Maher M. J. Physical and chemical properties of fractionated peat [J]. Acta Horticulturae,1993,342:257-264.
    199. Reschovsky J. D., Stone S. E. Market incentives to encourage household waste recycling:paying for what you throw away [J]. Journal of Policy Analysis and Management,1994,13(1):120-139.
    200. Recycled Organics Unit. A literature review on the composting of composite wood products (Second Edition) [R]. Sydney, Australia:The University of New South W ales,2007.
    201. Raviv M., and Lieth J. H. Soilless of culture:theory and practice [M]. Elsevier BV, USA.2008, 41-116.
    202. Raviv M., Chen Y., Inbar Y., Peat and peat substitutes as growth media for container-grown plants [M]. In:Chrn Y., Avinimelech (Eds.). The Role of Organic Matter in Modern Agriculture. Martinus Nijhoff Publishers, Dordrecht,1986,257-287.
    203. Pregitzer K. S., De Forest J. L., Burton A. J., et al. Fine root architecture of nine North American trees [J]. EcologicalM onographs,2002,72:293-309.
    204. Provenzano M. R., Senesi N., Piccone G. Thermal and spectroscopic characterization of composts from municipal solid wastes [J]. Compost Science & Utilization,1998,6 (3):67-73.
    205. Senesi N., Miano T. M., Provenzano M. R., et al. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy [J]. Soil Science,1991,152 (4): 259-270.
    206. Schmilewski G. K. Quality control and use of composted organic wastes as components of growing media in the Federal Republic of Germany [J]. Acta Horticulturae,1991,294:89-98.
    207. Shibata M., Hayakawa L., Hayashibara T. Artifical soil and construction of bed soil for putting green using artificial soil [J]. United States Patent,1989,4,812,339.
    208. Shbata M., Hayakawa I. Artifical soil and construction of bed soilfor putting green using artificial soil [J]. United states patent,1989, (4):812,339.
    209. Swanson B. T. Critical physical properties of container media[J]. American Nurseryman,1989. 169(11):59-63.
    210. Stabnikova O., Ding H. B., Tay J. H., et al. Biotechnology for aerobic conversion of food waste into organic fertilizer[J]. Waste Manage.,2005b,23,39-47.
    211. Smars S., Gustafsson L., Bech-Friis B., et al. Improvement of the composting time for household waste during an initial low pH phase by mesophilic temperature control[J]. Bioresource Technology,2002,84(3):237-241.
    212. Tsutomu Y., Mitsuhiro I., Ichirow K. Effects of gravel mulch on water vapor transfer above and below the soil surface [J]. Agric Water Man,2004,67:145-155.
    213.Tiwari V. N. Composting of dairy farm wastes and evaluation of its manorial value[J]. Proc National Academy of Science, India,1989,59B:109-114.
    214. United States Environmental Protection Agency. Composting Yard Trimmings and Municipal Solid Waste [R]. EPA530-R-94-003,1994.
    215. Unmar G. and Mohee R. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality[J]. Bioresour. Technol.,2008,99,6738-6744.
    216. Uehara T., Horio Y., Furuno T., et al. Efleet of wood vinegars on germination and radical growth of seed plants[J]. Mukuzai Gakkaishi,1993,39:1415-1420.
    217. Vallini G., Pera A., Sorace G., et al. Green composting [J]. Biocycle,1990,31(6):33-35.
    218. Vallini G., Pera A. Process constrains in source-selected vegetable waste composting [J]. Water Science and Technology,1993,28(2):229-236.
    219. Van Herwijnen R., Laverye T., Poole J., et al. The effect of organic materials on the mobility and toxicity of metals in contaminated soils [J]. Applied Geochemistry,2007,22 (11):2422-2434.
    220. Willion R. A. Root medium physical properties [J]. HortTechnonlogy,1998,8(4):481-485.
    221. Webber C. L., Whitworth J., Dole J. Kenaf (Hibiscus cannabinus L.) core as a containerized growth medium component [J]. Industrial Crops and Products,1999,10(2):97-105.
    222. Woodard M. A., Bearce B. C., Cluskey S., et al. Coal bottom ash and pine wood peelings as root substrates in a circulating nutriculture system [J]. Hort Science,1993,28(6):636-638.
    223. Wong J. W. C., Fang M., Li G. X., et al. Feasibility of using coal ash residues as co-composting materials for sewage sludge [J]. Environmental technology,1997,18(5):563-568.
    224. Zucconi F., Monaco A., Forte M., et al. Phytotoxins during the stabilization of organiematter [M] In:'Composting of agricultural and other wastes'. London:Elsevier Applied Science Publication, 1985, (4):73-85.
    225. Zaller J. G. Vermicompost as a substitute for peat in potting media:Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties [J]. Sci. Hort.,2007,112, 191-199.
    226. Zucconi F., Forte M., Monac A. Biological evaluation of compost maturity [J]. Biocycle,1981, (22):27-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700