用户名: 密码: 验证码:
双馈型风力发电机在电网故障和不平衡条件下控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双馈风力发电机的变流器容量仅为发电机转差率容量,与直驱型风电系统中的全功率变换器相比,具有体积小、重量轻和损耗低等优点,因此目前双馈感型风电机组在1WM以上的风电机组中占据着主导地位,是国际风电机组研制的主流技术。然而大规模风电的发展,要求并网运行的风电机组能够满足和适应电力系统运行的需要而具备低电压穿越能力和抵御电网电压不平衡影响的能力。本文围绕双馈感应发电机的低电压穿越技术和电网电压不平衡条件下的控制技术进行了较为深入的研究,主要内容如下:
     电网故障时双馈感应发电机的电磁暂态特性对于分析其在故障期间的的行为和实现低电压穿越控制是非常重要的,目前对称故障下双馈电机转子侧短路的电磁暂态特性的研究比较清楚,但缺少不对称故障转子侧短路情况下的电磁暂态特性的理论分析。本文在对称故障研究的基础上,对其在不对称故障转子侧短路情况下的暂态特性进行了理论分析,首先建立了双馈感应发电机的数学模型,然后利用其空间矢量模型对相关参量的数学表达式进行了理论推导,仿真结果验证了理论分析的正确性。从磁链、电流、功率和转矩的数学表达式分析可知,定子磁链负序分量是引起故障期间定子电流不对称、转子电流畸变、功率和电磁转矩脉动的根本原因。
     Crowbar保护方案中的Crowbar电阻的选取是实施有效保护的关键。目前其选取的范围是基于特定运行条件下和一系列近似处理之上通过数学推导给出的,因此存在误差,并且该取值范围的推导不是基于极端运行条件得出的,也没有综合考虑其对功率、电磁转矩的影响。针对上述不足,本文提出了一种Crowbar电阻选取的方法,首先考虑故障前的运行条件对转子电流的影响,通过仿真得出了确定Crowbar电阻值的极端运行条件,然后在该条件下,根据Crowbar电阻对转子电流大小的抑制和定子电流大小、功率和电磁转矩抑制的一致性,提出了在Crowbar投入时尽量抑制转子电流大小和兼顾考虑Crowbar电阻压降不能超出转子变换器的最大输出电压的原则确定Crowbar电阻取值的方法。仿真结果验证了采用该方法确定的Crowbar电阻实现故障穿越的有效性。研究表明,由该方法确定Crowbar电阻的取值所构成的保护方案,可以对定转子电流、功率、电磁转矩的振荡达到最大的抑制。
     电网故障时定子磁链中的故障分量会在转子侧感应很高的过电压,为了防止转子侧过电流,则必须要求转子变换器输出很高的电压与之抗衡,但这会远远超出变换器的电压输出能力;而灭磁控制是通过控制转子电流来抵消定子磁链中故障分量对转子侧的作用的一种低电压穿越方案,但电压深度跌落时为了抵消定子磁链中故障分量的作用,会使灭磁电流超过了变换器通流极限致其损坏。本文针上述方案的不足,提出了转子侧变换器改进的故障穿越控制策略,利用转子变换器的输出电压裕量来构造虚拟阻抗来减小了故障时所需的灭磁电流的大小,在深度跌落时,也可以保证灭磁电流小于转子变换器的最大允许电流;网侧变换器的负载电流前馈的低电压穿越控制策略由于忽略了输入滤波器的损耗,故障时直流链电压的波动较大,为了减小直流电压的波动,本文提出了网侧变换器改进的故障穿越控制策略,考虑输入滤波器的损耗,前馈电流用变换器侧功率来计算。仿真结果验证了改进的机侧和网侧变换器实现低电压穿越的有效性。研究表明,与原控制策略相比,改进的机侧和网侧故障控制策略在电网电压出现严重故障时也能够有效的抑制转子变换器的过电流和直流链电压的过大波动,从而提高了风电机组实现低电压穿越的能力。
     在不平衡控制中,正负序分量的分解实施控制的前提,可以使用低通滤波器或者陷波器完成,但滤波器分离的速度慢,有较大的延时,从而会影响系统的稳定性;再者要求以高的阶数来保证分离的精度,但是阶数越高,对系统的稳定性能影响越大,因此滤波器的使用增加了确定PI参数的难度。为了克服滤波器法存在的问题,本文采用了一种快速的正负序分量分解的方法,基于该方法提出了改进的机侧和网侧变换器的不平衡控制策略,仿真验证了该快速分解方法和不平衡控制策略的有效性,研究表明基于该算法的改进的机侧和网侧的不平衡控制策略能够有效实现设定的不平衡条件下各种控制目标,从而提高了机组抵御电网电压不平衡的能力。
As the converter only manages the rotor power, it can be rated at slip rated power, which can achieve advantages of small size, light weight, low cost, and small losses compared to direct-drive wind power systems with a full scale power converter, nowadays, doubly fed induction generator (DFIG) based wind power system is dominant above 1WM wind power system and it is an essential aspect of wind power technology. With the development of large scale wind power, the capability of low voltage ride through(LVRT) and resisting grid voltage unbalance for grid connected wind power system, Transient behavior of DFIG, LVRT and unbalanced control technology are studied in this paper. The primary contents and original contributions of this dissertation are as follows:
     The transient characteristic of DFIG under grid faults is very important for analysis of its behavior during grid and LVRT control, now the transient characteristic under symmetrical grid fault with rotor side terminal shortcircuit is clear, but the theoretical analysis of electromagnetic under asymmetrical grid faults is lack,based on the study of symmetrical grid fault, the theoretical analysis of electromagnetic under asymmetrical grid faults are studied in this paper,The mathematical models under different reference frame of DFIG are established, based on its space vector model, the transient behaviors of DFIG are derived and analyzed, the simulation results verify the theoretical derivation. It concludes from expressions of flux, current, power and torque that the negative component is the root cause of active power, reactive power and torque pulsation.
     Crowbar resistor selection is crucial for carring out effective protection with traditional crowbar protection scheme.Its range can be gotten with mathematical derivation based on a series of approximations and specified running condition,therefore, it has errors and its specific value is not given, in addition, the derivation of crowbar range is not based on the extreme running condition and it not also considered its influence on power and torque.In this paper, a selection method of crowbar resistor is proposed, firstly, considering influence of the running conditions on rotor current, the extreme running conditions are confirmed with simulations, then, under such condition, according to consistence that limiting rotor current is simultaneously limiting power and torque oscillation, the value of crowbar resistor is decided by considering the use of crowbar limits the rotor current at the most, its decision also considers the voltage drop cross crowbar resistor is lower than the maximum value of output voltage of rotor side coverter, the simulative results validated effectiveness of LVRT with crowbar resistor selecte with such method, It concludes that the current of stator and rotor, the power and the torque can be restrained at most after optimization.
     The DC and negative component of stator flux can induce very large voltage at rotor terminal, so in order to avoid overcurrent at rotor side, rotor side converter must output a very large voltage to balance with it, but the large voltage can exceed the maximum output voltage of rotor side converter much more; demagnitizing control strategy is based on the control of machine side convter itself, its effectiveness is limited by the severity of grid fault and the leakage resistance of DFIG, the magnetizing current under deep dip may exceed the limit of rotor sid converter current, which can damage the converter, in light of such defect, an improved LVRT control strategy for rotor side converter is proposed, the margin of the output voltage of rotor side converter is used to introduce virtual resistance, which can decrease the required demagnitzing current during grid faults; load current forward control strategy is employed for grid side converter during grid faults, because the power loss of input filter is ignored in this strategy, which leads to a large flucuation of DC link voltage during grid faults, in this paper, an improved control strategy of grid side convter is proposed in which the power loss of input filter is not ignored and the computation of the forward current is with convter side power instead of grid side input power, the simulative results validated the effectiveness of rotor sided control strategy and grid side control stragtey, even in the case of severe grid faults, the improved control strategies can still effectively decrease overcurrents on rotor side converter and large fluctuation of DC link,hence, the LVRT capability is improved.
     Positive and negative component extraction is the pre-conditions of unbalance control, which can be employed with low pass filter or noch filter, however, the filter is an independent part in control system, the decomposed speed is slow and it leads to a large delay,which can influence the stablity,in addition, in order to gurantee the decomposed accuracy, the filter order must be high, but the higher filter order, the worse the system stablity, so the use of filter is also increase the difficulty of PI parameter selection of controller, to vercome the shorcomings of filter, a fast positive and negative extrcation method is adopted, based on it, an improved machine side strategy and an improved grid side control stragtey are proposed, the simulation validated the effectiveness of the fast extraction method and the improved unbalanced control stragtegy, It concludes that the improved machine side and rotor side unbalanced control strategies can effectively realize the specified control targets.
引文
[1]国家发展改革委员会.可再生能源发展“十一五”规划.国家发展改革委员会,2008
    [2]李俊峰,蔡丰波,唐文倩等.2011中国风电发展报告.北京:中国环境科学出版社,2011
    [3]2010中国风电装机容量统计.中国可再生能源学会风能专业委员会,2011
    [4]叶杭冶.风力发电机组的控制技术.北京:机械工业出版社,2002
    [5]叶启明.大型风力发电机组系统的结构与特点.华中电力,2002,15(2):67-68
    [6]Manfred Stiebler.Wind Energy Systems for Electric Power. Springer-Verlag Berlin Heidelberg,2008
    [7]Thomas Ackermann.Wind Power in PowerSystems. John Wiley & Sons, Ltd, The Atrium, Southern Gate,2005
    [8]风电场接入电网技术规定.国家电网公司,2009
    [9]Henk Polinder, Frank F. A. van der Pijl, Gert-Jan de Vilder, Peter J. Tavner. Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. Energy conversion,2006,21(3):725-733
    [10]李建林,高志刚,胡书举等.并联背靠背PWM变流器在直驱型风力发电系统的应用电力系统自动化,2008,32(5):59-62
    [11]金玉洁,毛承雄,王丹,曾杰.直驱式风力发电系统的应用分析.能源工程,2006(3):29-33
    [12]李杰.直驱式风力发电变流系统拓扑及控制策略研究:[博士学位论文].上海:上海大学图书馆,2009
    [13]贺益康,何鸣明,赵仁德等.双馈风力发电机交流励磁用变频电源拓扑浅析.电力系统自动化,2006,30(4):105-112
    [14]陈坚.电力电子学—电力电子变换和控制技术.北京:高等教育出版社,2002
    [15]陈坚.交流电机数学模型及调速系统.北京:国防工业出版社,1989
    [16]辜承林,陈乔夫,熊永前.电机学.武汉:华中科技大学出版社,2001
    [17]陈伯时.电力拖动自动控制系统.北京:机械工业出版社,1992
    [18]陈伯时,陈敏逊.交流调速系统.北京:机械工业出版社,2000
    [19]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化,2003,27(20):62-67
    [20]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略.电力系统自动化,2005,29(24):32-38
    [21]贾要勤,曹秉刚,杨仲庆.风力机模拟平台的MPPT快速响应控制方法.太阳能学报,2004,25(3):364-370
    [22]R. Datta, V. T. Ranganathan. A method of tracking the peak power points for a variable speed wind energy conversion system. IEEE Trans. Energy Convers., 2003,18(1):163-168
    [23]王琦,陈小虎,纪延超,李枫.基于双同步坐标的无刷双馈风力发电系统的最大风能追踪控制,电网技术,2007,31(3):82-87
    [24]Andreas Petersson, Lennart Harnefors, Torbjom Thiringer. Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators.35th IEEE Power Electronics Specialists Conference,2004:482-486
    [25]赵阳.风力发电系统用双馈感应发电机矢量控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,2008
    [26]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,2005
    [27]卞松江.变速恒频风力发电关键技术研究:[博士学位论文].浙江:浙江大学图书馆,2003
    [28]刘其辉.变速恒频风力发电系统运行与控制研究:[博士学位论文].浙江:浙江大学图书馆,2005
    [29]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究.中国电机工程学报,2003,23(8):159-162
    [30]Panda D., Benedict E. L., Venkataramanan G. A novel control strategy for the rotor side control of a doubly-fed induction machine. IAS,2001,3:1695-1702
    [31]Petersson A., Harnefors L., Thiringer, T. Evaluation of current control methods for wind turbines using doubly-fed induction machines. IEEE Trans. On Energy Conversion,2005,20(1):227-235
    [32]Cartwright P., Holdsworth L. et al. Co-ordinated voltage control strategy for a doubly-fed induction generator(DFIG)-based wind farm. IEE Proc.-Gener. Transmi. Distrib,2004,151(4):495-502
    [33]T. Yifan, X. Longya. Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation. IEEE Trans. Energy Convers.,1995, 10(4):661-668
    [34]Santiago A. G, Jose L. R. A. Grid synchronization of doubly fed induction generators using direct torque control. IEEE 28th Annual Conference of Industrial Electronics Society,2002:3338-3343
    [35]Arnalte S., Burgos J. C, Rodriguez A. J. L. Direct torque control of a doubly fed induction generator for variable speed wind turbines. Electric Power Components and Systems,2002,30(2):199-217
    [36]王亮,林成武,姚鹏.双馈风力发电机的直接转矩控制技术.沈阳工业大学学报,2006,28(2):206-209
    [37]邢作霞,郑琼林,刘光德,姚兴佳.双馈变速恒频风电机组直接转矩控制.辽宁工程技术大学学报,2006,25(4):556-559
    [38]宋文华.变速恒频双馈发电机直接转矩控制的研究:[硕士学位论文].合肥:沈阳工业大学图书馆,2005
    [39]魏学森.双馈电机直接转矩控制的研究:[硕士学位论文].河北:河北工业大学图书馆,2005
    [40]梅文庆.双馈感应电动机直接转矩控制方法研究:[硕士学位论文].武汉:华中科技大学图书馆,2007
    [41]Lie Xu,Phillip Cartwright. Direct active and reactive Power control of DFIG for wind energy generation. IEEE Tran.Energy Conversion, pp.750-758,vol.21, Sept.2006
    [42]Dawei Zhi, Lie Xu. Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance.IEEE Tran. Energy Conversion, pp.110-118,vol.22 No.1,Mar.2007
    [43]Zbigniew Krzeminski. Sensorless Multisealar Control of double fed machine for wind power generator.in Proc.of PCC, pp.334-339, vol.1, April 2002,Osaka Japan.
    [44]A.Geniusz, S.Muller-Engelhardt. Riding Through Grid Faults With Modified Multiscalar Control of Doubly fed asynchronous generators for wind Powersystems in Proc.of International Conference for Power Electronics-Intelligent Motion-Power Quality,May/June2006, Numberg
    [45]廖勇,杨顺昌.交流励磁发电机双通道励磁系统反馈系数的选取原则.中国电机工程学报,1999(1):52-55.
    [46]廖勇,杨顺昌.交流励磁发电机励磁控制.中国电机工程学报,1998,18(2)
    [47]杨顺昌,廖勇,漆小龙.动态同步轴系及其应用.电工技术学报,1999,14(2)
    [48]J. Lopez, P. Sanchis, X. Roboam, and L. Marroyo, "Dynamic behavior of the doubly-fed induction generator during three-phase voltage dips," IEEE Transactions on Energy Conversion, vol.22, no.3, pp.709-717, Sep.2007.
    [49]J. Lopez, E. Guba, P. Sanchis, X. Roboam, and L. Marroyo, "Wind turbines based on doubly fed induction generator under asymmetrical voltage dips," IEEE Transactions on Energy Conversion, vol.23, no.1, pp.321-330, Mar.2008.
    [50]J. Morren and S. W. H. de Haan, "Short-circuit current of wind turbines with doubly fed induction generator," IEEE Transactions Energy on Conversion, vol.22, no.1, pp.174-180, Mar.2007.
    [51]Vicatos MS,Tegopoulos JA.Transient State Analysis of A Doubly-fed Induction Generator Under 3-phase Short-circuit. IEEE Trans, on Energy Conversion.Mar. 1991.6(1):62-68
    [52]J. Morren and S. W. H. de Haan, "Ride through of wind turbines with doubly-fed induction generator during a voltage dip," IEEE Transactions on Energy Conversion, vol.20, no.1, pp.435-441, Jun.2005.
    [53]郭登科.双馈感应风力发电机低压穿越控制策略研究:[硕士学位论文].沈阳:东北电力大学图书馆,2009
    [54]魏林君.变速风电机组低电压穿越能力的研究:[硕士学位论文].山东:山东大学图书馆,2009
    [55]P.S. Flannery, G Venkataramanan., " fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter," IEEE Transactions on Power Electronics, vol.23, no.3, pp.1126-1135, May 2008.
    [56]M. Molinas, Jon Are Suul; T. Undeland, "Low Voltage Ride Through of Wind Farms With Cage Generators:STATCOM Versus SVC," IEEE Transactions on Power Electronics, vol.23, no.3, pp.1104-1117, May 2008
    [57]M.S. El-Moursi, B. Bak-Jensen, M.H. Abdel-Rahman, " Novel STATCOM Controller for Mitigating SSR and Damping Power System Oscillations in a Series Compensated Wind Park," IEEE Transactions on Power Electronics, vol.25, no.2, pp.429-441, Feb.2010.
    [58]J.A. Suul, M. Molinas, T. Undeland, "STATCOM-Based Indirect Torque Control of Induction Machines During Voltage Recovery After Grid Faults," IEEE Transactions on Power Electronics, vol.25, no.5, pp.1240-1250, May 2010.
    [59]L. Zhou, J. Liu, F. Liu, "Design and implementation of STATCOM combined with series dynamic breaking resistor for low voltage ride-through of wind farms," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE),2010, pp. 2501-2506.
    [60]Morren J, DE HAAN SWH. Ride through of wind turbines with doubly-fed induction generator during a voltage dip. IEEE Transactions on Energy Conversion, 2005,20(2):435-441
    [61]Rathi M R,Mohan N.A novel robust low voltage and fault ride through for wind turbine application operating in weak grids.Proceedings of IEEE,2005,31st Annual Conference of the Industrial Electronics Society,Nov6-10.2005, Raleigh,NC,USA:2481~2486.
    [62]D. Xiang, L. Ran, P. J. Tavner, and S. Yang, "Control of a doubly fed induction generator in a wind turbine during grid fault ride-through,"IEEE Transactions on Energy Conversion, vol.21, no.3, pp.652-662, Sep.2006.
    [63]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控 制策略.中国电机工程学报,2006,26(3):164-170
    [64]Mohsen Rahim, Mostafa Parniani. Efficient control scheme of wind turbines with doubly fed induction generators for lowvoltageride-through capability enhancement. IET Renewable Power Generation,2010,4(3):242-252
    [65]Mohsen Rahim, Mostafa Parniani. Transient Performance Improvement of Wind Turbines With Doubly Fed Induction Generators Using Nonlinear Control Strategy. IEEE Trans. Energy Conversion,2010,25(2):514-525
    [66]J. Lopez, P. Sanchis, E. Gubia, A. Ursua, L. Marroyo, and X. Roboam, "Control of doubly fed induction generator under symmetrical voltage dips," in Proc. ISIE, Cambridge, U.K., Jul.2008, pp.2456-2462.
    [67]J. Lopez, E. Guba, P. Sanchis, E. Olea, J. Ruiz, L. Marroyo, "Ride Through of Wind Turbines With Doubly Fed Induction Generator Under Symmetrical Voltage Dips," IEEE Transactions on Industrial Electronics, vol.56, no.10, pp.4246-4254, Oct.2009.
    [68]F.K.A. Lima, A. Luna, P. Rodriguez, E.H. Watanabe, F. Blaabjerg, "Rotor Voltage Dynamics in the Doubly Fed Induction Generator During Grid Faults," IEEE Transactions on Power Electronics, vol.25, no.1, pp.118-130, Jan.2010.
    [69]O. Gomis-Bellmunt, A.Junyent-Ferre, A. Sumper, J. Bergas-Jane, "Ride-Through Control of a Doubly Fed Induction Generator Under Unbalanced Voltage Sags," IEEE Trans. Energy Convers.,vol.23, no.4, pp.1036-1045, Dec.2008.
    [70]D. Santos-Martin, J.L. Rodriguez-Amenedo, S. Arnaltes, "Providing Ride-Through Capability to a Doubly Fed Induction Generator Under Unbalanced Voltage Dips," IEEE Transactions on Power Electronics, vol.24, no.7, pp.1747-1757, Jul.2009.
    [71]J. Yang, J. E. Fletcher, and J. O'Reilly, "A Series-Dynamic-Resistor-Based Converter Protection Scheme for Doubly-Fed Induction Generator During Various Fault Conditions," IEEE Transactions on Energy Conversion, vol.25, no.2, pp. 422-432, Jun.2010.
    [72]O. Abdel-Baqi, A. Nasiri, "A Dynamic LVRT Solution for Doubly Fed Induction Generators," IEEE Transactions on Power Electronics, vol.25, no.1, pp.193-196, Jan.2010.
    [73]J. Yao, H. Li, Y. Liao, Z. Chen, "An Improved Control Strategy of Limiting the DC-Link Voltage Fluctuation for a Doubly Fed Induction Wind Generator," IEEE Transactions on Power Electronics, vol.3, no.23, pp.1205-1213, May.2008.
    [74]J. Lopez, P. Sanchis, X. Roboam, L. Marroyo, "Dynamic behavior of the doubly fed induction generator during three-phase voltage dips," IEEE Transactions on Energy Conversion, vol.22, no.3, pp.709-717, Sep.2007.
    [75]J. B. Ekanayake, L. Holdsworth, X. G. Wu, and N. Jenkins, "Dynamic modeling of doubly fed induction generator wind turbines," IEEE Transactions Power System., vol.18, no.2, pp.803-809, May 2003.
    [76]S. Seman, J. Niiranen, S. Kanerva, A. Arkkio, and J. Saitz, "Performance study of a double fed wind-power induction generator under network disturbances," IEEE Transactions on Energy Conversion, vol.21, no.4, pp.883-890, Dec.2006.
    [77]P. Rodriguez, A. Timbus, R. Teodorescu, M. Liserre, F. Blaabjerg, "Reactive Power Control for Improving Wind Turbine System Behavior Under Grid Faults," IEEE Transactions on Power Electronics, vol.24, no.7, pp.1798-1801, Jul.2009.
    [78]Z. Chen, J. M. Guerrero, F. Blaabjerg, "A Review of the State of the Art of Power Electronics for Wind Turbines," IEEE Transactions on Power Electronics, vol.24, no.8, pp.1859-1875, Aug.2009
    [79]D. Yazdani, M. Mojiri, A. Bakhshai, G. Joos, "A Fast and Accurate Synchronization Technique for Extraction of Symmetrical Components," IEEE Transactions on Power Electronics,, vol.24, no.3, pp.674-684, Mar.2009.
    [80]Y. Liang, "A new time domain positive and negative sequence component decomposition algorithm" in Proc. IEEE Power Engineering Society General Meeting,2003, vol.3, pp.1638-1643.
    [81]S. Hu, H. Xu, " Experimental Research on LVRT Capability of DFIG WECS during Grid Voltage Sags," in Proc. Asia-Pacific Power and Energy Engineering Conf.,2010, Mar. pp.1-4.
    [82]S. Hu, J. Li, H. Xu, " Comparison of voltage sag generators for wind power system," in Proc. Asia-Pacific Power and Energy Engineering Conf.,2009, Mar. pp.1-4.
    [83]Seman S, Niiranen J. Performance study of doubly fed wind-power induction generator under network disturbances. Energy Conversion,2006,99.
    [84]Tsourakis G,Vournas C D.Simulation of low voltage ride through capability of wind turbines with doubly fed induction generator.IEEE Transactions On Energy Conversion,2004,435-441
    [85]Slavomir Seman, Jouko Niiranen, Antero Arkkio. Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance. IEEE Trans. Power systems,2006,21(4):1782-1789
    [86]T. Sun, Z. Chen, F. Blaabjerg. Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault.35th Annual IEEE Power Electronics Specialists Conference,2004:1991-1997
    [87]C. Abbey, G. Joos. Effect of low voltage ride through(LVRT) characteristic on voltage stability,2005:1-7
    [88]胡家兵,孙丹,贺益康,赵仁德.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化,2006,30(8):21-26
    [89]J. Morren, S. W. H. de Haan. Ride through of wind turbines with doubly-fed induction generator during a voltage dip. IEEE Trans. Energy Convers.,2005,20(2): 435-441
    [90]Manoj R Rathi, Ned Mohan. A novel robust low voltage and fault ride through for wind turbine application operating in weak grids,2005
    [91]Alan Mullane, Gordon Lightbody, R. Yacamini. Wind-turbine fault ride-through enhancement. IEEE Trans. Power Systems,2005,20(4):1929-1937
    [93]Bing Xie, Brendan Fox, Damian Flynn. Study of fault ride-through for DFIG based wind turbines HongKong, DRPT,2004
    [94]Torbjorn Thiringer, Andreas Petersson, Tomas Petru. Grid disturbance response of wind turbines equipped with induction generator and doubly-fed induction generator,2003:1542-1547
    [95]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究:[博士学位论文].重庆:重庆大学图书馆,2006
    [96]杨淑英.双馈型风力发电变流器及其控制:博士学位论文].合肥:合肥工业大 学图书馆,2007
    [97]姚骏.交流励磁发电机及其励磁电源控制策略的研究:[博士学位论文].重庆:重庆大学图书馆,2007
    [98]郭晓明.电网异常条件下双馈异步发电机的直接功率控制:[博士学位论文].杭州:浙江大学图书馆,2008
    [99]何鸣明.不对称电网故障下PWM整流器的控制策略的研究:[硕士学位论文].杭州:浙江大学图书馆,2006
    [100]李广博.双馈感应风力发电机组低电压穿越特性的研究:[硕士学位论文].沈阳:沈阳工业大学图书馆,2009
    [101]李欣.风电机组的短路电流特性及低电压穿越的研究:[硕士学位论文].北京:华北电力大学图书馆,2009
    [102]叶仁杰.电网故障下双馈感应风力发电机组的暂态运行特性的研究:[硕士学位论文].重庆:重庆大学图书馆,2009
    [103]赵新.双馈型风力发电机控制策略及低电压穿越技术研究:[硕士学位论文].北京:北京交通大学图书馆,2010
    [104]李缔华.双馈风力发电系统的低电压穿越技术研究:[硕士学位论文].武汉:华中科技大学图书馆,2011
    [105]E.ON. Netz Gmbh, Germany, "Grid code regulations for high and extra high voltage," status:1st April 2006, Report ENENARHS2006,46 pages,2006, www.eon-netz.com.
    [106]G. Ramtharan, J. B. Ekanayake, N. Jenkins. Frequency support from doubly fed induction generator wind turbines. IET Renew. Power Gener.,2007,1(1):3-9
    [107]G Lalor, A. Mullane, M. O'Malley. Frequency control and wind turbine technologies. IEEE Trans. Power Systems,2005,20(4):1905-1913
    [108]Eduard Muljadi, C. P. Butterfield, Brian Parsons, Abraham Ellis. Effect of variable speed wind turbine generator on stability of a weak grid. IEEE Trans. Energy Conversion,2007,22(1):29-36
    [109]C. Hochgraf and R. H. Lasseter. STATCOM controls for operation with unbalanced voltage. IEEE Trans. Power Delivery,1998,13(2):538-544
    [110]T. Brekken, N. Mohan. A novel doubly-fed induction wind generator control scheme for reactive power control and torque pulsation compensation under unbalanced grid voltage conditions. IEEE 34th Annual Power Electronics Specialist Conference,2003:760-764
    [111]T. K. A. Brekken, N. Mohan. Control of a doubly fed induction wind generator under unbalanced grid voltage conditions. IEEE Trans. Energy Conversion,2007, 22(1):129-135
    [112]L. Xu, Y. Wang. Dynamic modeling and control of DFIG-Based wind turbines under unbalanced network conditions. IEEE Trans. Power System,2007,22(1): 314-323
    [113]J. I. Jang, Y. S. Kim, D. C. Lee. Active and reactive power control of DFIG for wind energy conversion under unbalanced grid voltage. IEEE.5th International Power Electronics and Motion Control Conference,2006,3:1-5
    [114]C. Hochgraf and R. H. Lasseter. STATCOM controls for operation with unbalanced voltage. IEEE Trans. Power Delivery,1998,13(2):538-544
    [115]M. Kiani, W. Lee, "Effects of Voltage Unbalance and SystemHarmonics on the Performance of Doubly Fed Induction Wind Generators," IEEE Trans. industry applications, vol.46, no.2, pp.562-567, Mar.2010
    [116]Y. Liao, H. Li, J. Yao, Z. Kai, "Operation and control of a grid-connected DFIG-based wind turbine with series grid-side converter during network unbalance," Electric Power Systems Research, v 79, n 2, p 355-64, Feb.2010
    [117]L. Xu, "Coordinated control of DFIG's rotor and grid side converters during network unbalance," IEEE Trans. Power Electron., vol.23, no.3, pp.1041-1049, May 2008.
    [118]T. K. A. Brekken, N. Mohan, "Control of a doubly fed induction wind generator under unbalanced grid voltage conditions," IEEE Trans. Energy Conversion,2007, 22(1):129-135
    [119]J. Hu, Y. He, L.Xu, and B.W. Williams, "Improved Control of DFIG Systems During Network Unbalance Using PI-R Current Regulators," IEEE Trans. Ind. Electron., vol.56, no.2, pp.439-450, Feb.2009..
    [120]L. Xu, "Enhanced control and operation of DFIG-Based wind farms during network unbalance," IEEE Trans. Energy Conversion, vol.23, no.4, pp. 1073-1081, Nov.2008
    [121]Y. Wang, L. Xu, "Coordinated Control of DFIG and FSIG-Based Wind Farms Under Unbalanced Grid Conditions," IEEE Trans, power delivery, vol.25, no.1, pp.367-377, Jan.2010
    [122]J. Hu, Y. He, L.Xu, "Improved rotor current control of wind turbine driven doubly-fed induction generators during network voltage unbalance," Electric Power Systems Research, v 79, n 2, p 355-64, Feb.2010
    [123]I.Codd, "Windfarm power quality monitoring and output comparison with EN50160," in Proc.4th Int. Workshop Large-Scale Integration Wind Power Transmission Networks Offshore Wind Farm, Sweden,Oct.20-21,2003.
    [124]J. Morren and S. W. H. de Haan, "Ride through of wind turbines with doubly-fed induction generator during a voltage dip," IEEE Transactions onEnergy Conversion,vol.20, no.1, pp.435-441, Jun.2005.
    [125]H. Song, and K. Nam, "Dual current control scheme for pwm converter under unbalanced input voltage conditions", IEEE Transactions on Industrial Electronics, vol.46, no.5, Oct.1999, pp.953-959.
    [126]Pena, R., Cardenas, R., Escobar, E., Clare, J., Wheeler,P., " Control strategy for a Doubly-Fed induction generator feeding an unbalanced grid or stand-alone load," Electric Power Systems Research, v 79, n 2, p 355-64, Feb.2009.
    [127]B. Yin, R. Oruganti, S.K. Panda, A.K.S. Bhat, "High-performance control of a boost type PWM rectifier under unbalanced operating conditions with integral variable structure control", Power Electronics Specialists Conference,2005. PESC'05, pp.1992-1997.
    [128]D. Yazdani, M. Mojiri, A. Bakhshai, G. Joos, "A Fast and Accurate Synchronization Technique for Extraction of Symmetrical Components," IEEE Transactions on Power Electronics,, vol.24, no.3, pp.674-684, Mar.2009.
    [129]Y. Liang, "A new time domain positive and negative sequence component decomposition algorithm" in Proc. IEEE Power Engineering Society General Meeting,2003, vol.3, pp.1638-1643.
    [130]H. E. P. de Souza, F. Bradaschia, F. A. S. Neves, M.C. Cavalcanti, G.M. S. Azevedo, and J. P. de Arruda, "A Method for Extracting the Fundamental-Frequency Positive-Sequence Voltage Vector Based on Simple Mathematical Transformations" IEEE Transactions on industrial electronics, vol. 56, no.5, pp.1539-1547, May 2009.
    [131]J. B. Ekanayake, L. Holdsworth, X. G. Wu, N. Jenkins. Dynamic modeling of doubly fed induction generator wind turbines. IEEE Trans, on Power Systems, 2003,18(2):803-809
    [132]F. J. Brady. A mathematical model for the doubly-fed wound rotor generator, IEEE Trans. Power Apparatus and Systems,1984,103(4):798-802
    [133]Ekanayake J B, Holdworth L,WU X G. Daynamic modeling of doubly fed induction generator wind turbines.PowerSystems, 2003,2(18):803-809
    [134]R. Pena, J. C. Clare, G. M. Asher. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc. Electr. Power Appl.,1996,143(3):231-241
    [135]B. Hopfensperger, R. A. Lakin. Stator flux oriented control of a cascaded doubly-fed induction machine. IEE Proc. Electric Power Application,1999,146(6): 597-605
    [136]B. Hopfensperger, R. A. Lakin. Stator flux oriented control of a doubly-fed induction machine with and without position encoder. IEE Proc. Electric Power Application,2000,147(4):241-250
    [137]A. Tapia, G. Tapia, J. X. Ostolaza, et al. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans, on Energy Convers.,2003, 18(2):194-204
    [138]M. Yamamoto, O. Motoyashi. Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Trans. Power Electronics,1991,6(4): 624-629

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700