用户名: 密码: 验证码:
基于用户平衡原理的集装箱班轮航线优化模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航线优化是集装箱班轮航线运营管理的关键问题。它决定了班轮运输企业能否在激烈的市场竞争环境下占得先机。近年来,随着海运与陆运集装箱运输业的不断发展,全球集装箱运输市场也逐渐划分为两类相对独立的集装箱班轮运输市场:水路运输主导型运输市场(简称主导型市场)与陆水竞争型运输市场(简称非主导型市场)。针对这两类运输市场的集装箱班轮航线优化问题也呈现出截然不同的特点。例如,在探讨针对主导型市场的航线优化问题时,航线结构、空重箱调运优化以及航线与港口互动关系等因素的影响必须得到充分的考虑;而在研究针对非主导型市场的航线优化问题时,则不能忽略政府、航线经营人以及托运人的三方互动关系因素对优化结果的影响。那么如何针对不同的特点,设计出具有针对性的集装箱班轮航线优化模型,便是本文的研究目标。具体而言,本文主要进行了以下几个方面的工作:
     1)提出了基于混合航线结构的集装箱班轮航线设计与空重运输方案综合优化模型,该模型以航线收益最大为目标,可同时优化干线靠泊港选择、干线港靠泊顺序、支线港选择以及各港间空重箱运量。另外为求解该模型,开发了一种改进的遗传算法。
     2)深入的分析了班轮航线与港口货运需求之间的相互联系,基于该机制和离散选择理论,提出了一种考虑了这种互动关系的集装箱班轮航线和腹地划分模型。该模型不仅可优化计算出合理的班轮航线方案与最佳的空重箱运输计划,定量的计算出港口腹地货流的分布状况,还可被用来分析航线方案与港口货运需求间的互动演变规律。
     3)提出了一种针对海上班轮运输网络的用户平衡交通流分配方法。基于时空网络变化以及特殊的路径阻抗函数结构,该方法解决了用户平衡理论无法处理海上班轮运输网络交通流分配的难题,一方面这种方法允许我们在处理交通流分配问题时,充分的考虑海上运输网络的若干独特特性,另一方面它又允许我们使用经典的方法计算出交通流分布模式。
     4)提出一种考虑政府补贴、碳排放控制以及货主运输方式选择等因素,基于航线运营者、货主和政府三方博弈关系的集装箱班轮航线优化模型。该模型在优化航线配船与航线方案的同时,还可定量的计算出政府应投入的补贴额度。另外为求解该模型,开发了一种基于遗传算法和Frank-Wolf算法的混合启发式算法。
The liner route optimization is of crucial importance when operating container liner route. It determines whether the container transport companies can be highly competitive in fierce market competition. In recent years, with the rapid development of sea and land container transport industry, the global container transport market is gradually divided into two relatively independent container liner transport market: Water transport dominated transport market (Dominate market) and the water-land competition transport market (Non-dominate market). The characteristics of the container liner routing problem of these two sorts of markets are different. For instance, when optimizing the liner optimization problem of dominate market, some important factors like route structures, heavy/empty container allocations and interaction between route and port should be fully considered; however, when studying the liner optimization problem of non-dominate market, the interactive relationship between government, route operaters and shippers cannot be ignored. Therefore, how to design a pertinent container liner route optimization model according to different characteristics is our objective. Specifically, in his thesis we completed the following jobs:
     1) Based on the combined route structure, a comprehensive optimization model for ship routing of the dominate market and empty/full transporting problem is brought up. With the objective to maximize the route's revenue, that model could simultaneously optimize the selection of calling ports, calling sequence, feeder port selection and empty/full transport plans. Besides, to solve this model, an improved genetic algorithm is developed.
     2) The interaction relationship between the liner route and port cargo demand is analyzed thoroughly. Based on this mechanism and the discrete choice theory, a model considering this interaction relationship of container liner route and the division of hinterland is introduced. This model can not only optimization the shipping route and empty/full transport plans, but also analysis the interactive evolution procress of a shipping route and ports'transport demand.
     3) This paper proposed a user equilibrium traffic assignment method for container liner shipping networks. With the help of a time-space transformation method and a seires of special impedance functions, the method could solve the problem of the traffic assignment for the liner shipping network. The adventages of this method is to allow several unique characters of the maritime transport network to be taken into full consideration.
     4) By considering the government subsidy, the carbon emission control, the shippers'choice of transport modes and other factors, the problem of container liner shipping route design problem of the non-dominate market was studied. An optimal model was developed based on the tripartite game relations among the carriers, the shippers and the government. By means of the User Equilibrium Principle, the model could not only optimize the fleet deployment and the ship routing simultaneously, but also work out the reasonable amount of the government subsidy. To solve this model, a genetic algorithm based on the space-time transformation and the frank-wolf algorithm was developed.
引文
[1]Heaver, T., H. Meersman and E. Van de Voorde. Co-operation and competition in international container transport:strategies for ports. Maritime Policy & Management.2001,28(3):293-305.
    [2]刘超.中海远东/北美航线集装箱运输发展策略研究:(硕士学位论文).大连:大连海事大学,2002.
    [3]赵丹.集装箱箱型发展趋势及其对集装箱运输系统的影响:(硕士学位论文).北京:北京交通大学,2008.
    [4]Froyland, G. et al. Optimizing the landside operation of a container terminal. Or Spectrum.2008,30(1): 53-75.
    [5]彭传圣.集装箱船舶大型化新进展.中国港口,2007(11):41-41.
    [6]陈超,苏雅.集装箱航线结构模式的选择.大连海事大学学报.2010,36(4):35-38.
    [7]Chen, K. and Z. Yang. Container Ship Routing Design Considering Combined Patterns and Plans of Loaded and Empty Containers. ASCE, Wu Han,2011:2508-2515.
    [8]Notteboom, T. and J.P. Rodrigue. The future of containerization:perspectives from maritime and inland freight distribution. GeoJournal.2009,74(1):7-22.
    [9]Theofanis, S. and M. Boile, Empty marine container logistics:facts, issues and management strategies. GeoJournal.2009,74(1):51-65.
    [10]www.unctad-docs.org/files/UNCTAD-WIR2011-Full-en.pdf
    [11]Notteboom, T.E. and J.P. Rodrigue. Port regionalization:towards a new phase in port development. Maritime Policy & Management.2005,32(3):297-313.
    [12]Fremont, A. and M. Soppe. Northern European range:shipping line concentration and port hierarchy. International Workshop on Ports, Cities and Global Supply Chains, Hong Kong, China,2005,105-210.
    [13]Choong, S.T., M.H. Cole and E. Kutanoglu. Empty container management for intermodal transportation networks. Transportation Research Part E:Logistics and Transportation Review.2002,38(6): 423-438.
    [14]Sanchez, R.J., et al., Port efficiency and international trade:port efficiency as a determinant of maritime transport costs. Maritime Economics & Logistics.2003,5(2):199-218.
    [15]Bomba, M.S. and R. Harrison, Feasibility of a container-on-barge network along the Texas Gulf Coast. Transportation Research Record:Journal of the Transportation Research Board.2002,1782(1):23-30.
    [16]Burden, A., et al. Improved container transshipment utilising low carbon feeder ships. International Conference on Technological and Operational Advances for Low Carbon Shipping (LCS2011), Glasgow, GB,2011.10.
    [17]Geurs, K., H. Nijland and B. Ruijven. Getting into the Right Lane for Low-Carbon Transport in the EU. Transport Moving to Climate Intelligence,2011:53-72.
    [18]Crist. P., Greenhouse gas emissions reduction potential from international shipping. OECD/ITF,2009.
    [19]Brooks. M.R. and J.D. Frost. Short sea shipping:a Canadian perspective. Maritime Policy & Management.2004,31(4):393-407.
    [20]http://myweb.dal.ca/mrbrooks/ShortSeaShipping.pdf
    [21]Psaraftis, H.N. EU ports policy:Where do we go from here? Maritime Economics & Logistics.2005, 7(1):73-82.
    [22]Garcia Menendez, L. and M. Feo Valero. European Common Transport Policy and ShortSea Shipping: Empirical Evidence Based on Modal Choice Models. Transport Reviews.2009.29(2):239-259.
    [23]Notteboom, T.E. Concentration and the formation of multi-port gateway regions in the European container port system:an update. Journal of Transport Geography,2010.18(4):567-583.
    [24]Ronen, D. Cargo ships routing and scheduling:Survey of models and problems. European Journal of Operational Research.1983,12(2):119-126.
    [25]Ronen, D. Ship scheduling:The last decade. European Journal of Operational Research.1993,71(3): 325-333.
    [26]Christiansen, M., K. Fagerholt, and D. Ronen, Ship routing and scheduling:Status and perspectives. Transportation Science.2004,38(1):1-18.
    [27]Perakis, A.N. and W.M. Bremer. An operational tanker scheduling optimization system:Background, current practice and model formulation. Maritime Policy & Management.1992,19(3):177-187.
    [28]Cline, A.K., D.H. King, and J.M. Meyering, Routing and scheduling coast guard buoy tenders. Interfaces.1992:56-72.
    [29]Jaikumar, R. and M.M. Solomon. The tug fleet size problem for barge line operations:A polynomial algorithm, Transportation Science.1987,21(4):264-272.
    [30]Millar, H.H. and E.A. Gunn. Dispatching a fishing trawler fleet in the Canadian Atlantic ground fish industry. European Journal of Operational Research.1991,55(2):148-164.
    [31]Miller, D.M. An interactive, computer-aided ship scheduling system. European Journal of Operational Research.1987,32(3):p.363-379.
    [32]Benford, H. A simple approach to fleet deployment. Maritime Policy & Management,1981.8(4): 223-228.
    [33]Boykin, R.F. and R.R. Levary, An interactive decision support system for analyzing ship voyage alternatives. Interfaces.1985:81-84.
    [38]Rana, K. and R.G. Vickson. A model and solution algorithm for optimal routing of a time-chartered containership. Transportation Science.1988,22(2):83-95.
    [39]Koenigsberg, E. and R.C. Lam. Cyclic queue models of fleet operations. Operations Research.1976: 516-529.
    [40]Papadakis, N.A. and A.N. Perakis. A nonlinear approach to the multiorigin, multidestination fleet deployment problem. Naval Research Logistics (NRL).1989,36(4):515-528.
    [41]Perakis, A.N. A second look at fleet deployment. Maritime Policy & Management.1985,12(3): 209-214.
    [42]Perakis, A.N. and D.I. Jaramillo. Fleet deployment optimization for liner shipping Part 1. Background, problem formulation and solution approaches. Maritime Policy & Management.1991,18(3):183-200.
    [43]Perakis, A.N. and N. Papadakis. Fleet deployment optimization models, Part 2. Journal of the History of Economic Thought.1987,14(2):145-155.
    [44]余绍明.航线配船的数学优化方法.交通与计算机.1997,15(005):44-45.
    [45]刘建林.不定期船运输系统优化研究:(博士学位论文).上海:上海海事大学,2006.
    [46]Xinlian, X., W. Tengfei, and C. Daisong. A dynamic model and algorithm for fleet planning. Maritime Policy & Management.2000,27(1):53-63.
    [47]Rana, K. and R.G. Vickson. Routing container ships using Lagrangean relaxation and decomposition. Transportation Science.1991,25(3):201-214.
    [48]Jaramillo, D.I. and A.N. Perakis. Fleet deployment optimization for liner shipping Part 2. Implementation and results. Maritime Policy & Management.1991,18(4):235-262.
    [49]Cho, S.C. and A.N. Perakis. Optimal liner fleet routeing strategies. Maritime Policy & Management. 1996,23(3):249-259.
    [50]Zeng, Q. and Z. Yang. Model integrating fleet design and ship routing problems for coal shipping. Computational Science-ICCS.2007:1000-1003.
    [51]Larson, R.C. Transporting sludge to the 106-mile site:an inventory/routing model for fleet sizing and logistics system design. Transportation Science.1988,22(3):186-198.
    [52]Trudeau, P. and M. Dror. Stochastic inventory routing:Route design with stockouts and route failures. Transportation Science.1992,26(3):171-184.
    [53]Mehrez, A., M.S. Hung, and B.H. Ahn. An Industrial Ocean-Cargo Shipping Problem. Decision Sciences.1995,26(3):395-423.
    [54]Darzentas, J. and T., Spyrou. Ferry traffic in the Aegean Islands:a simulation study. Journal of the Operational Research Society.1996:203-216.
    [55]Christiansen, M. Decomposition of a combined inventory and time constrained ship routing problem. Transportation Science.1999,33(1):3-16.
    [56]Agarwal, R. and O. Ergun. Ship scheduling and network design for cargo routing in liner shipping. Transportation Science.2008,42(2):175-196.
    [57]Hsu, C.I. and Y.P. Hsieh. Routing, ship size, and sailing frequency decision-making for a maritime hub-and-spoke container network. Mathematical and Computer Modelling.2007,45(7):899-916.
    [58]Chen, C. and Q. Zeng. Designing container shipping network under changing demand and freight rates. Transport.2010,25(1):46-57.
    [59]陈超.集装箱环绕航线均衡运行原理及作业量函数模型.大连海事大学学报:自然科学版.2004,30(1):61-64.
    [60]Shintani, K., et al. The container shipping network design problem with empty container repositioning. Transportation Research Part E:Logistics and Transportation Review.2007,43(1):39-59.
    [61]Liu, X., H.Q. Ye, and X.M. Yuan. Tactical planning models for managing container flow and ship deployment. Maritime Policy & Management.2011,38(5):487-508.
    [62]Imai, A., K. Shintani, and S. Papadimitriou, Multi-port vs. Hub-and-Spoke port calls by containerships. Transportation Research Part E:Logistics and Transportation Review.2009,45(5):740-757.
    [63]Dong, J.X. and D.P. Song. Container fleet sizing and empty repositioning in liner shipping systems. Transportation Research Part E:Logistics and Transportation Review.2009,45(6):860-877.
    [64]Meng, Q. and S. Wang. Liner shipping service network design with empty container repositioning. Transportation Research Part E:Logistics and Transportation Review.2011,47(5):695-708.
    [65]Claessens, E.M.. Optimization procedures in maritime fleet management. Maritime Policy & Management.1987,14(1):27-48.
    [66]Powell, B.J. and A.N. Perkins. Fleet deployment optimization for liner shipping:an integer programming model. Maritime Policy and Management.1997,24(2):183-192.
    [67]Sambracos, E., et al. Dispatching of small containers via coastal freight liners:The case of the Aegean Sea. European Journal of Operational Research.2004,152(2):365-381.
    [68]Meng, Q. and T. Wang, A chance constrained programming model for short-term liner ship fleet planning problems. Maritime Policy & Management.2010,37(4):329-346.
    [69]Hersh, M. and S.P., Ladany. Optimal scheduling of ocean cruises. INFOR.1989,27(1):48-57.
    [70]Gelareh, S. and D. Pisinger. Fleet deployment, network design and hub location of liner shipping companies. Transportation Research Part E:Logistics and Transportation Review.2011,47(6):947-964.
    [71]Yamada, T., et al. Designing multimodal freight transport networks:a heuristic approach and applications. Transportation Science.2009,43(2):129-143.
    [72]Wardrop, J.G. Some theoretical aspects of road traffic research.1900,1(2):325-378.
    [73]Meng, Q. and X. Wang. Intermodal hub-and-spoke network design:Incorporating multiple stakeholders and multi-type containers. Transportation Research Part B:Methodological.2011,45(4): 724-742.
    [74]Outrata, J.V. A generalized mathematical program with equilibrium constraints. SIAM Journal on Control and Optimization.2000,38:1623.
    [75]Facchinei, F., H. Jiang, and L. Qi. A smoothing method for mathematical programs with equilibrium constraints. Mathematical programming.1999,85(1):107-134.
    [76]Dempe, S. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints.2003,52(3):333-359.
    [77]Tin-Loi, F. and N.S. Que. Parameter identification of quasibrittle materials as a mathematical program with equilibrium constraints. Computer methods in applied mechanics and engineering.2001,190(43): 5819-5836.
    [78]Leblanc, L.J. An algorithm for the discrete network design problem. Transportation Science.1975, 9(3):183-199.
    [79]Poorzahedy, H. and M.A. Turnquist. Approximate algorithms for the discrete network design problem. Transportation Research Part B:Methodological.1982,16(1):45-55.
    [80]Gao, Z., J. Wu, and H. Sun. Solution algorithm for the bi-level discrete network design problem. Transportation Research Part B:Methodological.2005,39(6):479-495.
    [81]贾洪飞,龚勃文,宗芳.交通方式选择的非集计模型及其应用.吉林大学学报:工学版,2007.37(6):1288-1293.
    [82]刘炳恩.居民出行方式选择非集计模型的建立.公路交通科技.2008,25(5):116-120.
    [83]聂冲,贾生华.离散选择模型的基本原理及其发展演进评介.数量经济技术经济研究.2005,11(3):20-28.
    [84]黄晓兰,沈浩.离散选择模型在市场研究中的应用.北京广播学院学报:自然科学版,2002.9(4):34-42.
    [85]吴世江,史其信,陆化普.交通出行方式离散选择模型的效用随机项结构研究综述.公路工程,2008.32(6):92-97.
    [86]Lave, C.A. and K. Train. A disaggregate model of auto-type choice. Transportation Research Part A: General.1979,13(1):1-9.
    [87]陆化普,史其信.动态交通分配理论的回顾与展望.公路交通科技.1996,13(2):34-43.
    [88]王殿海曲昭伟.对交通流理论的再认识.交通运输工程学报.2001,1(4):55-59.
    [89]王凤群,王晓原,苏跃江.基于非集计模型的交通需求预测方法.山东理工大学学报:自然科学版.2009,23(002):7-12.
    [90]Onaka, J. and W.A.V. Clark. A disaggregate model of residential mobility and housing choice. Geographical Analysis.1983,15(4):287-304.
    [91]Molho, I. A disaggregate model of flows onto invalidity benefit. Applied Economics.1989,21(2): 237-250.
    [92]叶亮贺宁.SP调查的非集计模型在水上巴士交通中的应用.城市交通.2007,5(2):66-70.
    [93]熊萍.基于非集计模型的停车换乘行为.系统工程.2008,26(3):17-21.
    [94]Winston, C. A disaggregate model of the demand for intercity freight transportation. Econometrica: Journal of the Econometric Society.1981:981-1006.
    [95]Jong, G.D. A disaggregate model system of vehicle holding duration, type choice and use. Transportation Research Part B:Methodological.1996,30(4):263-276.
    [96]Hensher, D.A. and W.H. Greene. The mixed logit model:the state of practice. Transportation.2003, 30(2):133-176.
    [97]Carrasco, J.A. and J. de Dios Ortuzar. Review and assessment of the nested logit model. Transport Reviews.2002,22(2):197-218.
    [98]宗芳,基于非集计模型的交通需求管理策略评价研究:(博士论文).吉林:吉林大学,2008.
    [99]M. Beckmann, C. B. McGuire and C. B. Winsten. Studies in the Economics of Transportation. New Haven:Yale Univ. Press,1956.
    [100]Fukushima, M. A modified Frank-Wolfe algorithm for solving the traffic assignment problem. Transportation Research Part B:Methodological.1984,18(2):169-177.
    [101]Lam, W.H.K., et al. A stochastic user equilibrium assignment model for congested transit networks. Transportation Research Part B:Methodological.1999,33(5):351-368.
    [102]Yang, H., Q. Meng, and M.G.H. Bell. Simultaneous estimation of the origin-destination matrices and travel-cost coefficient for congested networks in a stochastic user equilibrium. Transportation Science. 2001,35(2):107-123.
    [103]Yang, H., System optimum, stochastic user equilibrium, and optimal link tolls. Transportation Science.1999,33(4):354-360.
    [104]Bertsekas, D.P. and E.M. Gafni. Projection methods for variational inequalities with application to the traffic assignment problem. Nondifferential and Variational Techniques in Optimization.1982: 139-159.
    [105]傅白白,刘法胜,夏尊铨.变分不等式的双层平衡表示及其在交通流分配中的应用a.系统工程理论与实践.1999,12:69-72.
    [106]Lo, H.K. and W.Y. Szeto. A cell-based variational inequality formulation of the dynamic user optimal assignment problem. Transportation Research Part B:Methodological.2002,36(5):421-443.
    [107]Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley,1989.
    [108]胡运权.运筹学教程.清华大学出版社.2003.
    [109]孙海雷,刘琼荪,胡上尉.TSP问题的顺序插入交叉算子.计算机工程与应用,2007.43(8):65-66.
    [110]Sheffi, Y. Urban Transportation Networks. Prentice-Hall, IncEnglewood Cliffs,1985.
    [111]Deb, K., et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ. Evolutionary Computation, IEEE Transactions on Evolutionary Computation.2002,6(2):182-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700