用户名: 密码: 验证码:
几种农林生物质废弃物再利用生产无土栽培基质技术及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代观赏植物无土栽培生产主要依赖于泥炭作为栽培基质,然而品质优良的泥炭基质既价格高昂,又不可再生。另一方面,大量有机质含量丰富的农林生物质资源被随意填埋、焚烧,不仅造成资源浪费,而且严重污染环境。因此,基于经济、环保和资源循环利用等多方面的原因,本文研究探讨了利用农林生物质废弃物生产无土栽培基质,进而在花卉生产中部分或全部替代泥炭基质的可行性。以期开发出一类价格便宜、来源充足、栽培效果好,具有广阔的应用前景的环保型基质产品。
     通过大量预实验,最终选取玉米芯和园林绿化废弃物(枯枝、落叶)为试验原料,通过发酵腐熟、高温惰化两种方法对原料进行稳定化处理,以对照用泥炭基质理化性状为依据,将腐熟玉米芯(C)、高温惰化玉米芯(PC)、高温惰化园林绿化废弃物(PG)及丹麦“品氏”泥炭(P),以不同比例进行混配,产生9个替代基质处理(%V/V): PC (100%);C(100%);PG(100%);C (70%)+PG(30%);PC (70%) +PG (30%);C (35%)+PG (15%)+P (50%):PC (50%)+P (50%);PC (70%)+PG (30%)+P (50%);C(50%)+P (50%):对照为P(100%).
     通过“红粉佳人”红掌(Anthurium andraeanum‘Pink Lady’)在上述10种基质中的栽培试验研究,结果表明50%替代泥炭的处理,在红掌形态指标建成,红掌生物量积累和分配,红掌抗移栽适应性等方面的影响与泥炭基质差异不显著或优于泥炭基质。同时,本文还对各处理基质试验前后,理化性质的变化及稳定性进行了分析,结果表明50%替代泥炭的处理,理化性状稳定性较好。利用模糊数学隶属函数方法,将红掌生理指标与基质成本柑结合,对10种处理基质进行综合评价。结果表明,两种处理基质(35%腐熟玉米芯+15%高温惰化园林绿化废弃物+50%泥炭;50%高温惰化玉米芯+50%泥炭)综合评价指数,显著优于泥炭基质,可以在保证红掌品质的前提下,达到替代泥炭基质同时降低基质成本的目的(平均降低34.7%)。
     本研究中,在农林生物质废弃物稳定化处理过程中引入了高温惰化处理技术,与发酵腐熟技术相结合,为实现不同种类农林生物质废弃物高效、稳定、低成本的基质化再利用提供了新的途径。
The primary component of soilless rooting media for ornamental plant production is peat. Quality peat, however, is costly and is a non-renewable natural resource. The reused of biomass residues is increasingly concerned due to the "natural resources crisis" and issues of "environmental protection", The growing media made from organic agricultural wastes regenerates natural resources and reduces the consumption of quality peat. Several kinds of agriculture-forestry biomass residues such as the corn cob, garden waste (branches, leaves) were selected as the raw material of the growing media on pot-flower. The objective of this study was to find a way to reuse agriculture-forestry biomass residues, and converted it into a kind of growing media to replace the traditional media of peat used in the production of Anthurium andraeanum‘Pink Lady’. Ten treatment media were carried out consisting of pyrolysised corn cobs (PC); composted corn cobs (C); pyrolysised garden wastes (PG); and peat (P) in various proportions. The substrate mixtures used were (%v/v):PC (100%), C (100%), PG (100%), C (70%)+ PG (30%), PC (70%)+PG (30%), C (35%)+PG (15%)+P (50%), PC (50%)+P (50%), PC (70%)+ PG (30%)+P (50%), C (50%)+p (50%), and P(100%) as control. The effects of the various treatments media on A. andraeanum were evaluated based on plant growth, nutrient uptake, and the cut flower quality during the 15-months experimental period. The results show that A. andraeanum were optimal using 35%composted corn cobs+15%pyrolysised garden wastes+50%peat and 50%pyrolysised corn cobs+50%peat, indicating that mixing pyrolysised or composted biomass residues with peat could substitute for peat as a suitable medium for anthurium production. In additional, it will reduce the need for peat, cut off about 34.7%of the media cost in soilless culture of A. andraeanum and provide another way to reuse agricultural wastes.
引文
1.鲍士旦主编.土壤农化分析[M].北京:中国农业出版社,2000.
    2.北京市统计局,国家统计局北京调查总队编.北京统计年鉴.2010[M].北京:中国统计出版社,2010.
    3.边炳鑫,赵由才主编.农业固体废物的处理与综合利用[M].北京:化学工业出版社,2005:333.
    4.毕伯钧,宋仁锋,魏军.近45年本溪地区生态与环境变化特征及生态与环境质量评估的研究[J].辽宁气象,2005,(4):22-25.
    5.陈代金,王宜或.菊花的无土栽培[J].北京园林,2010:45-53.
    6.陈二影, 宋宪亮, 孙学振,等.不同类型钾肥对棉花苗期生长发育和叶片生理特性的影响[J].华北农学报,2009:163-167.
    7.陈苏利.百合栽培基质配方的筛选研究[D]:西北农林科技大学,2005.
    8.陈段芬,方正,肖建忠,等.中国花卉无土栽培研究进展[J].河北农业大学学报,2002,(z1):134-137.
    9.陈玉良,冯恭衍,李益.灌溉液的pH、EC值及灌溉量对温室黄瓜无土栽培的影响初探[J].上海蔬菜,1998,(4):39-40.
    10.崔兆杰,谢锋编著.固体废物的循环经济[M].北京:科学出版社,2005:246.
    11.费菲.儿种可替代草炭/岩棉的无土栽培基质的性能和应用[J].农业工程技术(温室园艺),2008, (6):40-41.
    12.高俊凤主编.植物生理学实验指导[M].北京:高等教育出版社,2006:287.
    13.葛亚英,傅福道,金关荣等.3种作物秸秆作仙客来栽培基质试验[J].浙江农业科学,2005,(5):362-364.
    14.郭殿福主编.废弃物通用手册[M].北京:科学出版社,2004.
    15.郭世荣主编.无土栽培学[M].北京:中国农业出版社,2003.
    16.杭正芳,周民良.日本城市废弃物处理机制研究[J].城市发展研究,2010,(12):106-112.
    17.胡华锋,介晓磊主编.农业固体废物处理与处置技术[M].北京:中国农业大学出版社.2009:292.
    18.胡天觉.城市有机固体废物仓式好氧堆肥工艺改进及理论研究[D]:湖南大学,2004.
    19.胡天觉.曾光明,黄国和等.仓式好氧堆肥中影响仃机物发酵降解的主要因素[J].湖南大学学报:自然科学版,2004,31(5):31-35.
    20.胡天觉,曾光明,黄国和等.富水农业植物废物的易降解性及对其他堆肥植物降解的影响[J].应用与环境生物学报,2004,10(001):56-59.
    21.黄红丽.木质素降解微生物特性及其对农业废物堆肥腐殖化的影响研究[D]:湖南大学,2009.
    22.贾兰虹.有机废弃物再生环保型基质在观赏植物上的应用[J].东北农业大学学报,2005,36(3):314-316.
    23.江胜德主编.现代园艺栽培介质[M].北京:中国林业出版社,2006:210.
    24.荆延德,张志国.栽培基质常用理化性质“一条龙”测定法[J].北方园艺,2002,(3):18-19.
    25.乐沫沫,张启翔,刘庆超等.代用基质对新几内亚凤仙生长发育的影响[J].山东林业科技,2007, (2):14-16.
    26.李斗争,张志国.设施栽培基质研究进展[J].北方园艺,2005, (5):7-9.
    27.李陆星,张骅,祁娜, 等.落叶堆肥产物对彩叶草生长状况的影响[J].中国农学通报,2011, (31):228-232.
    28.李季, 彭生平主编.堆肥工程实用手册[M].北京:化学工业出版社,2011:317.
    29.李国刚.日本废弃物的管理制度与研究现状——Ⅱ日本废弃物的法律法规与管理体系[J].中国环境监测,1998, (2):56-59.
    30.李国学,张福锁编著.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000:372.
    31.李国学主编.固体废物处理与资源化[M].北京:中国环境科学出版社,2005.
    32.李谦盛,郭世荣等.利用工农业机废弃物生产优质无土栽培基质[J].自然资源学报,2002,17(4):515-519.
    33.李谦盛,郭世荣,李式军.基质EC值与作物生长的关系及其测定方法比较[J].中国蔬菜,2004,(1):75-76.
    34.李艳.欧洲报春无土栽培综合配套技术的研究[D]:西北农林科技大学,2006.
    35.李志娟.有机废弃物作为无土栽培基质的前处理及对黄瓜幼苗质量的影响[D]:西北农林科技大学,2004.
    36.连兆煌主编.无土栽培原理与技术[M].北京:中国农业出版社,1994:153.
    37.刘庆超.三种重要盆栽花卉的有机代用基质研究[D]:北京林业大学,2006.
    38.刘庆超,工奎玲,刘庆华等.几种有机物料理化性状分析及与传统泥炭基质的比较[J].北方园艺,2007, (7):37-39.
    39.刘荣厚,鲁楠.旋转锥反应器生物热裂解工艺过程及实验[J].沈阳农业大学学报,1997,28(4):307-311.
    40.刘永金,李文华,张玲等.红掌切花产量与气候因子的相关性研究[J].云南农业大学学报,2005,(6):71-76.
    41.刘一星主编.木质废弃物再生循环利用技术[M].北京:化学工业出版社,2005:237.
    42.柳青.城市污水处理厂污泥农肥化关键技术研究[D]:东北大学,2007.
    43.陆强,朱锡锋,李全新等.生物质快速热解制备液体燃料[J].化学进展,2007,(8):1064-1071.
    44.栾亚宁.农林生物质废弃物堆腐生产花卉栽培丛质研究[D]:北京林业大学,2011.
    45.吕子文,方海兰,黄彩娣.美国园林废弃物的处置及对我国的启示[J].中国园林,2007,(8):90-94.
    46.孟宪民,王忠强.我国泥炭资源属性、特征与保护利用.第三届全国绿色环保肥料新技术、
    新产品交流会,中国广州,2003.
    47.孟宪民,王忠强,刘永和等.国外园艺泥炭利用现状与未来发展方向[J].腐植酸,2003:3-6.
    48.苗真勇,厉伟,顾永琴.生物质快速热解技术研究进展[J].节能与环保,2005,(2):13-15.
    49.潘凯,韩哲.无上栽培基质物料资源的选择与利用[J].北方园艺,2009,(1):129-132.
    50.瞿礼嘉,顾红雅,胡苹等.现代生物技术导论[M]:高等教育出版社,1998.
    51.尚谦.城市生活垃圾好氧堆肥过程参数的探讨[D]:湖南大学,2011.
    52.尚秀华.木屑和稻壳基质化腐熟技术研究[D]:中国林业科学研究院,2009.
    53.尚秀华,谢耀坚,彭彦.育苗基质用的有机废弃物腐熟堆沤技术研究进展[J].桉树科技,2009, (1):64-70.
    54.石磊,边炳鑫,赵由才等.城市生活垃圾卫生填埋场恶臭的防治技术进展[J].环境污染治理技术与设备,2005, (2):6-9.
    55.苏少林.杨凌城市生活垃圾堆肥化利用研究[D]:西北农林科技大学,2006.
    56.孙君梅.红掌生长特性及苗期无土栽培技术的研究[D]:海南大学,2010.
    57.孙向阳,索琳娜,陈刚.利用农林废弃物制备无土栽培基质的方法和无土栽培基质:2011-04-06, CN201010104425.9[P].2010-06-02 [2011-01-07].
    58.孙向阳,索琳娜,陈刚.一种农林生物质废弃物炭化处理装置,CN201110101414.X[P]. 2011.09.28.
    59.孙向阳,徐佳,杜建军.北京市园林绿化废弃物资源化再利用现状及思考[J].2010北京园林绿化新起点,2010.
    60.索琳娜,金茂勇,张宝珠.农林生物质废弃物生产花木栽培基质技术和前景[J].北方园艺,2009,(4):108-112.
    61.田赟,王海燕,孙向阳等.农林废弃物环保型基质再利用研究进展与展望[J].土壤通报,2011,(2):497-502.
    62.田赟,工海燕,孙向阳等.添加竹酢液和菌剂对园林废弃物堆肥理化性质的影响[J].农业工程学报,2010, (8):272-278.
    63.王惠.外源添加物在园林绿化废弃物堆腐中的应用[D]:北京林业大学,2011.
    64.王诗国.炭化稻壳在小方坏连铸生产中的应用[J].昆钢科技,1989, (001):47-52.
    65.王中,.中国泥炭基质生产跌入低谷[J].中国花卉园艺,2004, (4):20-21.
    66.魏莎,李素艳,孙向阳等.指数施肥方式对切花菊生长及基土壤性质的影响[J].中国土壤与肥料,2011,(4):54-58.
    67.魏莎,李素艳,孙向阳等.土壤调理剂对连作切花菊品质和土壤性质的影响[J],中国农学通报,2010, (20):206-211.
    68.魏自民,李英军,席北斗等.三阶段温度控制接种法对堆肥仃机物质变化影响[J].环境科学,2008,(2):2540-2544.
    69.魏自民,席北斗,李鸣晓等.微生物接种堆肥胡敏三维荧光特性阳研究[J].光谱学与光谱分析,2008,(12):2895-2899.
    70.魏自民,席北斗,王世平等.高温解磷菌对堆肥所添加难溶性磷素转化的试验研究[J].环 境科学,2008, (7):2073-2076.
    71.魏自民,席北斗,赵越.生活垃圾微生物强化堆肥技术[M].北京:中国环境科学出版社,2008:312.
    72.武良.脲醛泡沫栽培基质在草坪上的应用研究[D]:河北农业大学,2009.
    73.席北斗.城市固体废物系统分析及优化管理技术[M].北京:科学出版社,2010:314.
    74.徐大勇.人工接种和自然堆肥酶学特征与微生物区系的分子多态性变化[D]:南京农业大学,2005.
    75.许洋,许传森.主要造林树种网袋容器育苗轻基质技术[J].林业实用技术,2006,10:37-40.
    76.英斌.荷兰的环保及废弃物处理[J].环境,1994, (1):29.
    77.于鑫.北京市园林绿化废弃物再利用调查及堆肥实验研究[D]:北京林业大学,2010.
    78.袁荣焕.城市生活垃圾堆肥腐熟度综合评价指标与评价方法的研究[D]:重庆大学,2004.
    79.曾光明.堆肥环境生物与控制[M]:科学出版社,2006.
    80.张璐,孙向阳,尚成海等.天津滨海地区盐碱地改良现状及展望[J].中国农学通报,2010,26(18):180-185.
    81.张璐,孙向阳,田赟.园林废弃物堆肥用于青苹果竹芋栽培研究[J].北京林业大学学报,2011, (5):109-114.
    82.张业宁.堆肥腐熟度快速测定指标和方法的建立[D]:中国农业大学,2004.
    83.张阳武.小兴安岭泥炭沼泽植物区系及土壤理化性质研究[D]:东北林业大学,2009.
    84.赵九洲,陈洁敏,陈松笔等.无土基质与营养液EC值对切花菊生长发育的影响[J].园艺学报,1999,(5):327-330.
    85.赵伟涛,陈海翔,周建军等.森林泥炭的热解特性及热解动力学[J].物理化学学报,2009,(9):1756-1762.
    86.赵由才.生活垃圾资源化原理与技术[M]:化学工业出版社,2002.
    87.周建业,陈刚明.炭化稻壳扦插红叶石楠试验研究[J].现代农业科技,2008,(021):17-18.
    88.周庆华.蚯蚓处理农村生活垃圾的试验研究[J].江西化工,2011,(4):55-59.
    89.周肖红.绿化废弃物堆肥化处理模式和技术环节的探讨[J].中国园林,2009,(4):7-11.
    90.朱林,彭宇,袁飞等.几种有机物料对连作黄瓜生长的影响[J].安徽农业科学,2001,(2):214-216.
    91.王树荣,骆仲泱等.生物质闪速热裂解制取生物油的试验研究[J].太阳能学报,2002,23(1):4-10.
    92.张冬梅,史正军.不同营养丛质理化特性及应用效果研究[J].华北农学报,2005,20(F12):139-141.
    93. Abad M, Fornes F, Carrion C, et al. PHysical properties of various coconut coir dusts compared to peat[J]. Hortscience,2005,40(7):2138-2144.
    94. Abad M,Noguera P, Puchades R, et al. PHysico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants[J]. Bioresource Technology,2002,82(3):241-245.
    95. Altieri R, Esposito A, Baruzzi G. Use of olive mill waste mix as peat surrogate in substrate for strawberry soilless cultivation[J]. International Biodeterioration & Biodegradation,2010,64(7): 670-675.
    96. Ansari M A, Brownbridge M, Shah F A, et al. Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrip,Frankliniella occidentalis. in plant-growing media[J]. Entomologia Experimentalis et Applicata,2008,127(2):80-87.
    97. Anon. Cultivation guide Anthurium pot plant culture[M]. Bleiswijk, Holland:Anthura B.V.,2002:140.
    98. Ao Y, Sun M, Li Y. Effect of organic substrates on available elemental contents in nutrient solution[J]. Bioresource Technology,2008,99(11):5006-5010.
    99. Benito M, Masaguer A, De Antonio R, et al. Use of pruning waste compost as a component in soilless growing media[J]. Bioresource Technology,2005,96(5):597-603.
    100. Blanc P. Contribution a l'etude des Aracees:1. Remarques sur la croissance monopodiale[J]. Rev. G{\'e}n. Bot,1977a,84:115-126.
    101. Blanc P. Contribution a l'etude des Aracees:2. Remarques sur la croissance sympodiale chez l'Anthurium scandens Engl., le PHilodendron fenzlii Engl. et le PHilodendron speciosum Schott[J]. Rev. G{\'e}n. Bot,1977b,84(1001-1003):319-331.
    102. Blanchette R A. Degradation of the lignocellulose complex in wood[J]. Canadian Journal of Botany,1995,73(S1):999-1010.
    103. Bridgwater A V, Arauzo J. Fast pyrolysis of biomass[M]:cpl Press,1999.
    104. Brodie H L,Francis R G,Lewis E C. What makes good compost[J].Biocycle,1994,35:66-68.
    105. Calkins J B, Jarvis B R, Swanson B T. Compost and rubber tire chips as peat substitutes in nursery container media:growth effects[J]. Journal of Environmental Horticulture,1997,15: 88-94.
    106. Caron J, Rivi E Re L M, Guillemain G. Gas diffusion and air-filled porosity:Effect of some oversize fragments in growing media[J]. Canadian journal of soil science,2005,85(1):57-65.
    107. Castaldi P, Melis P. Growth and yield characteristics and heavy metal content on tomatoes grown in different growing media[J]. Communications in soil science and plant analysis, 2004,35(1-2):85-98.
    108. Cattivello C. Behaviour of composted chestnut bark substrates in cyclamen cultivation[J]. Italus Hortus,1995,56(2):63-67.
    109. Chang K H, Wu R Y, Chuang K C, et al. Effects of chemical and organic fertilizers on the growth, flower quality and nutrient uptake of Anthurium andraeanum, cultivated for cut flower production[J]. Scientia Horticulturae,2010,125(3):434-441.
    110. Chanyasak V, Ilirai M, Kubola H. Changes of chemical components and nitrogen transformation in water extracts during composting of garbage[J]. Journal of fermentation technology,1982,60(5):439-446.
    111. Chanyasak V, Kubota H. Carbon/organic nitrogen ratio in water extract as measure of composting degradation[J]. Journal of fermentation technology,1981,59(3):215-219.
    112. Chapin S, Others. Ecological aspects of plant mineral nutrition[J]. Advances in plant nutrition,1988,3.
    113. Da Silva F F. Static and dynamic characterization of container media for irrigation management[D]:Hebrew University of Jerusalem, Faculty of Agriculture,1991.
    114. Dai J, Paull R E. The role of leaf development on anthurium flower growth[J]. Journal of the American Society for Horticultural Science,1990a,115(6):901-905.
    115. Dai J, Paull R E. Leaf development and Anthurium flower growth[J]. HortScience,1990b, 25(9):1138.
    116. De Boodt M, Verdonck O. The pHysical properties of the substrates in horticulture[J]. Acta Hort,1972,26:37-44.
    117. Dufour L, Guerin V. Growth, developmental features and flower production of Anthurium andreanum Lind. in tropical conditions[J]. Scientia Horticulturae,2003,98(1):25-35.
    118. Eriksson K E L, Blanchette R A, Ander P, et al. Microbial and enzymatic degradation of wood and wood components.[M]:Springer-verlag,1990.
    119. Evans M R, Konduru S, Stamps R H. Source variation in pHysical and chemical properties of coconut coirdust[J]. HortScience,1996,31(6):965-967.
    120. Fitzpatrick G E. Compost utilization in ornamental and nursery crop production systems[J]. Compost utilization in horticultural cropping systems. Boca Raton (FL):CRC Press LLC. p, 2001:135-150.
    121. Galinsky R, Laws N. Anthurium market[R],1996.
    122. Garc I A C, Hern A Ndez T, Costa F. Study on water extract of sewage sludge composts[J]. Soil Science and Plant Nutrition,1991,37(3):399-408.
    123. Gerald S, Hartmut F, Liu Y H. Peat culture substrate is a prerequisite for the European sustainable horticulture industry[J]. Humic,2002,(4):38-42.
    124. Golueke C G. Compost as a micronutrient supplier[J]. Principles of Composting,1991: 161-162.
    125. Golueke C G, Diaz L F. Potential useful products from solid wastes[J]. Waste Management \& Research,1991a,9(5):415-423.
    126. Golueke C G, Diaz L F. Source separation and MSW compost quality[J]. BioCycle,1991b, 32(5):70-71.
    127. Gorham E. Water, ash, nitrogen and acidity of some bog peats and other organic soils[J]. Journal of Ecology,1961,49(1):103-106.
    128. Halvey A H, Mayak S. Senescence and postharvest pHysiology of cut flowers[J]. Hort. Rev, 1979,1:204-234.
    129. Handreck K. A. Properties of coir dust, and its use in the formulation of soilless potting media[J]. Communications in Soil Science\& Plant Analysis,1993,24(3-4):349-363.
    130. Hargreaves J C, Adl M S, Warman P R. A review of the use of composted municipal solid waste in agriculture [J]. Agriculture, Ecosystems & Environment,2008,123(1-3):1-14.
    131. Handreck K A, Black N D. Growing media for ornamental plants and turf[M]:Univ of New South Wales,2002.
    132. Haug R T. The practical handbook of compost engineering[M]:CRC,1993.
    133. He D I, Logan T J, Traina S J. PHysical and chemical characteristics of selected U.S. municipal solid-waste composts[J]. J. Environ. Qual.,1995,24:543-552.
    134. Hicklenton P R, Rodd V, Warman P R. The effectiveness and consistency of source-separated municipal solid waste and bark composts as components of container growing media[J]. Scientia Horticulturae,2001,91(3-4):365-378.
    135. Hue N V. Sewage sludge[J]. Soil amendments and environmental quality. Boca Raton, Lewis Publishers,1995:199-247.
    136. Hue N V, Liu J. Predicting compost stability[J]. Compost science and utilization,1995,3.
    137. Humara J M, Casares A, Majada J. Effect of seed size and growing media water availability on early seedling growth in Eucalyptus globulus[J]. Forest ecology and management,2002, 167(1-3):1-11.
    138. Illmer P, Schinner F. Compost turning—A central factor, for a rapid and high-quality degradation in household composting[J]. Bioresource technology,1997,59(2):157-162.
    139. Ingelmo F, Canet R, Ibanez M A, et al. Use of MSW compost, dried sewage sludge and other wastes as partial substitutes for peat and soil[J]. Bioresource Technology,1998,63(2): 123-129.
    140. Itavaara M, Vikman M, Venelampi O. Windrow composting of biodegradable packaging materials[J]. Compost Science\& Utilization,1997,5(2):84-92.
    141. Keeling A A, Paton I K, Mullett, J A J. Germinaton and growth of plants in media containing unstable refuse derived compost[J]. Soil Biol. Biochem.,1994,26:767-772.
    142. Kipp J A, Wever G, De Kreij C. International substrate manual[J]. Research Station for, 2000.
    143. Kuhad R, Singh A, Eriksson K E. Microorganisms and enzymes involved in the degradation of plant fiber cell walls[J]. Biotechnology in the pulp and paper industry,1997:45-125.
    144. Kummer J A, Wever P C, Kamp A M, et al. Expression of granzyme A and B proteins by cytotoxic lympHocytes involved in acute renal allograft rejection[J]. Kidney international, 1995,47(1):70-77.
    145. Lappalainen E. Global peat resources[M]:International Peat Society Finland,1996.
    146. Ludwig B, Schmilewski G, Terhoeven-Urselmans T. Use of near infrared spectroscopy to predict chemical parameters and pHytotoxicity of peats and growing media[J]. Scientia horticulturae,2006,109(1):86-91.
    147. Macgregor S T, Miller F C, Psarianos K. M, et al. Composting process control based on interaction between microbial heat output and temperature[J]. Applied and Environmental Microbiology,1981,41(6):1321-1330.
    148. Ma T H. Soilless Cultivation[M]. Beijing, P.R. China:Beijing Press,1980:143.
    149. Maher M J, Prasad M. The effect of peat type and lime on growing medium pH and structure and on growth of Hebe pinguifolia'Sutherlandii'[C],2001.
    150. Maher M J, Prasad M, Raviv M. Organic soilless media components.:Raviv M, Lieth J H. Soilless substrates theory and practice[M]:Elsevier BV,2008:459-504.
    151. Marschner H. Zinc uptake from soils[J]. DEVELOPMENTS IN PLANT AND SOIL SCIENCES,1993,55:59.
    152. Mayak S, Accati-Garibaldi E. The effect of micro-organisms on susceptibility to freezing-damage in petals of cut rose flowers[J]. Scientia Horticulturae,1979,11(1):75-81.
    153. Medina E, Paredes C, P E Rez-Murcia M D, et al. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants [J]. Bioresource technology,2009,100(18):4227-4232.
    154. Morel J L, Colin F, Germon J C, et al. Methods for the evaluation of the maturity of municipal refuse compost.[J],1985.
    155. Noble R, Coventry E. Suppression of soil-borne plant diseases with composts:, a review[J]. Biocontrol Science and Technology,2005,15(1):3-20.
    156. Noguera P, Abad M, Puchades R, et al. Influence of particle size on pHysical and chemical properties of coconut coir dust as container medium[J]. Communications in Soil Science and Plant Analysis,2003,34(3-4):593-605.
    157. Olympios C M, Kerkides P, Diamantopoulos V, et al. Production of greenhouse tomatoes in five different inert porous materials. Crop-water relationship[C],1994.
    158. Pakarinen P. Element contents of SpHagna:variation and its sources[J]. BryopHytorum Bibliotheca,1977,13:751-762.
    159. Pavlostathis S G, Misra G, Prytula M, et al. Anaerobic processes[J]. Water environment research,1995,67(4):459-470.
    160. Prabirbasu.生物质气化与热解[M].北京:科学出版社,2011:365.
    161. Prasad M. PHysical properties of media for container-grown crops. Ⅰ. New Zealand peats and wood wastes[J]. Scientia Horticulturae,1979,10(4):317-323.
    162. Prasad M. PHysical properties of media for container-grown crops. Ⅱ. Peat mixes[J]. Scientia Horticulturae,1979b,10(4):325-330.
    163. Prasad M. Retention of nutrients by peats and wood wastes[J]. Scientia Horticulturae,1980, 12(3):203-209.
    164. Prytula M, Pavlostathis S. Contaminant and Organic Matter Bioavailabilty Effects on the Biotransformation of Sediment-bound Chlorobenzenes[C],1995.
    165. Puustjarvi V. Peat in horticulture[J]. Soils Bulletin,1975.
    166. Puustjarvi V, Robertson R A. PHysical and chemical 13. properties, p 23--38[J]. Peat in Horticulture. Academic Press, London,1975.
    167. Raviv M, Lieth J H. Soilless culture:theory and practice[M]:Elsevier Science Ltd,2008.
    168. Raviv M, Medina S. PHysical characteristics of separated cattle manure compost[J]. Compost Science & Utilization,1997,5:44-47.
    169. Raviv M, Medina S, Krasnovsky A, et al. Organic matter and nitrogen conservation in manure compost for organic agriculture[J]. Compost Science & Utilization,2004,12(1):6-10.
    170. Ray T S. Survey of shoot organization in the Araceae[J]. American journal of botany,1988: 56-84.
    171. Ray T S. Diversity of shoot organization in the Araceae[J]. American journal of botany,1987: 1373-1387.
    172. Slater R A, Frederickson J. Composting municipal waste in the UK:some lessons from Europe[J]. Resources, Conservation and Recycling,2001,32(3-4):359-374.
    173. Smith D L. Plant sap analysis as a monitoring technique for tomatoes in rockwool[C],1987.
    174. Strom P F. Effect of temperature on bacterial species diversity in thermopHilic solid-waste composting.[J]. Applied and Environmental Microbiology,1985a,50(4):899-905.
    175. Strom P F. Identification of thermopHilic bacteria in solid-waste composting. [J]. Applied and environmental microbiology,1985b,50(4):906-913.
    176. Sonneveld C, Voogt W. The concentration of nutrients for growing anthurium andreanum in substrate.[J]. Acta Hort.,1993,342:61-68.
    177. Suo L N, Sun X Y, Du J J, et al. The conversion of corn cob and garden wastes into growing-medium on Anthurium (Anthurium andraeanum)[C]. Wuhan:Scientific Research Publishing, 2010.
    178. Suo L N, Sun X Y, Li S Y. Use of organic agricultural wastes as growing media for the production of Anthurium andraeanum 'Pink Lady'[J]. The Journal of Horticultural Science & Biotechnology,2011a,86(4):366-370.
    179. Suo L N, Sun X Y, Li S Y. Charred and Composted Agriculture-Forestry Organic Wastes as Components of Growing Media for the Production of Anthurium (Anthurium andraeanum Cv.'Pink Lady')[J]. Advanced Materials Research,201 lb,211:48-56.
    180. Tchobanoglous G, Theisen H, Vigil S. Intergrated Solid Waste Management (Engineering Principles and Management Issues)[M].北京:清华大学出版社.McGraw-Hill,2000:978.
    181. Termorshuizen A J, Van Rijn E, Van Der Gaag D, et al. Suppressiveness of 18 composts against 7 pathosystems:variability in pathogen response[J]. Soil Biology and Biochemistry, 2006,38(8):2461-2477.
    182. Turner R K, Salmons R, Powell J, et al. Green taxes, waste management and political economy[J]. Journal of environmental management,1998,53(2):121-136.
    183. Vuorinen A H, Saharinen M H. Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system[J]. Agriculture, ecosystems\& environment,1997a,66(1):19-29.
    184. Vuorinen A H, Saharinen M H. Effects of process conditions on composting efficiency and nitrogen immobilization during composting of manure in a drum composting system[C], 1997b.
    185. Wever G, Van Leeuwen A A, Van der Meer M C. Saturation rate and hysteresis of growing media[J]. Acta Hortic,1997,450:287-295.
    186. Willson G B, Parr J F, Epstein E, et al. Manual for composting sewage sludge by the Beltsville aerated-pile method[J],1980.
    187. Wilson S B, Stoffella P J, Graetz D A. Evaluation of compost as an amendment to commercial mixes used for container-grown golden shrimp plant production [J]. HortTechnology,2001,11:31-35.
    188. Woodard M A, Bearce B C, Cluskey S, et al. Coal bottom ash and pine wood peelings as root substrates in a circulating nutriculture system[J]. HortScience,1993,28(6):636-638.
    189. Wu L, Ma L Q. Effect of sample storage on biosolids compost stability and maturity evaluatio[J]. J. Environ. Qual.,2001,30:222-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700