用户名: 密码: 验证码:
高性能快速控制反射镜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速控制反射镜是光学扫描器件的一种,是激光雷达、自适应光学、空间光通信等应用领域的关键器件之一。国内现有传统的激光扫描器由于频率、体积、功耗、控制等多方面因素结合的限制,不能满足现有高端应用领域对于激光扫描的需求。西方发达国家在诸多领域已经有很成熟的激光扫描器,但是在技术引进方面存在对国内的相关限制。因此我们需要开展面向高端应用的高性能激光扫描器的研究,为开发具有市场竞争力和自主创新的新系统奠定基础。
     本论文概述了现有的各种激光扫描器,同时给出了国外现有音圈电机驱动和压电陶瓷驱动的快速控制反射镜的性能。介绍了快速控制反射镜的硬件结构和软件结构的组成和作用。开展了基于两种驱动器驱动的三种不同结构的快速控制反射镜的研究。主要研究内容和成果综述如下:
     在机械结构方面,首先分别介绍了三种快速控制反射镜的总体结构,分析了各自的工作原理。然后围绕三种结构,对关键部件进行了仿真计算,主要包括音圈电机和压电位移放大结构,得出了适合需求的结构。为了将驱动器的输出成功转化为合适的扫描偏转,综合考虑频率、角度的需求,对柔性铰链进行了特殊的设计。针对不同反射镜,经过仿真、测试、修改与优化,设计了不同的高效的柔性铰链结构。并根据结构布局和空间尺寸要求,设计了不同的反馈装置用于扫描状态的实时探测。
     在电学设计方面,首先设计了三种快速控制反射镜通用的控制电路。然后分别介绍了不同反射镜各自所特有的驱动电路和信号处理电路。对于音圈电机驱动二维反射镜:介绍了反馈信号的调理电路和基于音频功放芯片的驱动电路。为电机软启动设计了基于光耦的隔离电路,结合芯片的散热需求设计了散热模块。对于压电驱动一维反射镜:设计了基于电阻应变片的反馈电路和基于分离原件的高压驱动电路。搭建了抑制机械结构谐振的陷波电路,结合陷波电路的频率点和衰减幅度做了理论分析。对于压电驱动二维反射镜:研究了集成高压驱动电路和基于电容位移传感器的信号调理电路。
     在控制算法方面,首先设计并优化了信号滤噪算法以消除信号采集过程中噪声对控制的影响。然后分别介绍了三种快速控制反射镜相应的控制算法。对于音圈电机驱动反射镜:通过对音圈电机进行建模,经由系统辨识得出传递函数,设计了闭环控制器抑制谐振对反射镜进行控制。对于压电驱动一维反射镜:针对压电固有的迟滞特性,分析了压电扫描器中迟滞回线的修正原理及方法,设计了自学习前馈控制补偿器,抑制了压电陶瓷的迟滞效应。对于压电驱动二维反射镜:针对其特有的三支撑结构,进行了驱动算法的解耦。模拟了三驱动器条件下的二维单镜面扫描,同时分析了入射光线和镜面法线夹角对于扫描视场的影响。
     在测试方面,搭建了基于位敏探测器和数据采集卡的测试平台,设计了基于虚拟仪器的测试程序,介绍了测试的基本步骤。分别测试了三种快速控制反射镜的扫描角度、扫描频率、扫描线性度等基本性能。对于各自的测试结果进行了分析比较,经过控制的扫描结果在性能上得到了大幅提高。
     最后,针对满足空间多目标探测干扰的需求提出了一种阵列式快速控制反射镜。
Fast steering mirror (FSM) is a kind of optical scanning device, which is one of the most important components in the applications of light detection and ranging (lidar), adaptive optics, space optical communications, and so on. Domestic traditional FSM cannot meet the requirements of the high-end applications because of the limitation of their frequency, sizes, power consumptions and control. Laser scanners abroad in many fields are very mature, but advanced equipments importing are restricted due to the technology blockade policy of the western developed countries. Therefore, the research of laser scanner system for the high-end applications is urgent.
     This thesis gives an overview of the existing laser scanners. The performance of the existing foreign FSMs driven by voice coil actuator (VCA) and PbZrTiO3 (PZT) is presented. The composition and role of the hardware and software structure of the FSM is introduced. Three different FSMs based on two different actuators are fabricated. The primary content of the dissertation includes:
     In the aspect of the mechanical structure, the overall structures of the FSM are introduced, and the work principles are analyzed respectively. Key components which include the VCAs and amplified piezo actuators are simulated and calculated based on these different structures. And the optimized structures are obtained. In order to convert the output of the actuators to the suitable scanning deflection successful, the special consideration of the flexible support is necessary with the requirements of the frequency and angle. Different efficient flexible support structures are designed after simulation, measurement, modification and optimization for different FSMs. Different feedback structures for the detection of scan status are designed with the requirements of different structural layout and space size.
     In the aspect of the electrical design, common control circuits of the three FSMs are designed. Each unique drive circuit and signal processing circuit are set up for different FSMs. Feedback signal conditioning circuit and audio amplifier chip driver circuit for the two-dimensional (2D) FSM driven by VCAs are introduced. Isolation circuit based on the optical coupler for the soft start of VCA is designed. Cooling module is designed by the combination of demand of the chip cooling. Feedback circuit based on the resistance strain gauge and high-voltage driver circuit based on the separation device are introduced for the one-dimensional (1D) FSM driven by PZT. Notch circuit to restrain the resonant of the mechanical structure is set up. Corresponding to different frequency and the attenuation, the principle of the notch filter circuit is analyzed. Integrated high voltage driver circuit and signal conditioning circuit based on capacitive displacement sensor are achieved for the 2D FSMs driven by PZT.
     In the aspect of control algorithm, the signal noise filtering algorithm is designed and optimized to eliminate the effects of the noise in the signal acquisition to the control process. Three different control algorithms for the FSMs are described. A controller based on the model of the VCA is designed to realize feedback control in 2D scanning. The controller is used to reduce the oscillation of the FSM driven by VCAs at resonance frequency. To design a qualified controller, the model of the FSM is set up. The transfer function of the model is identified based on the tested data. The principle and method of amending the piezoelectric scanner hysteresis loop are analyzed for the 1D FSMs. The control algorithm based on self-learning feed-forward controller is introduced. The hysteresis characteristics are well restrained. For the unique support structure of the 2D FSMs driven by PZT, the driving algorithm is decoupled. Single-mirror 2D scanning driven by three actuators is simulated. The impact of the angle between the incident light and the mirror normal on the field of the view is analyzed.
     In the aspect of the performance measurement, a testing bench based on the position sensitive detector (PSD) and data acquisition card (DAQ) is built. Testing program based on virtual instrument is designed. The basic steps of the test are introduced. The scanning angle, scanning frequency and scanning linearity of three FSMs are testrd. The scanning performance of the FSMs is remarkably improved by controlling process.
     Finally, an array FSM for the multi-target detection and interference is introduced. The thesis laid the foundation fot the development of the array FSM.
引文
[1]胡春生.脉冲半导体激光器高速三维成像激光雷达研究:[博士学位论文].长沙:国防科技大学,2005
    [2]I. L. Bass, G. M. Guss, R. P. Hackel. Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser. Proc. SPIE,2005,5991:59910C
    [3]G. Baister, T. Dreischer, M. Tuchler, et al. OPTEL terminal for deep space telemetry links. Proc. SPIE,2007,6457:645706
    [4]J. Degnan, D. Wells, R. Machan, et al. Second generation airborne 3D imaging lidars based on photon counting. Proc. SPIE,2007,6771:67710N
    [5]王本,沈树群.激光扫描和光盘技术.(第一版).北京:北京邮电学院出版设,1990.30-89
    [6]Redmond P. Aylward. Advanced galvanometer-based optical scanner design. Sensor Review,2003,23(3):216~222
    [7]M. Muth. Optimized X/Y scanning head for laser beam positioning. Proc. SPIE, 1996,2774:535-544
    [8]D. W. Perkes, G. L. Jensen, D. L. Higham. Steering and positioning targets for HWIL IR testing at cryogenic conditions. Proc. SPIE,2006,6208:62080C
    [9]M. Sweeney, E. Erdelyi, M. Ketabchi, et al. Design considerations for optical pointing and scanning mechanisms. Proc. SPIE,2003,5176:135~146
    [10]韦中超,熊言威,莫玮等.旋转双光楔折射特性与二维扫描轨迹的分析.应用光学,2009,30(6):939-943
    [11]铁艳霞,孙秀冬,尚铁梁等.用于激光雷达扫描的计算全息光栅扫描器.哈尔滨工业大学学报,1998,30(4):4-7
    [12]A. N. Alexseyev, O. S. Borodavka, A. V. Volyar, et al. Generation of optical vortices in a magnetic hologram grating and an astigmatic lens converter. Proc. SPIE,1998,3487:101~107
    [13]徐介平.声光器件的原理、设计与应用.(第一版).北京:科学出版社,1982.282-294
    [14]J. M. Larson, S. A. Schwartz. Resonant scanning in laser confocal microscopy. Nikon Instruments,2010.1~11
    [15]吴新社,蔡毅.透射式固态电光扫描器设计.红外与激光工程,2006,35(4):424-428
    [16]J. H. Zhai, S. Schroeck, Y. H. Huang, et al. Electro-optic scanner for optical disk fine tracking system. Proc. SPIE,1999,3787:194~201
    [17]W. C. Wang, J. D. Luo. Electro-optic polymer prism beam deflector. Optical Engineering,2009,48(11):114601
    [18]D. Krogmann, H. D. Tholl. Infrared micro-Optics technologies. Proc. SPIE,2004, 5406:121~132
    [19]董珊.微透镜扫描器的研究:[硕士学位论文].武汉:华中科技大学,2007
    [20]王博,蒋志伟,罗君等.应用于激光雷达的光电子技术.半导体光电,2006,27(2):118-122
    [21]R. Ryf, D. T. Neilson, C. R. Giles. Scalable micro mechanical optical crossconnects. Proc. SPIE,2001,4455:51~58
    [22]J. P. Siepmann, A. Rybaltowski. Optically extended MEMS scanning transforms imaging ladar. Laser Focus World,2005,45(7):89~91
    [23]Physik Instrumente. Fast steering mirrors with piezoelectric drives. Moving the Nanoworld,2009:3-1~3-11
    [24]R. Gloess, B. Lula. Challenges of extreme load hexapod design and modularization for large ground-based telescopes. Proc. SPIE,2010,7739: 77391U
    [25]Cedrat Technologies. Compact, dynamic and precise. France:CEDRAT Group, 2010.38~39
    [26]Spectra Physics. Active beam stabilization between optical tables. USA:Newport Corporation,2003.508~511
    [27]Optics In Motion. Fast steering mirror:user's manual models OIM3300. USA: Optics in Motion LLC.,2007.1~11
    [28]F. Gonte, C. Dupuy, C. Frank, et al. The first active segmented mirror at ESO. Telescopes and Instrumentation,2007,128(6):23~24
    [29]周永生.揭开美空军机载激光器的神秘面纱.国防科技,2005,(7):30-33
    [30]M. B. L. Kelcimer, C. R. Dauk. ABL beam control segment. Proc. SPIE,1998, 3381:8~13
    [31]凌宁,官春林,王岚等.61单元分立式压电变形反射镜的研制.强激光与粒子束,1998,10(4):527-530
    [32]徐文莉.由两块拼接反射镜组成的光学系统的衍射能量分布.天体物理学报,1996,17(1):96-102
    [33]王永辉.快速控制反射镜结构及其动态特性的研究:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003
    [34]霍震,唐诗才.位置敏感光电探测器.半导体光电,1998,19(1):60-66
    [35]J. Noh, J. La, W. Youm, et al. A new optical laser extensometer using a position sensitive detector(PSD). Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2003,2:1178~1181
    [36]D. H. Qian, W. J. Wang, I. Busch-Vishniac. Position measurements of multiple light beams with one position-sensitive detector (PSD).9th IEEE Instrumentation and Measurement Technology Conference,1992.494~497
    [37]Y. K. Wane, A. Torii, K. Don, et al. Positioning of a miniature robot using position sensitive detectors. Proceedings of 2002 International Symposium On Micromechatronics And Human Science,2001.99~104
    [38]R. A. Sherry, S. M. Lord. LabVIEW as an effective enhancement to an optoelectronics laboratory experiment. Proceedings of Frontiers in Education 1997 27th Annual Conference,1997,2:897~900
    [39]M. Stefanovic, V. Cvijetkovic, M. Matijevic, et al. A LabVIEW-based remote laboratory experiments for control engineering education. Computer Applications In Engineering Education,2011,19(3):538~549
    [40]孙海燕,罗祖顺,杨永才.基于LabVIEW的光电在线测振系统研究.仪器仪表学报,2004,25(4):26-28
    [41]陈超祥,叶修梓SolidWorks Simulation基础教程.(第一版).北京:机械工业出版社,2010.1~71
    [42]刘国强,赵凌志,蒋继娅Ansoft工程电磁场有限元分析.(第一版).北京:电 子工业出版社,2005.177-261
    [43]史维祥,尤德昌.系统辨识基础.(第一版).上海:上海科学技术出版社,1988.1-5
    [44]G. F. Franklin, J. D. Powell, A. Emami-Naeini. Feedback control of dynamic systems. (Fifth ed.). New Jersey:Pearson Education, Inc.,2005.72~148
    [45]L. Ljung. System identification-theory for the user. (Second ed.). Indiana:Prentice Hall PTR,1999.1~6
    [46]Texas Instruments. TMS320C28x optimizing C/C++ compiler user's Guide. (Preliminary ed.). Dallas:Texas Instruments,2001.6-1~6-36
    [47]Sean Mcpeak. Create a swept-sine function in LabView with just one virtual instrument. Electronics Design Strategy News,2009,16(6):43~44
    [48]陈锡辉,张银鸿.LabVIEW8.20程序设计从入门到精通.(第一版).北京:清华大学出版社,2007.42-239
    [49]H. C. Yu, T. S. Liu. Adaptive model-following control for slim voice coil motor type optical image stabilization actuator. Journal of Applied Physics,2008,103: 07F114
    [50]Y. Huang, S. H. Chen, S. H. Xiang, et al. A microoptical scanner. Proc. SPIE, 2006,6150:615047
    [51]X. Yang, Z. Y. Jia, D. M. Guo. Study on giant magnetostrictive microdisplacement actuator having the function of sensing its displacement. Proc. Fifth World Congress on Intelligent Control and Automation,2004,4:3615~3619
    [52]M. J. Chung, Y. H. Yeea, D. H. Chaa. Development of auto focus actuator for camera phone by applying piezoelectric single crystal. Proc. SPIE,2007,6715: 671507
    [53]M. Hafeza, T. C. Sidler, R. P. Salathea, et al. Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner. Mechatronics,2000, 10:741~760
    [54]G. C. Loney. Design and performance of a small two-axis high-bandwidth steering mirror. Proc. SPIE,1991,1454:198~206
    [55]H. Deweerd. Compact, low power precision beam steering mirror. Proc. SPIE, 1991,1454:207~214
    [56]G. C. Loney. Design of a high-bandwidth steering mirror for space-based optical communications. Proc. SPIE,1991,1543:225~235
    [57]张大卫,冯晓梅.音圈电机的技术原理.中北大学学报,2006,27(3):224-228
    [58]A. M. Madni, J. B. Vuong, M. Lopez, et al. A smart linear actuator for fuel magnetic system.2002 Proceedings of the 5th Biannual World Automation Congress,2002,14:615~624
    [59]F. Claeyssen, N. Lhermet, T. Mafflard. Magnetostrictive actuators compared to piezoelectric actuators. Proc. SPIE,2003,4763:194~199
    [60]B. Hredzak, G. Herrmann, G. Guo. A proximate-time-optimal-control design and its application to a hard disk drive dual-stage actuator system. IEEE Transactions on Magnetics,2006,42(6):1708~1715
    [61]C. H. Tee, J. H. Lee, S. H. Kim, et al. Development of beamrotating based on voice coil motor type for multi-beam optical disc system. Proc.1999 IEEE/RSJ International Conference on Intelligent Robots and Systems,1999,3:1884-1889
    [62]赵兴玉,张胜泉,张大卫.基于音圈电机精密定位平台的控制系统设计与仿真.天津大学学报,2007,40(2):127-132
    [63]J. Mcbean, C. Breazeal. Voice coil actuators for human-robot interaction. Proceedings of 2004 IEEE/RSJ International Conterence on Intelligent Robots and Systems,2004.852~858
    [64]J. Honga, K. Park. Design and control of six degree-of-freedom active vibration isolation table. Review of Scientific Instruments,2010,81(3):035106
    [65]C. S. Liu, P. D. Lin. A miniaturized low-power VCM actuator for auto-focusing applications. Optics Express,2008,16(4):2533~2540
    [66]L. Encica, J. Makarovic, E. A. Lomonova, et al. Space mapping optimization of a cylindrical voice coil actuator. IEEE Transactions on Industry Applications,2006, 42(6):1437~1444
    [67]F. J. Wang, D. W. Zhang, X. Y. Zhao, et al. The structure design and control of precision positioning system driven by rotary VCA.8th International Conference on Electronic Packaging Technology,2007:1~5
    [68]黄声华,陶醒世,傅光洁.音圈电机的数学模型及仿真.华中理工大学学报,1996,24(S):68-71
    [69]L. Encica, D. Echeverria, E. A. Lomonova, et al. Efficient optimal design of electromagnetic actuators using space mapping. Struct Multidisc Optim,2007,33: 481~491
    [70]M. Sweeney, G. Rynkowski, M. Ketabchi, et al. Design considerations for fast steering mirrors (FSMs). Proc. SPIE,2002,4773:63~73
    [71]W. Donga, J. Tanga, Y. Eldeebb. Design of dual-stage actuation system for high precision optical manufacturing. Proc.SPIE,2008,6928:692828
    [72]M. E. Meline, J. P. Harrell, K. A. Lohnes. Universal beam steering mirror design using the cross blade flexure. Proc. SPIE,1992,1697:424~442
    [73]谭坤,宗光华,毕树生等.大变形柔性铰链的多簧片构型.军民两用技术与产品,2007(3):38-42
    [74]P. Schellekens, N. Rosielle, H. Vermeulen, et al. Design for precision:current status and trends. Annals of the ClRP,1998,47(2):557~586
    [75]余跃庆.柔顺机构学.(第一版).北京:高等教育出版社,2007.18-44
    [76]B. P. Trease, Y. M. Moon, S. Kota. Design of large-displacement compliant joints. Transactions of the ASME,2005,127(7):788~798
    [77]N. Lobontiu. Compliant mechanisms:design of flexure hinges. (First ed.). Washington:CRC Press,2003.43~91
    [78]刘登云,杨志刚,吴丽萍等.应用于压电叠堆泵的柔性铰链放大机构的设计和性能分析.机械设计,2007,25(4):68-70
    [79]F. Claeyssen, R. Le Letty, F. Barillot, et al. Mechanisms based on piezo actuators. Proc. SPIE,2001,4332:225~233
    [80]P. Bouchilloux, F. Claeyssenb, R. L. Lettyb. Amplified piezoelectric actuators: from aerospace to underwater applications. Proc. SPIE,2004,5388:143~154
    [81]F. C. Aeyssen, N. Lhermeta, R. L. Letty, et al. Piezoelectric actuators and motors based on shell structures. Proc. SPIE,2000,3991:202~209
    [82]李玉和,李庆祥,陈璐云等.单轴柔性铰链设计方法研究.清华大学学报,2002,42(2):172-174
    [83]S. T. Smith, V. G. Badami, Ji S. Dale, et al. Elliptical flexure hinges. Review Of Scientific Instruments,1997,68(3):1474~1483
    [84]Ma H. Q, Hu D. J, Zhang K. Micro-displacement amplifying mechanism driven by piezoelectric actuator. Journal of Southeast University,2004,20(1):75~79
    [85]刘建芳.压电步进精密驱动器理论及实验研究:[博士学位论文].长春:吉林大学,2005
    [86]刘迎春,叶湘滨.传感器原理设计与应用.(第四版).长沙:国防科技大学出版社,2006.59-108
    [87]付亮亮,何欣,廉凤慧.指向可变平面反射镜支撑方法研究.光学技术,2008,34(5):734-737
    [88]J. Spanos, Z. Rahman, G. Blackwood. A soft 6-axis active vibration isolator. Proceedings of the American Control Conference,1995,1:412~416
    [89]W. J. Kim, S. Verma, H. Shakir. Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems. Precision Engineering,2007,31:337~350
    [90]Texas Instruments. TMS320F2810, TMS320F2812 digital signal processors. (Second ed.). Dallas:Texas Instruments,2003.1~67
    [91]张卫宁.TMS320C28x系列DSP的CPU与外设.(第一版).北京:清华大学出版社,2004.1-193
    [92]W. Jiang, B. Fahimi. Current reconstruction techniques for survivable three-phase PWM converters. IEEE Transactions on Power Electronics,2010,25(1):188~192
    [93]H. Qiu, G. Z. Cao, J. F. Pan, et al. The development of magnetic levitation ball control system based on TMS320F2812.3rd International Conference on Power Electronics Systems and Applications,2009.1~4
    [94]W. Dong, L. K. Lu, Y. L. Li, et al. The design of USB communication interface system based on TMS320F2812.2010 International Conference On Computer Design And Appliations,2010,4:420~423
    [95]姜禹强,康尔良,赵鹏.开关电源EMI滤波器的设计仿真.黑龙江水专学报,2008,35(4):71-73
    [96]F. Y. Shih, D. Y. Chen, Y. P. Wu, et al. A procedure for design emi filters for ac line applications. IEEE Transactions On Power Electronics,1996,11(1):170~181
    [97]Texas Instruments. TPS767D301, TPS767D318, TPS767D325 dual-output low-dropout voltage regulators. (Second ed.). Dallas:Texas Instruments,2002.1~19
    [98]韩富春,武天文,张宁等.采用软件校正的TMS320f2812内置ADC采样值方案.太原理工大学学报,2006,37(2):173-175
    [99]Texas Instruments. TMS320280x and TMS3202801x ADC calibration. (First ed.). Dallas:Texas Instruments,2006.1~19
    [100]Texas Instruments. THS120612-Bit 6 Msps, simultaneous sampling analog-to-digital converters. (Second ed.). Dallas:Texas Instruments,2000.1~41
    [101]Texas Instruments. TLV56132.7V to 5.5V 12-Bit parallel digital-to-analog converter with power down. (Second ed.). Dallas:Texas Instruments,1998.1~21
    [102]刘巍,李刚.超保真高性能双通道音频放大器LM1876.国外电子元器件,1996(7):37-41
    [103]National Semiconductor. LM1876 overture audio power amplifier series dual 20W audio power amplifier with mute and standby modes. (First ed.). Americas: National Semiconductor,1998.1~16
    [104]张智杰.基于单片机的电机软启动设计.电子工业专用设备,2003,(102):73-75
    [105]H. Stapleton, A. O. Grady. Isolation techniques for high-resolution data-acquisition systems. Electronics Design Strategy News,2001,8(2):113~118
    [106]郝国欣,郭华民,高攀.功率器件的散热设计方法.电子工程师,2005,31(11):17-18
    [107]郑君里,应启珩,杨为理.信号与系统.(第二版).北京:高等教育出版社,2000.101-109
    [108]Maxim.4th- and 8th-order continuous-time active filters. Maxim Integrated Products,1996,19-4191:11~17
    [109]W. East, B. Lantz. Notch filter design. Laser Interferometer Gravitational Wave Observatory,2005, T050162(00):1~9
    [110]A. Agarwal, J. H. Lang. Foundations of analog and digital electronicc circuits. (First ed.). San Francisco:Morgan Kaufmann Publishers,2005.777~873
    [111]Apex Precision Power. Power analog ICs, modules and hybrids. (First ed.). Arizona:Cirrus Logic,2009.458-461
    [112]林伟,叶虎年,冯海等.压电陶瓷致动器驱动电源的研究.微纳电子技术,2006,(3):138-140
    [113]Micro-Epsilon Headquarters. High resolution capacitive displacement sensors and systems. (First ed.). Germany:Micro-Epsilon Headquarters,2000.1~28
    [114]张建雄,孙宝元,戴恒震等.高线性非接触式电容位移传感器.仪表技术与传感器,2006(1):6-7
    [115]高培先.提高实时系统数据采集质量的研究.电子技术应用,2002,(3):22-24
    [116]薛年喜.MATLAB在信号处理中的应用.(第一版).北京:清华大学出版社,2003.252-371
    [117]Texas Instruments. TMS320F28x DSP event manager (EV) reference guide. (Preliminary ed.). Dallas:Texas Instruments,2003.2-1~5-43
    [118]J. Xiang, N. Wu, J. Zhang, et al. Design of driving and control system based on Voice Coil Actuation for linear motion of micro-lens array. Proc. SPIE,2009, 7133:713330
    [119]M. F. Khandaker, H. Hong, L. Rodrigues. Modeling and controller design for a voice coil actuated engine valve. Proceedings of the 2005 IEEE Conference on Control Applications,2005.1234-1239
    [120]H. C. Yu, T. S. Liu. Adaptive model-following control for slim voice coil motor type optical image stabilization actuator. Journal of Applied Physics,2008,103: 07F114
    [121]H. Deweerd. Compact, low power precision beam steering mirror. Proc. SPIE, 1991,1454:207-214
    [122]Y. M. Choi, J. J. Kim, J. Kim, et al. Design and control of a nanoprecision XY θ scanner. Review of Scientific Instruments,2008,79(4):045109
    [123]S. R. O'Dea. Structural damping in fast steering mirror systems. Proc. SPIE,1991, 1543:262~275
    [124]S. B. Jung, S. W. Kim. Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control. Precision Engineering,1994, 16(1):49-55
    [125]S. Salapakalt, A. Sebastian, J. P. Cleveland, et al. High bandwidth nano-positioner: A robust control approach. Review Of Scientific Instruments,2002,73(9):3232~ 3241
    [126]S. Salapakalt, A. Sebastian, J. P. Cleveland, et al. Design, identification and control of a fast nanopositioning device. Proceedings of the American Control Conference,2002.1966~1971
    [127]李鹏波,胡德文.系统辨识基础.(第一版).北京:中国水利水电出版社,2006.1-200
    [128]R. C. Dorf, R. H. Bishop. Modern control system. (Twelfth ed.). New Jersey: Prentice Hall,2011.1~633
    [129]胡寿松.自动控制原理.(第五版).北京:科学出版社,2007.1-237
    [130]刘金琨.先进PID控制MATLAB仿真.(第二版).北京:电子工业出版社,2004.449-469
    [131]P. Ge, M. Jouaneh. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Engineering,1997,20(2):99~111
    [132]P. Ge, M. Jouaneh. Modeling hysteresis in piezoceramic actuators. Precision Engineering,1995,17(3):211~221
    [133]P. Ge, M. Jouaneht. Tracking control of a piezoceramic actuator. IEEE Transactions On Control Systems Technology,1996,4(3):209~216
    [134]X. H. Wang, C. H. Ru, S. X. Guo, et al. A novel model of piezoelectric ceramic hysteretic. Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics,2009.252~256
    [135]C. H. Ru, B. H. Pang, K. J. Wang, et al. Adaptive identification and control of hysteresis for piezoelectric actuator. Proceedings of the Fifth International Conference on Machine Learning and Cybernetics,2006.2834~2839
    [136]W. T. Ang, P. K. Khosla, C. N. Riviere. Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics,2007,12(2):134~142
    [137]Y. Stepanenko, C. Y. Su. Intelligent control of piezoelectric actuators. Proceedings of the 37th IEEE Conference on Decision & Control,1998,4:4234~4239
    [138]U. X. Tan, T. L. Win, W. T. Ang. Modeling piezoelectric actuator hysteresis with singularity free prandtl-ishlinskii model. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics,2006.251-256
    [139]苏奎峰,吕强,耿庆锋等.TMS320F2812原理与开发.(第一版).北京:电子工业出版社,2005.156-225
    [140]徐啟阳,杨坤涛,王新兵等.蓝绿激光雷达海洋探测.(第一版).北京:国防工业出版社,2002.186-217
    [141]欧家鸣,王瑞丽,尚鹤岑等.反射定律的三种表达形式.云南师范大学学报,2000,20(1):57-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700