用户名: 密码: 验证码:
新型质子导体燃料电池电解质及阴极材料电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能源危机以及环境污染等问题已经成为人类生存及发展的主要威胁,开发和使用经济洁净的新能源成为人们面临的重大挑战之一。固体氧化物燃料电池由于具有清洁,环境友好等诸多优点而受到世界范围的广泛关注,各主要国家还纷纷投入大量财力、物力、人力开发研究。然而,传统的固体氧化物燃料电池操作温度较高,对于电池材料要求苛刻,导致电池系统成本过高,因此如何降低电池的操作温度成为燃料电池能否商业应用的一个迫切需求。其中,固体氧化物质子导体固体氧化物燃料电池以其较低的活化能以及高的能源效率成为研究的热点。本论文主要针对质子导体固体氧化物燃料电池传统电解质材料BaCeO_3存在的一些问题,试图通过探索研究新型的电解质以及阴极材料予以解决。
     论文的第一章,简单介绍了燃料电池的工作原理以及各组成部分,并针对固体氧化物质子导体燃料电池的电解质材料以及阴极材料的发展进行了阐述,同时提出了质子导体燃料电池中存在的一些函待解决的问题。
     在第二章中,我们利用一种浆料浸渍制备质子导体电解质的方法,成功的在NiO-BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3-δ)) (BYCZ)衬底上制备了一层BYCZ薄膜。我们主要研究了这一过程中某些重要常数对于电池测试结果的影响,比如浆料中BYCZ的含量以及衬底的预烧温度。研究的结果表明,浆料中固含量为5%,衬底预烧温度500 C时,我们制备的电池具有较好的电化学表现。
     第三章我们针对BaCeO_3质子导体体系存在的稳定性问题,提出了利用Ga掺杂来改善BaCeO_3的稳定性,得到BaCe_(1-x)Ga_xO_(3-δ)(x=0.1, 0.2)系列材料。通过热重分析以及XRD表征,我们发现,Ga掺杂体系具有较好的化学稳定性。结合喷雾的方法,成功的制备出具有BaCe_(0.8)Ga_(0.2)O_(3-δ)电解质的质子电池,电池在600°C具有较好的长期稳定性,而且得到了较好的功率密度,表明Ga是一种较为合适的掺杂元素。
     第四章里,我们尝试用一种新型的质子导体电解质材料La_(1.95)Ca_(0.05)C_e2O_(7-δ)(LCCO)制备电池。我们首先评价了LCCO的粉体的化学稳定性:在700°C,3%CO_2气氛下处理粉体100小时,材料相结构没有变化,保持萤石结构;而在沸水中处理100小时后粉体相组成也没有发生变化。这些结果表明我们制备的LCCO粉体具有高度的化学稳定性。另外,我们利用喷雾的方法成功地在LCCO-NiO的阳极衬底上制备出15um左右的电解质薄膜。电化学测试结果表明,由于Ce元素的变价,电池的开路电压在700°C时只有0.832V,单电池功率密度与传统电解质电池相比稍低。但考虑到LCCO展现出的在严苛电池测试条件下展现出的高度稳定性,及可通过增加一层高开路电压的电解质阻隔层的措施来提高LCCO电池性能,因而LCCO还是有望成为一种具有应用价值的电池电解质。
     第五章我们对具有质子导电性的La_2Z_r2_O7体系中Ca~(2+)掺杂含量进行了计算研究。在本章里,我们利用XRD检测并结合计算机模拟的方法,确认了La_2Zr_2_O_7中Ca~(2+)最大掺杂含量为0.08,同时利用质子电导率的检测来证实我们的结论。由于La_2Zr_2_O7具有高度的化学稳定性,可以在较为苛刻的环境中稳定存在,是一种颇为有潜力的质子电解质材料,我们的工作为La2Zr2O7未来的可能应用打下了一定的基础。
     第六章里,与传统复合阴极材料不同,我们采用BaCeO_3结构的BaCe_(0.5)Bi_(0.5)O_(3-δ)(BCB)作为单相阴极材料。并据此,我们提出了一种全新的三相界面的观念,指出具有质子,电子以及氧离子导电的材料具有最大的活性区域。我们在加入功能层材料的NiO–BZCY7/BZCY7单电池上检测这种单相阴极材料的电化学性能,最大功率密度已经可以达到321mW/cm~(2),与使用传统的阴极材料的电池性能相差无几。值得指出的是:由于BCB材料本身与电解质材料结构相近,两者之间的化学兼容性以及热匹配都非常好。这种新型结构的阴极材料为我们以后质子导体燃料电池的阴极选择提供了一种全新的途径。
     为了解决上面BCB阴极存在的电导率还不足够高的问题,在第七章我们深入研究了Fe掺杂的BaCeO_3材料,即BaCe_xFe_(1-x)O_(3-δ)(x=0.15, 0.50, 0.85)。利用XRD检测三者的相结构,我们发现BCF1585是立方钙钛矿结构,BCF8515属于正交晶系,而BCF5050相当于两者混合物。在NiO–BZCY7/BZCY7半电池上面,我们检测了三种阴极材料的电化学表现,我们发现BCF5050在700oC不仅具有最低的极化电阻0.17Ωcm~2,而且可以获得最高的功率密度,可以达到395mW/cm~2。由于BCF5050与电解质材料结构相近,它与电解质的化学兼容以及热匹配性较好,此外,由于BCF5050不含传统阴极材料中的Co元素,可以避免Co阴极存在的挥发性高以及热膨胀系数不匹配等问题,综上几点,我们认为BCF5050可以成为质子导体燃料电池的一种较为有潜力和应用价值的阴极材料。
     第八章我们对论文的主要内容进行了总结,对质子导体固体氧化物燃料电池以后的工作进行了展望。
As the energy crisis and environment pollutions have been the main threaten forthe survival and development of people, the demands of clean and economical energybecome one of the most important challenges. Solid oxide fuel cells (SOFCs) haveattracted much attention worldwide because of the demand for clean, secure, andrenewable energy. However, the cost of SOFCs system is too expensive to use whenused at high temperature. The reduction of the working temperature of SOFCsbecomes the urgent demand for broad commercialization. The proton-conductingSOFCs attract more attention for low activation energy and high energy efficiency.This thesis tries to study the novel electrolyte and cathode materials to solve thetroubles and problems existed in the proton-conducting SOFCs.
     Chapter 1 in the thesis simply describes the working principle and differentcompositions of the SOFCs. We mainly introduce the development of the electrolyteand cathode materials for Proton-conducting SOFCs. At the same time, we point outthe problems existed and try to search novel electrolyte and cathode materials to solvethe problems in the Proton-conducting SOFCs.
     In Chapter 2, we study a drop coating method to prepare the thin electrolytemembrane with high quality and successfully prepare a thin layer of BYCZ membraneon the anode substrate NiO-BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3-δ)(BYCZ). We mainly study someconstants which may affect the cell performance, such as solid contents of BYCZ andpre-fired temperatures of anode substrates. The electrical results and SEM indicatethat the right content of BYCZ in the drop-coating slurry is 5wt. % and theappropriate pre-fired temperature is 500°C.
     In Chapter 3, in order to solve the chemical instability of BaCeO_3, we successfulsynthesized BaCe_(1-x)Ga_xO_(3-δ)(x=0.1, 0.2) by a solid-state reaction method. Thecompounds containing Ga showed desired chemical stability in3% CO_2duringthermal gravity analysis test from 400 to700°C. With a wet suspension approach toprepare the electrolyte of BaCe_(0.8)Ga_(0.2)O_(3-δ)(,a single cell is assembled and tested. Theshort-term performance test at 600°C demonstrates that the fuel cell has good stabilityas well as desired compatibility between electrolyte and electrodes. Therefore, thedoping of Ga in BaCeO_3provided an effective strategy comprising high protonconductivity and adequate chemical stability for BaCeO_3-based materials.
     In Chapter 4, a novel electrolyte material La_(1.95)Ca_(0.05)Ce_2O_(7-δ)(LCCO)is studied.The stability of the synthesized powders is investigated under the CO_2atmosphere at 700oC and the boiling water with the X-ray diffraction (XRD). According the resultof XRD, the material is very stable and with no reaction with CO_2and H_2O. A fuelcell with electrolyte of La_(1.95)Ca_(0.05)Ce_2O_7-(?)is prepared by a suspension spray andtested. The open-circuit potential is only 0.832V at 700°C and the electronicconductivity arose by the reduction Ce~(4+)to Ce~(3+)is the main reason. The maximumpower density is a little lower than the cell with tradition electrolyte. The highchemical stability and the possibility to increase open-circuit potential by bi-layerelectrolyte both make the material be a potential commercial useful electrolyte inSOFCs.
     In Chapter 5,a simple and available method based on the XRD intensity ratioand computer simulation is employed to determine the Ca-doping content inpyrochlore-structured La_(2-x)Ca_xZr_2O_(7±δ). XRD analysis shows that the highestCa-doping content is 0.08. The measurement of electrical conductivity reveal that thelargest conductivity is got at x=0.08. Both the XRD intensity ratio analysis and theelectrical measurement confirm that the maximum Ca-doping content at La site is0.08. La_2Zr_2O_7is a very potential electrolyte for its high chemical stability. Our workshave greatly promoted the use of this novel material.
     In Chapter 6, we prepare the BaCe_(0.5)Bi_(0.5)O_(3-δ)(BCB)and use it as the singlephase cathode material which is different from traditional composite cathodematerials. We also employ a new principle of Three Phase Boundary (TPB) whereallows the simultaneous transport of proton, oxygen vacancy, and electronic defects,which effectively extend the active‘‘sites for oxygen reduction to a large extent andreduce the cathode polarization resistance. Without an addition of the electrolytepowder for the cathode, the single cell NiO–BZCY7/BZCY7/BCB generated amaximum power density of 321mWcm~(-2) at 700°C, which can compare with theproton-conducting SOFCs with composite cathode materials. More important, theBCB was a protonic material with the substitution of Bi for Ce in the BaCeO_3, whichcan be chemically and thermally compatible to the BaCeO3-based electrolyte for theproton-conducting SOFCs. These results indicated that the cathode BCB was a goodcathode material candidate for proton-conducting SOFCs operating at or below 700°C.
     In order to solve the problem of low conductivity of BCB in Chapter 6, we studythe BaCe_xFe_(1-x)O_(3-δ)(x=0.15, 0.50, 0.85) in Chapter 7. According to the XRD,BCF1585 has a cubic perovskite structure and BCF8515 belongs to the orthorhombic structure. As for BaCe_(0.5)Fe_(0.5)O_(3-δ)(BCF5050), it is found that the sample comprisestwo kinds of perovskite oxides mentioned above. The cell with cathode BCF5050shows the highest performance which can reach a relatively high power density of395 cm~(-2)at 700°C. Under the open-circuit condition, the polarization resistance of theelectrode is as low as 0.17Ωcm2at 700°C. BCF5050 can be chemically andthermally compatible to the BaCeO_3-based electrolyte for the proton-conductingSOFCs. Furthermore, cobalt-free BCF5050 can avoid many problems of the traditioncathode materials based on cobalt doping, such as high thermal expansion coefficients(TECs) and high volatility of cobalt element. These results indicate that the cathodeBCF5050 was a good cathode material candidate for proton-conductingSOFCsFurthermore.In Chapter 8, the achievements presented in this dissertation areevaluated and future work concerning the development of proton-conducting SOFCsis discussed.
引文
[1]T.Hibino,A.Hashimoto,T.Inoue,J.Tokuno,S.Yoshida,andM.Sano,―A low-operating-temperaturesolid oxide fuel cell in hydrocarbon-air mixtures,‖Science, 288(2000)2031-2033.
    [2]Damberger T A.―Fuel cells for hospital‖. J.Power sources 71(1998)45-50.
    [3]S.W.Tao and J.T.S.Irvine,―A redox-stable efficient anode for solid-xode fuel cells‖,NatureMaterials, 2(2003)320-323.
    [4]S.D.Park,J.M.Vohs, and R.J.Gorte,―Direct oxidation of hydrocarbons in a solid-oxide fuel cell,‖Nature, 404(2000)265-267.
    [5]Z.L.Zhan and S.A.Barnett,―An oxtane-fueled olid oxide fuel cell‖,Science, 308(2005)844-847.
    [6]编辑部。政策动态。新能源和可再生能源发展优先项目。新技术产业,2000.6(11)6-7.
    [7]Brief history of fuel cells. http: //www.corrosion-doctors. Org/ FuelCell/History.htm
    [8]韩敏芳等编著,―固体氧化物燃料电池材料及制备‖,科学出版社(2004)。
    [9]Panik F. Fuel cells for vehicle application in cars-bringing the future closer. J.Power Sources71(1998)36-38.
    [10]刘清华。渐入佳境的燃料电池汽车。全球科技经济瞭望,2(1999)38-39.
    [11] S. M. Haile, "Fuel cell materials and components," Acta Materialia, 51: (2003) 5981-6000.
    [12] H. Li, Y. H. Tang, Z. W. Wang, Z. Shi, S. H. Wu, D. T. Song, J. L. Zhang, K. Fatih, J. J.Zhang, H. J. Wang, Z. S. Liu, R. Abouatallah, and A. Mazza, "A review of water flooding issuesin the proton exchange membrane fuel cell," Journal of Power Sources, 178: (2008) 103-117.
    [13] K. J. Chae, M. Choi, F. F. Ajayi, W. Park, I. S. Chang, and I. S. Kim, "Mass transportthrough a proton exchange membrane (Nafion) in microbial fuel cells," Energy & Fuels, 22: (2008)169-176.
    [14]R. M. Ormerod, "Solid oxide fuel cells," Chemical Society Reviews, 32: (2003) 17-28.
    [15]Goodenough,J.B.Allllu.Rev.Mater.Res.2003,33(1),91.
    [16] S. J. Litzelman, J. L. Hertz, W. Jung, and H. L. Tuller, "Opportunities and Challenges inMaterials Development for Thin Film Solid Oxide Fuel Cells," Fuel Cells, 8: (2008) 294-302.
    [17] K. Kendall, "Progress in solid oxide fuel cell materials," International Materials Reviews, 50:
    (2005) 257-264.
    【18】M.V.斯温。陶瓷的结构与性能。郭景坤等译。北京:科学出版社,1998,6:94
    【19】Minh N Q,Takahashi T. Scence and technology of ceramic fuel cells. Elsevier ScienceB.V.,ISBN:0-444-895668-x, U.S.A.1995,11:75
    [20] J. B. Goodenough, "Oxide-ion electrolytes," Annual Review of Materials Research, 33: (2003)91-128.
    [21] Z. P. Shao and S. M. Haile, "A high-performance cathode for the next generation ofsolid-oxide fuel cells," Nature, 431[7005]: 170-173, 2004.
    [22] Y. H. Zhang, J. Liu, X. Q. Huang, Z. Lu, and W. H. Su, "Performance evaluation of thinmembranes solid oxide fuel cell prepared by pressure-assisted slurry-casting," InternationalJournal of Hydrogen Energy, 33[2]: 775-780, 2008.
    [23] D. Beckel, A. Bieberle-Hutter, A. Harvey, A. Infortuna, U. P. Muecke, M. Prestat, J. L. M.Rupp, and L. J. Gauckler, "Thin films for micro solid oxide fuel cells," Journal of Power Sources,173: (2007) 325-345.
    [24]Yashima M, Kakihana M, Yoshimura M.Metastable-stable phase diagrams in theZirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Inoics,1996,86-88:1131-1149;
    [25]Yamamoto M, Kawahara T, Takeda Y, et al. Science and Technology of Zirconia V.Technomic, USA;1993:733-741.
    [26]毛宗强等编著,“可再生能源丛书-燃料电池”,化学工业出版社(2005).
    [27]吴修胜,“氧分离膜材料的输运性能及低频内耗研究”,中国科学技术大学博士学位论文,合肥(2007).
    [28]Harwig,H.A.;Gerards,A.G Thermoehim.Acta1979,28(l),121.
    [29] Takahashi,T.;IWahara,H,Mater.Res.Bull.1978,13(12),1447.
    [30] Battle,P.D,Hu G.;Moroney,L.M,Munro,D.C.J.SolidStateChem.1987,69(1),30.
    [31] Jaiswal,A, Wachsman, E.D. Solid State Ionics 2006,177(7- 8),677
    [32] Iwahaxa,H.;Esaka,T.;Sato,T.:Takahashi,T.J. Solid State Chem.1981, 39(2),173.
    [33]Azad,A.M, Larose.S, Akbar.S.A, J.Mater.Sci.1994, 29(16),4135.
    [34]Shuk,P, Wielllllofer,H.D, Guth,U, Gopel.W, Greenblatt M, Solid StateIonics1996,89(3-4),179.
    [35] J. M. Im, H. J. You, Y. S. Yoon, and D. W. Shin, "Synthesis of nano-crystallineGd0.1Ce0.9O2-x for IT-SOFC by aerosol flame deposition," Ceramics International, 34: (2008)877-881.
    [36] H. Kim, J. M. Vohs, and R. J. Gorte, "Direct oxidation of sulfur-containing fuels in a solidoxide fuel cell," Chemical Communications(2001) 2334-2335.
    [37] S. Pinol, M. Morales, and F. Espiell, "Low temperature anode-supported solid oxide fuel cellsbased on gadolinium doped ceria electrolytes," Journal of Power Sources, 169: (2007) 2-8.
    [38]Kudo,T, Obayashi H J, Electroehem.Soc.1976,123(3)415.
    [39]Eguehi K,Setoguehi T, Inoue T, Aiai H, Solid State Ionics 1992,52(1-3),165.
    [40] Shao Z.P, Haile S.M, Ahll J, Ronney P.D, Zhan Z.L, Barnett S.A., Nature 2005,435,795.
    [41] F. Zhao, Z. Y. Wang, M. F. Liu, L. Zhang, C. R. Xia, and F. L. Chen, "Novel nano-networkcathodes for solid oxide fuel cells," Journal of Power Sources, 185: (2008) 13-18.
    [42] C. R. Xia and M. L. Liu, "Novel cathodes for low-temperature solid oxide fuel cells,"Advanced Materials, 14: (2002) 521-+.
    [43] H. Z. Zhang and W. S. Yang, "Highly efficient electrocatalysts for oxygen reductionreaction," Chemical Communications(2007) 4215-4217.
    [44] A Orera and P R Slater, New Chemical Systems for Solid Oxide Fuel Cells,Chem.Mater.2010,22,675-690.
    [45] C. D. Zuo, S. W. Zha, M. L. Liu, M. Hatano, and M. Uchiyama, "Ba(Zr0.1Ce0.7Y0.2)O3-as an electrolyte for low-temperature solid-oxide fuel cells," Advanced Materials, 18: (2006)3318-3320.
    [46]J.A. Labrincha, J.R. Frade, F.M.B. Marques, Solid State Ionics 99 (1997) 33.
    [47]T. Omata, K. Okuda, S. Tsugimoto, S. Otsuka-Yao-Matsuo, Solid State Ionics 104 (1997)249.
    [48]T. Omata, S. Otsuka-Yao-Matsuo, J. Electrochem. Soc. 148 (2001)E252.
    [49]T. Omata, S. Otsuka-Yao-Matsuo, J. Electrochem. Soc. 148 (2001)E475.
    [50]T. Ishihara, Y. Hiei, and Y. Takita, "Oxidative Reforming of Methane Using Solid OxideFuel-Cell with Lagao3-Based Electrolyte," Solid State Ionics, 79: (1995) 371-375.
    [51]T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, and Y. Takita, "Intermediatetemperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor - I. DopedSmCoO3 as a new cathode material," Journal of the Electrochemical Society, 145: (1998)3177-3183.
    [52] P. N. Huang and A. Petric, "Superior oxygen ion conductivity of lanthanum gallate dopedwith strontium and magnesium," Journal of the Electrochemical Society, 143: (1996) 1644-1648.
    [53]Feng M, Goodenough J.B, Eur.J, Solid State Inorg.Chem.1994,31,663.
    [54] K. Yamaji, H. Negishi, T. Horita, N. Sakai, and H. Yokokawa, "Vaporization process of Gafrom doped LaGaO3 electrolytes in reducing atmospheres," Solid State Ionics, 135: (2000)
    [55]Kuo,J.H, Anderson,H.U,SParlin,D.M, J.Solid state Chem.1989,83,52.[56Singhal,S.C, Solid State Ionics2000,135(1-4),305
    [57] T. Horita, K. Yamaji, M. Ishikawa, N. Sakai, H. Yokokawa, T.Kawada, T. Kato, J.Electrochem. Soc. 145 (1998) 3196.
    [58] J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H.Takai, H. Tagawa, M.Dokiya, K. Naraya, T. Sasamoto, H. Inaba, T.Hashimoto, Solid State Ionics 132 (2000) 167.
    [59] E.P. Murray, T. Tsai, S.A. Barnett, Solid State Ionics 110 (1998) 235.
    [60] S.P. Jiang, J.P. Zhang, Y. Ramprakash, D. Milosevic, K. Wilshier, J.Mater. Sci. 35 (2000)2735.
    [61] S.P. Jiang, J.G. Love, J.P. Zhang, M. Hoang, Y. Ramprakash, A.E.Hughes, S.P.S. Badwal,Solid State Ionics 121 (1999) 1.
    [62] F. Zheng, L.R. Pederson, J. Electrochem. Soc. 146 (1999) 2810.
    [63] P. Decorse, G. Caboche, L.-C. Dufour, Solid State Ionics 117 (1999)161.
    [64] M.S. Islam, M. Cherry, L.J. Winch, J. Chem. Soc., Faraday Trans.92 (1996) 479.
    [65] A. Mitterdorfer, L.J. Gauckler, Solid State Ionics 111 (1998) 185.
    [66] H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, in: S.P.S. Badwal,M.J. Bannister, R.H.J.Hannink (Eds.), Science and Technology of Zirconia V, Technomic Publishing Co., Lancaster,1993, 752.
    [67] S.P. Jiang, J.-P. Zhang, K. Foger, J. Euro. Ceram. Soc. 23 (2003)1865.
    [68]Teraoka Y, NobUnaga T, Okamoto K, Miura N, Yamazoe N,Solid State Ionics1991,48,207
    [69] Zhao F, Peng R., Xia C. Mater Res.Bull.2008,43(2),370.
    [70]Waller,D, Lane J.A, Kilner J.A, Steele B.C.H, Mater.Lett.1995,27,225.
    [71]Tai L-W, Nasrallah M.N, Anderson H.U, Spariin D.M, Sehlin.S.R, SolidStateIonics1995,76,273.
    [72] Liu Q.L, Khor K.A, Chan S.H, J. Power Sources 2006,161, 123.
    [73] Yan A, Cheng M, Dong Y.L, Yang W.S, Maragou V, Song,S.Q, TSiakaras P, Appl.Catal.B2006,66(l-2),64.
    [74]Arnold M, Wang H.H, Feldhoff,A.J.Melllbr.Sci.2007,293(1-2),
    [75]Svarcova S, Wiik K, Tolehard J, Bouwmeester H.J.M, Grande T, Solid State Ionics 2008, 178,1787.
    [76]Arnold M, Gesing T.M, Martynezuk J, Feldhoff A, Chem.Mater2008,20(18),5851.
    [77]Chiba R, Yoshimura F, Sakurai Y, Solid State Ionics 1999,124(3-4), 281.
    [78]Millar L, Taherparvar H, Filkin N, Slater P, Yeomans J, Solid State Ionics 2008, 179(19-20),732.
    [79]Swierezek K, Marzec J, Palubiak D, Zajac W, Molenda J, Solid State Ionics2006,177(19-25),1811-1817.
    [80] Bin Lin, Shangquan Zhang, Linchao Zhang, Lei Bi, Hanping Ding, Xingqin Liu, JianfengGao, Guangyao Meng, J. Power Sources, 177 (2008) 330-333.
    [81] Ling Zhao, Beibei He, Xiaozhen Zhang, Ranran Peng, Guangyao Meng, Xingqin Liu, J.Power Sources, 195(2010) 1859-1861.
    [82] Ling Zhao, Junchong Shen, Beibei He, Fanglin Chen, Changrong Xia, International Journalof Hydrogen Energy 36(2011) 3658-3665.
    [83] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics 3/4 (1981) 359.
    [84] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc. 135 (1988) 529.
    [85] A.F. Sammells, R.L. Cook, J.H. White, J.J. Osborne, R.C. MacDuff, Solid State Ionics 52
    (1992) 111.
    [86] A.K. Demin, P.E. Tsiakaras, V.A. Sobyanin, S.Y.Hramova, Solid State Ionics 152–153(2002)555.
    [87] T. Norby, "Solid-state protonic conductors: principles, properties, progress and prospects,"Solid State Ionics, 125: (1999) 1-11.
    [88] K. D. Kreuer, "Proton-conducting oxides," Annual Review of Materials Research, 33: (2003)333-359.
    [89] N. Taniguchi, C. Nishimura, and J. Kato, "Endurance against moisture for protonicconductors of perovskite-type ceramics and preparation of practical conductors," Solid StateIonics, 145: (2001) 349-355.
    [90] J. W. Phair and S. P. S. Badwal, "Review of proton conductors for hydrogen separation,"Ionics, 12: (2006) 103-115.
    [91] J. M. Serra and W. A. Meulenberg, "Thin-film proton BaZr0.85Y0.15O3 conductingelectrolytes: Toward an intermediate-temperature solid oxide fuel cell alternative," Journal of theAmerican Ceramic Society, 90: (2007) 2082-2089.
    [92] S. W. Tao and J. T. S. Irvine, "A stable, easily sintered proton-conducting oxide electrolytefor moderate-temperature fuel cells and electrolyzers," Advanced Materials, 18: (2006)1581-1584.
    [93] Wenping Sun,Litao Yan, Zhen Shi, Zhiwen Zhu, Wei Liu, Erratum to―Fabrication andperformance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3 electrolyte membrane‖,J. Power Sources 195 (15) (2010) 4727–4730.
    [94] S. W. Tao and J. T. S. Irvine, "Conductivity studies of dense yttrium-doped BaZrO3 sinteredat 1325 degrees C," Journal of Solid State Chemistry, 180: (2007) 3493-3503.
    [95] C. D. Zuo, S. E. Dorris, U. Balachandran, and M. L. Liu, "Effect of Zr-doping on thechemical stability and hydrogen permeation of the Ni-BaCe0.8Y0.2O3- mixedprotonic-electronic conductor," Chemistry of Materials, 18: (2006) 4647-4650.
    [96] E. Fabbri, D. Pergolesi, A. D'Epifanio, E. Di Bartolomeo, G. Balestrino, S. Licoccia, and E.Traversa, "Design and fabrication of a chemically-stable proton conductor bilayer electrolyte forintermediate temperature solid oxide fuel cells (IT-SOFCs)," Energy & Environmental Science, 1:
    (2008) 355-359.
    [97] S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, L.Malavasi, and R. Gerbasi, "High conductivity and chemical stability of BaCe1-x-yZrxYyO3-proton conductors prepared by a sol-gel method," Journal of Materials Chemistry, 18: (2008)5120-5128.
    [98] S. Barison, M. Battagliarin, T. Cavallin, S. Daolio, L. Doubova, M. Fabrizio, C. Mortalo, S.Boldrini, and R. Gerbasi, "Barium Non-Stoichiometry Role on the Properties ofBa1+xCe0.65Zr0.20Y0.15O3- Proton Conductors for IT-SOFCs," Fuel Cells, 8: (2008) 360-368.
    [99] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, "Protonic conduction in Zr-substitutedBaCeO3," Solid State Ionics, 138: (2000) 91-98.
    [100] Z. M. Zhong, "Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems,"Solid State Ionics, 178: (2007) 213-220.
    [101] E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, S. Licoccia, and E. Traversa, "Tailoring thechemical stability of Ba(Ce0.8-xZrx)Y0.2O3- protonic conductors for Intermediate TemperatureSolid Oxide Fuel Cells (IT-SOFCs)," Solid State Ionics, 179: (2008) 558-564.
    [102] Kui Xie,Ruiqiang Yan, Xingqin Liu,―Stable BaCe0.7Ti0.1Y0.2O3 proton conductor forsolid oxide fuel cells‖, Journal of Alloys and Compounds, 2009, 479, L40-L42
    [103]Lei Bi, Shangquan Zhang, Shuming Fang, Zetian Tao,Ranran Peng, and Wei Liu, A novelanode supported BaCe0.7Ta0.1Y0.2O3- electrolyte membrane for proton-conducting solid oxidefuel cell‖. Electrochemistry Communications, 10(2008)1598-1601.
    [104] Lei Bi, Shangquan Zhang, Lei Zhang, Zetian Tao, Haiqian Wang, Wei Liu,―Indium as anideal functional dopant for a proton-conducting solid oxide fuel cell‖, International Journal ofHydrogen Energy, 2009, 34, 2421-2425;
    [105]Kui Xie, Ruiqiang Yan, Xiaoxiang Xu, Xingqin Liu, Guangyao Meng,―A stable and thinBaCe0.7Nb0.1Gd0.2O3 membrane prepared by simple all-solid-state process for SOFC‖,Journal of Power Sources, 2009, 187, 403-406
    [106] T. Schober, F. Krug, and W. Schilling, "Criteria for the application of high temperatureproton conductors in SOFCs," Solid State Ionics, 97: (1997) 369-373.
    [107] T. Schober, H. H. Bohn, T. Mono, and W. Schilling, "The high temperature protonconductor Ba3Ca1.18Nb1.82O9- - Part II: electrochemical cell measurements and TEM," SolidState Ionics, 118: (1999) 173-178.
    [108] H. G. Bohn, T. Schober, T. Mono, and W. Schilling, "The high temperature protonconductor Ba3Ca1.18Nb1.82O9-delta. I. Electrical conductivity," Solid State Ionics, 117: (1999)219-228.
    [109] A. D'Epifani, E. Fabbri, E. Di Bartolomeo, S. Licoccia, and E. Traversa, "Design ofBaZr0.8Y0.2O3- protonic conductor to improve the electrochemical performance in intermediatetemperature solid oxide fuel cells (IT-SOFCs)," Fuel Cells, 8: (2008) 69-76.
    [110] B. Gross, S. Marion, K. Lind, D. Grambole, F. Herrmann, and R. Hemplemann, "Protonconducting Ba3Ca1.18Nb1.82O8.73 H2O: pressure-compositions isotherms in terms ofFermi-Dirac statistics, concentration and fuel-cell measurements, and impedance spectroscopy,"Solid State Ionics, 125: (1999) 107-117.
    [111]Y Du, A. S. Nowick,―Galvanic cell measurements on a fast proton conducting complexperovskite electrolyte,‖Solid State Ionics 91 [1-2] 85-91 (1996).
    [112]S. Valkenberg, H. G. Bohn, and W. Schilling, "The electrical conductivity of the hightemperature proton conductor Ba3Ca1.18Nb1.82O9- ," Solid State Ionics, 97: (1997) 511-515.
    [113]Lei Bi, Shangquan Zhang, Shuming Fang, Lei Zhang, Haiying Gao, Guangyao Meng, WeiLiu,―In-situ fabrication of a supported Ba3Ca1.18Nb1.82O9- membrane electrolyte for aproton-conducting SOFC, Journal of the American Ceramic Society, 2008,91,3806-3809.
    [114]J.A. Labrincha, J.R. Frade, F.M.B. Marques, Solid State Ionics 1997; 99: 33.
    [115] T. Omata, K. Okuda, S. Tsugimoto, S. Otsuka-Yao-Matsuo, Solid State Ionics 1997; 104:249.
    [116] T. Omata, S. Otsuka-Yao-Matsuo, J. Electrochem. Soc. 2001; 148: E252.
    [117] T. Omata, S. Otsuka-Yao-Matsuo, J. Electrochem. Soc. 2001; 148: E475.
    [118]Ma G L, F. Zhang, J L Zhu, and GY Meng,"Proton conduction inLa0.9Sr0.1Ga0.8Mg0.2O3- ," Chemistry of Materials, 18: (2006) 6006-6011.
    [119] T. Shimura, M. Komori, and H. Iwahara, "Ionic conduction in pyrochlore-type oxidescontaining rare earth elements at high temperature," Solid State Ionics, 86-8: (1996) 685-689.
    [120] R. Haugsrud and T. Norby, "Proton conduction in rare-earth ortho-niobates andortho-tantalates," Nature Materials, 5: (2006) 193-196.
    [121] T. Fukui, S. Ohara, and S. Kawatsu, "Conductivity of BaPrO3 based perovskite oxides,"Journal of Power Sources, 71: (1998) 164-168.
    [122]Zhang S Q, Bi, L, Zhang, L, et al. J. Power Sources, 2009, 188(2): 343-346.
    [123]Lin B, Wang S L, Liu X Q. J. Alloy Compd, doi:10.1016/j.jallcom.2008.11.058.
    [124] K. D. Kreuer, T. Dippel, Y. M. Baikov, and J. Maier, "Water solubility, proton and oxygendiffusion in acceptor doped BaCeO3: A single crystal analysis," Solid State Ionics, 86-8: (1996)613-620.
    [125] R. C. T. Slade and N. Singh, "Generation of Charge-Carriers and an H/D Isotope Effect inProton-Conducting Doped Barium Cerate Ceramics," Journal of Materials Chemistry, 1: (1991)441-445.
    [126] T. Scherban, and A. S. Nowick,―Bulk Protonic Conduction in Yb doped SrCeO3‖, SolidState Ionics, 35: (1989) 189-194.
    [127] H. Iwahara, H. Uchida, and K. Morimoto, "High-Temperature Solid Electrolyte Fuel-CellsUsing Perovskite-Type Oxide Based on BaCeO3," Journal of the Electrochemical Society, 137:
    (1990) 462-465.
    [128]T. Hibino, A. Hashimoto, M. Suzuki, and M. Sano, "A solid oxide fuel cell using Y-dopedBaCeO3 with Pd-loaded FeO anode and Ba0.5Pr0.5CoO3cathode at low temperatures," Journal ofthe Electrochemical Society, 149: (2002) A1503-A1508.
    [129]R. R. Peng, Y. Wu, L. Z. Yang, and Z. Q. Mao, "Electrochemical properties ofintermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thinfilm," Solid State Ionics, 177: (2006) 389-393.
    [130] K. Xie, Q. L. Ma, B. Lin, Y. Z. Jiang, J. F. Gao, X. Q. Liu, and G. Y. Meng, "An ammoniafuelled SOFC with a BaCe0.9Nd0.1O3- thin electrolyte prepared with a suspension spray,"Journal of Power Sources, 170: (2007) 38-41.
    [131] L. Yang, C. D. Zuo, S. Z. Wang, Z. Cheng, and M. L. Liu, "A novel composite cathode forlow-temperature SOFCs based on oxide proton conductors," Advanced Materials, 20: (2008)3280-3282.
    [132] Zetian Tao, Lei Bi, Litao Yan, Wenping Sun, Zhiwen Zhu, Ranran Peng, and Wei Liu,―Anovel single phase cathode material for a proton-conducting SOFC,‖ElectrochemistryCommunications, 11(2009) 688-690
    [133] Hanping Ding, Xingjian Xue, Xingqin Liu, Guangyao Meng, J. Power Sources,195,
    (2010)775-778.
    [134]A.K.Demin,P.E.Tsiakaras,V.A.Sobyanin,S.Yu.Hramova, Solid State Ionics 152(2002)555.
    [1] Z.P. Shao, S.M.Haile,―A high-performance cathode for the nixt generation of solid-oxide fuelcells,‖Nature 431 (2004) 170.
    [2] T. Norby,―Solid-state protonic conductors: principles, properties, progress and prospects,‖Solid State Ionics 125 (1999) 1.
    [3] B. C. H. Steele, A. Heinzel,―Materials for fuel-cell technologies,‖Nature 414 (2001)345.
    [4] K. D. Kreuer,―Proton-conducting oxides,‖Ann. Rev. Mater. Res. 33(2003), 333.
    [5] A.F. Sammells, R.L. Cook, J.H. White, J.J. Osborne, R.C. MacDuff,―Rational selection ofadvanced solid electrolytes for intermediate temperature fuel cells,‖Solid State Ionics 52
    (1992) 111.
    [6] A.K. Demin, P.E. Tsiakaras, V.A. Sobyanin, S.Y.Hramova,―Thermodynamic analysis of amethane fed SOFC system based on a protonic conductor,‖Solid State Ionics 152–153(2002)555.
    [7] T. Hibino, A. Hashimoto, M. Suzuki, M. Sano,―A solid oxide fuel cell using Y-doped BaCeO3with Pd-loaded FeO and Ba0.5Pr0.5CoO3cathode at low temperatures,‖J. Electrochem. Soc.149 (2002) A1503.
    [8] R.R. Peng, Y. Wu, L.Z. Yang, Z.Q. Mao,―Electrochemcial properties ofintermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3electrolytethin film,‖Solid State Ionics 177 (2006) 389.
    [9] Lei Bi, Shangquan Zhang, Shumin Fang, Lei Zhang, Kui Xie, Changrong Xia, Wei Liu,―Preparation of an extremely dense BaCe0.8Sm0.2O3 thin membrane based on an in situreaction,‖Electrochemistry Communications 10 (2008) 1005–1007
    [10] Mingfei Liu, Dehua Dong, Fei Zhao, Jianfeng Gao,Dong Ding, Xingqin Liu, GuangyaoMeng,―High-performance cathode-supported SOFCs prepared by a single-step co-firingprocess ,‖Journal of Power Sources 182 (2008) 585–588
    [11] C. D. Zuo, S. W. Zha, M. L. Liu, M. Hatano, and M. Uchiyama, "Ba(Zr0.1Ce0.7Y0.2)O3-δas anelectrolyte for low-temperature solid-oxide fuel cells," Advanced Materials, 18: (2006)3318-3320.
    [12] R.Q.Yan, D. Ding, B. Lin, M.F.Liu, G.Y.Meng, and X.Q.Liu,―Thin yttria-stabilized zirconiaelectrolyte and transition layers fabricated by particle suspension spray,‖J.Power Sources,164(2007)567-571.
    [1] H. Iwahara, H. Uchida, and K. Morimoto, "High-Temperature Solid Electrolyte Fuel-CellsUsing Perovskite-Type Oxide Based on BaCeO3," Journal of the Electrochemical Society,137: (1990) 462-465.
    [2] H. Iwahara, H. Uchida, K. Ogaki, and H. Nagato, "Nernstian Hydrogen Sensor UsingBaCeO3-Based, Proton-Conducting Ceramics Operative at 200-Degrees-C-900-Degrees-C,"Journal of the Electrochemical Society, 138: (1991) 295-299.
    [3] A.F. Sammells, R.L. Cook, J.H. White, J.J. Osborne, R.C. MacDuff,―Rational selection ofadvanced solid electrolytes for intermediate temperature fuel cells,‖Solid State Ionics 52(1992) 111.
    [4] A.K. Demin, P.E. Tsiakaras, V.A. Sobyanin, S.Y.Hramova,―Thermodynamic analysis of amethane fed SOFC system based on a protonic conductor,‖Solid State Ionics 152–153(2002)555.
    [5] T. Scherban, W.-K. Lee, A.S. Nowick,―Bulk protonic conduction in Yb-doped SrCeO3andBaCeO3,‖Solid State Ionics 28 (3) (1988) 585.
    [6] N. Bonanos, B. Ellis, K.S. Knight, M.N. Mahmood,―Ionic conductivity of gadolinium-dopedbarium cerate perovskites,‖Solid State Ionics 35 (1989)179.
    [7] T. Higuchi, T. Tsukamoto, H. Matsumoto, T. Shimura, K. Yashiro, T. Kawada, J.Mizusaki, S.Shin, T. Hattori,―Electronic structure of proton conducting BaCe0.90Y0.10O3 ,‖SolidState Ionics 176 (2005) 2967.
    [8] Q.L. Ma, R.R. Peng, Y.J. Lin, J.F. Gao, G.Y. Meng,―A high-performance ammonia-fueledsolid oxide fuel cell,‖Journal of Power Sources 161(2006) 95.
    [9] Kui Xie, Ruiqiang Yan, Xiaorui Chen, Dehua Dong, SonglinWang, Xingqin Liu, GuangyaoMeng,―A new stable BaCeO3-based proton conductor for intermediate-temperature solidoxide fuel cells,‖Journal of Alloys and Compounds 472 (2009) 551–555
    [10] K. D. Kreuer,―On the development of proton conducting materials for technologicalapplications,‖Solid State Ionics 97 (1997) 1.
    [11] T. Norby, Y. Larring, Curr. Opin. Solid State Mater. Sci. 2 (1997) 593.
    [12] E.Fabbri, D.Pergolesi, A.D‘Epifanio, E.Di Bartolomeo, G.Balestrino, S.Licoccia, andE.Traversa,―Design and Fabrication of a Chemically-Stable Proton Conductor BilayerElectrolyte for Intermediate Temperature Solid Oxide Fuel Cells,‖Energy&EnvironmentalScience 1(2008) 355-359.
    [13] S. W. Tao and J. T. S. Irvine, "Conductivity studies of dense yttrium-doped BaZrO3sinteredat 1325 degrees C," Journal of Solid State Chemistry, 180: (2007) 3493-3503.
    [14]J.M.Serra and W.A.Meulenberg,―Thin-Film Proton BaZr0.85Y0.15O3Conducting Electrolytes:Toward an Intermediate-Temperature Solid Oxide Fuel Cell Alternative,‖Journal of theAmerican Ceramic Society 90(2007)2082-2089.
    [15] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara,―Protonic conduction in Zr-substitutedBaCeO3,‖Solid State Ionics 138 (2000) 91.
    [16] C. D. Zuo, S. W. Zha, M. L. Liu, M. Hatano, and M. Uchiyama, "Ba(Zr0.1Ce0.7Y0.2)O3-δas anelectrolyte for low-temperature solid-oxide fuel cells," Advanced Materials, 18: (2006)3318-3320.
    [17] K. D. Kreuer,―Aspects of the formation and mobility of protonic charge carriers and thestability of perovskite-type oxides,‖Solid State Ionics 125 (1999) 285.
    [18] K. D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, J. Maier,―Proton conductingalkaline earth zirconates and titanates for high drain electrochemical applications,‖SolidState Ionics 145 (2001) 295.
    [19] Lei Bi, Zetian Tao, Cong Liu,Wenping Sun, HaiqianWang,Wei Liu,―Fabrication andcharacterization of easily sintered and stable anode-supported proton-conducting membranes,‖Journal of Membrane Science 336 (2009) 1–6
    [20] Lei Bi, Shangquan Zhang, Shumin Fang, Lei Zhang, Kui Xie, Changrong Xia, Wei Liu,―Preparation of an extremely dense BaCe0.8Sm0.2O3 thin membrane based on an in situreaction,‖Electrochemistry Communications 10 (2008) 1005–1007
    [21]R.R. Peng, Y. Wu, L.Z. Yang, Z.Q.Mao,―Electrochemcial properties ofintermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3electrolytethin film,‖Solid State Ionics 177 (2006) 389.
    [22] L. Zhang, S.P. Jiang, W. Wang, Y.J. Zhang,―NiO/YSZ, anode-supported, thin-electrolyte,solid oxide fuel cells fabricated by gel casting,‖J. Power Sources 170 (2007) 55.
    [23]P.K.Srivastava, T.Quach, Y.Y.Duan, R.Donelson, S.P.Jiang, F.T.Ciacchi, and S.P.S.Badwal,―Electrode supported solid oxide fuel cells: Electrolyte films prepared by DC magnetronsputtering,‖Solid State Ionics 99(1997) 311-319.
    [24]C. R. Xia, M. L. Liu,―Novel cathodes for low-temperature solid oxide fuel cells,‖Adv. Mater.14 (2002) 521.
    [1] A.F. Sammells, R.L. Cook, J.H. White, J.J. Osborne, R.C. MacDuff,―Rational selection ofadvanced solid electrolytes for intermediate temperature fuel cells,‖Solid State Ionics 52(1992) 111.
    [2] A.K. Demin, P.E. Tsiakaras, V.A. Sobyanin, S.Y.Hramova,―Thermodynamic analysis of amethane fed SOFC system based on a protonic conductor,‖Solid State Ionics 152–153(2002)555.
    [3] H. Iwahara, H. Uchida, and K. Morimoto, "High-Temperature Solid Electrolyte Fuel-CellsUsing Perovskite-Type Oxide Based on BaCeO3," Journal of the Electrochemical Society,137: (1990) 462-465.
    [4] H. Iwahara, H. Uchida, K. Ogaki, and H. Nagato, "Nernstian Hydrogen Sensor UsingBaCeO3-Based, Proton-Conducting Ceramics Operative at 200-Degrees-C-900-Degrees-C,"Journal of the Electrochemical Society, 138: (1991) 295-299.
    [5] T. Scherban, W.-K. Lee, A.S. Nowick,―Bulk protonic conduction in Yb-doped SrCeO3andBaCeO3,‖Solid State Ionics 28 (3) (1988) 585.
    [6] N. Bonanos, B. Ellis, K.S. Knight, M.N. Mahmood,―Ionic conductivity of gadolinium-dopedbarium cerate perovskites,‖Solid State Ionics 35 (1989)179.
    [7] T. Higuchi, T. Tsukamoto, H. Matsumoto, T. Shimura, K. Yashiro, T. Kawada, J.Mizusaki, S.Shin, T. Hattori,―Electronic structure of proton conducting BaCe0.90Y0.10O3 ,‖Solid StateIonics 176 (2005) 2967.
    [8] Q.L. Ma, R.R. Peng, Y.J. Lin, J.F. Gao, G.Y. Meng,―A high-performance ammonia-fueledsolid oxide fuel cell,‖Journal of Power Sources 161(2006) 95.
    [9] Kui Xie, Ruiqiang Yan, Xiaorui Chen, Dehua Dong, SonglinWang, Xingqin Liu, GuangyaoMeng,―A new stable BaCeO3-based proton conductor for intermediate-temperature solidoxide fuel cells,‖Journal of Alloys and Compounds 472 (2009) 551–555
    [10] K. D. Kreuer,―On the development of proton conducting materials for technologicalapplications,‖Solid State Ionics 97 (1997) 1.
    [11] T. Norby, Y. Larring, Curr. Opin. Solid State Mater. Sci. 2 (1997) 593.
    [12] E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, S. Licoccia, and E. Traversa, "Tailoring thechemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δprotonic conductors for Intermediate TemperatureSolid Oxide Fuel Cells (IT-SOFCs)," Solid State Ionics, 179: (2008) 558-564.
    [13] Zetian Tao, Zhiwen Zhu, Haiqian Wang, Wei Liu,“A stable BaCeO3-based proton conductorfor intermediate-temperature solid oxide fuel cells,‖J. Power Sources 195 (2010) 3481.
    [14] Lei Bi, Zetian Tao, Wenping Sun, Shangquan Zhang, Ranran Peng, Wei Liu,―Proton-conducting solid oxide fuel cells prepared by a single step co-firing process,‖J.Power Sources 191 ( 2009) 428.
    [15] Wenping Sun, Litao Yan, Zhen Shi, Zhiwen Zhu, Wei Liu,―Fabrication and performance of aproton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3 electrolytemembrane,‖J. Power Sources 195(2010)4727.
    [16] Yoshihiro Yamazaki, Raul Hernandez-Sanchez, and Sossina M Haile,―High total protonconductivity in large-grained Yttrium-doped barium zirconate,‖Chem. Mater. 21(2009)2755.
    [17]A. Magrasó, M.-L. Fontaine, Y. Larring, R. Bredesen,G. E. Syvertsen, H. L,―Development ofProton Conducting SOFCs Based on LaNbO4Electrolyte,‖Fuel Cells 11(2011)17-25
    [18] Y. Du and A. S. Nowick, "Galvanic cell measurements on a fast proton conducting complexperovskite electrolyte," Solid State Ionics, 91: (1996) 85-91.
    [19] H. G. Bohn, T. Schober, T. Mono, and W. Schilling, "The high temperature proton conductorBa3Ca1.18Nb1.82O9 Electrical conductivity," Solid State Ionics, 117: (1999) 219-228.
    [20] T. Schober, H. H. Bohn, T. Mono, and W. Schilling, "The high temperature proton conductorBa3Ca1.18Nb1.82O9-δ- Part II: electrochemical cell measurements and TEM," Solid StateIonics, 118: (1999) 173-178.
    [21]T.Schober, J.Friedrich, D.Triefenbach, and F.Tietz,―Dilatometry of the high-temperatureproton conductor Ba3Ca1.18Nb1.82O9-δ,‖Solid State Ionics 100(1997)173-181.
    [22] T. Omata, K. Okuda, S. Tsugi moto, S. Otsuka-Matsuo-Yao,―Water and hydrogen evolutionproperties and protonic conducting behaviors of Ca2+-doped La2Zr2O7with a pyrochlorestructure,‖Solid State Ionics 104 (1997) 249.
    [23] Ji-De Wang, Ya-Hong Xie, Zheng-Fang Zhang, Rui-Quan Liu *, Zhi-Jie Li,―Protonicconduction in Ca2+-doped La2M2O7(M = Ce, Zr) with its application to ammonia synthesiselectrochemically,‖Materials Research Bulletin 40 (2005) 1294.
    [24] Shumin Fang, Lei Bi, Litao Yan, Wenping Sun, Chusheng Chen, and Wei Liu,J. Phys. Chem.C 114( 2010) 10986.
    [25] Lei Bi, Shangquan Zhang, Shumin Fang, Lei Zhang, Kui Xie, Changrong Xia, Wei Liu,―Preparation of an extremely dense BaCe0.8Sm0.2O3 thin membrane based on an in situreaction,‖Electrochemistry Communications 10 (2008) 1005–1007
    [26] Lei Bi, Shangquan Zhang, Lei Zhang, Zetian Tao, Haiqian Wang and Wei Liu,―Indium as anideal functional dopant for a proton-conducting solid oxide fuel cell,‖International Jourenalof Hydrogen Energy 34(2009) 2421.
    [27] R.R. Peng, Y. Wu, L.Z. Yang, Z.Q.Mao,―Electrochemcial properties ofintermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3electrolytethin film,‖Solid State Ionics 177 (2006) 389.
    [28] L. Zhang, S.P. Jiang, W. Wang, Y.J. Zhang,―NiO/YSZ, anode-supported, thin-electrolyte,solid oxide fuel cells fabricated by gel casting,‖J. Power Sources 170 (2007) 55.
    [29]. X. Zhang, M. Robertson, C. Decès-Petit, W. Qu, O. Kesler, R. Maric, d. Ghosh,―Solid oxidefuel cells with bi-layered electrolyte structure,‖J. Power Sources 175 (2008) 800.
    [30] D. Yang, X. Zhang, C. Decès-Petit, R. Hui, R. Maric, d. Ghosh,―Low temperature solid oxidefuel cells with pulsed laser deposited bi-layer electrolyte,‖J. Power Sources 164 (2006) 182
    [1] C. D. Zuo, S. W. Zha, M. L. Liu, M. Hatano, and M. Uchiyama, "Ba(Zr0.1Ce0.7Y0.2)O3-δas anelectrolyte for low-temperature solid-oxide fuel cells," Advanced Materials, 18: (2006)3318-3320.
    [2] K. D. Kreuer,―Proton-conducting oxides,‖Ann. Rev. Mater. Res. 33(2003), 333..
    [3] H. Iwahara, H. Uchida, and K. Morimoto, "High-Temperature Solid Electrolyte Fuel-CellsUsing Perovskite-Type Oxide Based on BaCeO3," Journal of the Electrochemical Society,137: (1990) 462-465.
    [4] Du, Y., Nowick, A. S.―Galvanic cell measurements on a fast proton conducting complexperovskite electrolyte,‖Solid State Ionics. 1996; 91: 85-91.
    [5] T. Scherban,W.-K. Lee, A.S. Nowick,―Bulk protonic conduction in Yb-doped SrCeO3andBaCeO3,‖Solid State Ionics 28 (3) (1988) 585.
    [6] N. Bonanos, B. Ellis, K.S. Knight, M.N. Mahmood,―Ionic conductivity of gadolinium-dopedbarium cerate perovskites Solid State Ionics 35 (1989)179.
    [7] T. Higuchi, T. Tsukamoto, H. Matsumoto, T. Shimura, K. Yashiro, T. Kawada, J.Mizusaki, S.Shin, T. Hattori,―Electronic structure of proton conducting BaCe0.90Y0.10O3 ,‖Solid StateIonics 176 (2005) 2967.[8 Q.L. Ma, R.R. Peng, Y.J. Lin, J.F. Gao, G.Y. Meng,―A high-performance ammonia-fueled solidoxide fuel cell,‖Journal of Power Sources 161(2006) 95.
    [9] Kui Xie, Ruiqiang Yan, Xiaorui Chen, Dehua Dong, SonglinWang, Xingqin Liu, GuangyaoMeng,―A new stable BaCeO3-based proton conductor for intermediate-temperature solidoxide fuel cells,‖Journal of Alloys and Compounds 472 (2009) 551–555
    [10] K. D. Kreuer,―On the development of proton conducting materials for technologicalapplications,‖Solid State Ionics 97 (1997) 1.
    [11] T. Norby, Y. Larring, Curr. Opin. Solid State Mater. Sci. 2 (1997) 593.
    [12] E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, S. Licoccia, and E. Traversa, "Tailoring thechemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δprotonic conductors for Intermediate TemperatureSolid Oxide Fuel Cells (IT-SOFCs)," Solid State Ionics, 179: (2008) 558-564.
    [13] N. Bonanos, K. S. Knight, B. Ellis,―Perovskite solid electrolytes: Structure, transportproperties and fuel cell applications,‖Solid State Ionics 1995; 79:161.
    [14] S. Gopalan, A. V. Virkar,―Thermodynamic Stabilities of SrCeO3and BaCeO3Using a MoltenSalt Method and Galvanic Cells,‖J. Electrochem. Soc. 1993; 140: 1060.
    [15] Zetian Tao, Zhiwen Zhu, Haiqian Wang, Wei Liu,“A stable BaCeO3-based proton conductorfor intermediate-temperature solid oxide fuel cells,‖J. Power Sources 195 (2010) 3481.
    [16] Lei Bi, Zetian Tao, Wenping Sun, Shangquan Zhang, Ranran Peng, Wei Liu,―Proton-conducting solid oxide fuel cells prepared by a single step co-firing process,‖J.Power Sources 191 ( 2009) 428.
    [17] Y. Du and A. S. Nowick, "Galvanic cell measurements on a fast proton conducting complexperovskite electrolyte," Solid State Ionics, 91: (1996) 85-91.
    [18] T. Schober, F. Krug, and W. Schilling, "Criteria for the application of high temperature protonconductors in SOFCs," Solid State Ionics, 97: (1997) 369-373.
    [19] T. Schober, H. H. Bohn, T. Mono, and W. Schilling, "The high temperature proton conductorBa3Ca1.18Nb1.82O9-δ- Part II: electrochemical cell measurements and TEM," Solid StateIonics, 118: (1999) 173-178.
    [20] H. G. Bohn, T. Schober, T. Mono, and W. Schilling, "The high temperature proton conductorBa3Ca1.18Nb1.82O9 Electrical conductivity," Solid State Ionics, 117: (1999) 219-228.
    [21] B. Gross, S. Marion, K. Lind, D. Grambole, F. Herrmann, and R. Hemplemann, "Protonconducting Ba3Ca1.18Nb1.82O8.73H2O: pressure-compositions isotherms in terms ofFermi-Dirac statistics, concentration and fuel-cell measurements, and impedancespectroscopy," Solid State Ionics, 125: (1999) 107-117.
    [22] A. D'Epifani, E. Fabbri, E. Di Bartolomeo, S. Licoccia, and E. Traversa, "Design ofBaZr0.8Y0.2O3-δprotonic conductor to improve the electrochemical performance inintermediate temperature solid oxide fuel cells (IT-SOFCs)," Fuel Cells, 8: (2008) 69-76.
    [23] S. Valkenberg, H. G. Bohn, and W. Schilling, "The electrical conductivity of the hightemperature proton conductor Ba3Ca1.18Nb1.82O9-δ," Solid State Ionics, 97: (1997) 511-515.
    [24] Z. J. Li, R. Q. Liu, Y. H. Xie, S. Feng, and J. D. Wang, "A novel method for preparation ofdoped Ba-3(Ca1.18Nb1.82)O9-delta: Application to ammonia synthesis at atmosphericpressure," Solid State Ionics, 176: (2005) 1063-1066.
    [25] W. S. Wang and A. V. Virkar, "Determination of ionic and electronic conductivities ofBa3Ca1.18Nb1.82O9-δin dry and wet atmospheres," Journal of the Electrochemical Society, 151:
    (2004) A1565-A1571.
    [26] G. L. Ma, F. Zhang, J. L. Zhu, and G. Y. Meng, "Proton conduction inLa0.9Sr0.1Ga0.8Mg0.2O3-δ," Chemistry of Materials, 18: (2006) 6006-6011.
    [27] T. Fukui, S. Ohara, and S. Kawatsu, "Conductivity of BaPrO3based perovskite oxides,"Journal of Power Sources, 71: (1998) 164-168.
    [28] A. Magraso, F. Espiell, M. Segarra, and J. T. S. Irvine, "Chemical and electrical properties ofBaPr0.7Gd0.3O3-δ," Journal of Power Sources, 169: (2007) 53-58.
    [29]J.A. Labrincha, J.R. Frade, F.M.B. Marques,―Protonic conduction in La2Zr2O7-basedpyrochlore materials,‖Solid State Ionics 1997; 99: 33.
    [30] T. Omata, K. Okuda, S. Tsugimoto, and S. Otsuka-Matsuo-Yao, "Water and hydrogenevolution properties and protonic conducting behaviors of Ca2+-doped La2Zr2O7with apyrochlore structure," Solid State Ionics, 104: (1997) 249-258.
    [31] T. Omata, S. Otsuka-Yao-Matsuo,―Electrical properties of proton-conducting Ca2+-dopedLa2Zr2O7with a pyrochlore-type structure J. Electrochem. Soc. 2001; 148: E252.
    [32] T. Omata, S. Otsuka-Yao-Matsuo,―Infrared Absorption Spectra of High Temperature ProtonConducting Ca2+-doped La2Zr2O7,‖J. Electrochem. Soc. 2001; 148: E475.
    [33] T. Omata and S. Otsuka-Yao-Matsuo, "Electrical properties of proton-conducting Ca2+-dopedLa2Zr2O7with a pyrochlore-type structure," Journal of the Electrochemical Society, 148:(2001) E252-E261.
    [34] A. Rabenau,―Perowskit- und Fluoritphasen in den Systemen ZrO2 LaO1.5 MgO undZrO2 LaO1.5 CaO,‖Z. Anorg. Allg. Chem. 1956; 288: 221.
    [35] T. Omata, K. Okuda, S. Tsugi moto, S. Otsuka-Matsuo-Yao,―Water and hydrogen evolutionproperties and protonic conducting behaviors of Ca2+-doped La2Zr2O7with a pyrochlorestructure,‖Solid State Ionics 104 (1997) 249.
    [36] M.A. Subramanian, G. Aravamudan, G.V.S. Rao, Prog.―Static disorder from lone-pairelectrons in Bi2 xMxRu2O7 y(M=Cu, Co; x=0, 0.4) pyrochlores,‖Solid State Chem.1983; 15:55.
    [37] W.R. Panero, L. Stixrude, R.C. Ewing,―First-principles calculation of defect-formationenergies in the Y2(Ti,Sn,Zr)2O7pyrochlore,‖Phys. Rev., 2004; B 70; 054110.
    [38] M rten E. Bj rketun, Christopher S. Knee, B. Joakim Nyman, G ran Wahnstr m,―Protonicdefects in pure and doped La2Zr2O7pyrochlore oxide Solid State Ionics 2008; 178:1642–1647.
    [39] Ji-De Wang, Ya-Hong Xie, Zheng-Fang Zhang, Rui-Quan Liu *, Zhi-Jie Li,―Protonicconduction in Ca2+-doped La2M2O7(M = Ce, Zr) with its application to ammonia synthesiselectrochemically,‖Materials Research Bulletin 40 (2005) 1294.
    [40] T. Omata, K. Ikeda, R. Tokashiki, and S. Otsuka-Yao-Matsuo, "Proton solubility for La2Zr2O7with a pyrochlore structure doped with a series of alkaline-earth ions," Solid State Ionics, 167:(2004) 389-397.
    [41] G. Nolze, W. Kraus, Powder Diffr. 1998; 13: 256–259.
    [1] Z.P. Shao, S.M.Haile,―A high-performance cathode for the nixt generation of solid-oxide fuelcells,‖Nature 431 (2004) 170.
    [2] T. Norby,―Solid-state protonic conductors: principles, properties, progress and prospects,‖Solid State Ionics 125 (1999) 1.
    [3] B. C. H. Steele, A. Heinzel,―Materials for fuel-cell technologies,‖Nature 414 (2001)345.
    [4] K. D. Kreuer,―Proton-conducting oxides,‖Ann. Rev. Mater. Res. 33(2003), 333.
    [5] A.F. Sammells, R.L. Cook, J.H. White, J.J. Osborne, R.C. MacDuff,―Rational selection ofadvanced solid electrolytes for intermediate temperature fuel cells,‖Solid State Ionics 52
    (1992) 111.
    [6] A.K. Demin, P.E. Tsiakaras, V.A. Sobyanin, S.Y.Hramova,―Thermodynamic analysis of amethane fed SOFC system based on a protonic conductor,‖Solid State Ionics 152–153(2002)555.
    [7] H. Iwahara, H. Uchida, and K. Morimoto, "High-Temperature Solid Electrolyte Fuel-CellsUsing Perovskite-Type Oxide Based on BaCeO3," Journal of the Electrochemical Society,137: (1990) 462-465.
    [8] H. Iwahara, H. Uchida, K. Ogaki, and H. Nagato, "Nernstian Hydrogen Sensor UsingBaCeO3-Based, Proton-Conducting Ceramics Operative at 200-Degrees-C-900-Degrees-C,"Journal of the Electrochemical Society, 138: (1991) 295-299.
    [9] C. D. Zuo, S. W. Zha, M. L. Liu, M. Hatano, and M. Uchiyama, "Ba(Zr0.1Ce0.7Y0.2)O3-δas anelectrolyte for low-temperature solid-oxide fuel cells," Advanced Materials, 18: (2006)3318-3320.
    [10] Xiufu Sun, ShaorongWang, ZhenrongWang, Xiaofeng Ye, TinglianWen, Fuqiang Huang,―Anode performance of LST–xCeO2for solid oxide fuel cells,‖Journal of Power Sources183 (2008) 114–117
    [11] M.J. Escudero, J.T.S. Irvine, L. Daza,―Development of anode material based onLa-substituted SrTiO3perovskites doped with manganese and/or gallium for SOFC,‖Journalof Power Sources 192 (2009) 43–50
    [12] Tatsumi Ishihara, Jingwang Yan, Masashi Shinagawa, Hiroshige Matsumoto,―Ni–Febimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3basedelectrolyte film,‖Electrochimica Acta 52 (2006) 1645–1650
    [13] Dong Ding, Lei Li, Kai Feng, Zhangbo Liu, Changrong Xia,―High performance Ni–Sm2O3cermet anodes for intermediate-temperature solid oxide fuel cells,‖Journal of Power Sources187 (2009) 400–402
    [14] Z.P. Shao, S.M.Haile,―A high-performance cathode for the nixt generation of solid-oxide fuelcells,‖Nature 431 (2004) 170.
    [15] Shao Z.P, Haile S.M, Ahll J, Ronney P.D, Zhan Z.L, Barnett S.A.,―A thermally self-sustainedmicro solid oxide fuel-cell stack with high power density,‖Nature 2005,435,795.
    [16] Liu Q.L, Khor K.A, Chan S.H,―High-performance low-temperature solid oxide fuel cell withnovel BSCF cathode,‖J. Power Sources 2006,161, 123.
    [17] D. P′erez-Coll, A. Aguadero, M.J. Escudero, P. N′u nez, L. Daza,―Optimization of theinterface polarization of the La2NiO4-based cathode working with the Ce1–xSmxO2–electrolyte system,‖Journal of Power Sources 178 (2008) 151–162
    [18] Steven P. Simner, Michael D. Anderson, and Jeffry W. Stevenson,―La(Sr)FeO3SOFCcathodes with marginal copper doping,‖J. Am. Ceram. Soc, 87 (2004)1471–1476
    [19] Tal Z. Sholklapper, Chun Lu, Craig P. Jacobson, Steven J. Visco, Lutgard C. De Jonghe,―LSM-Infiltrated Solid Oxide Fuel Cell Cathodes,‖Electrochemical and Solid-State Letters,9 (2006) A376-A378
    [20] Han Zhang, Fei Zhao, Fanglin Chen, Changrong Xia,―Nano-structured Sm0.5Sr0.5CoO3 electrodes for intermediate-temperature SOFCs with zirconia electrolytes,‖Solid State Ionics,192(2011) 591-594
    [21] Lei Zhang, Yiqun Liu, Yanxiang Zhang, Guoliang Xiao, Fanglin Chen, Changrong xia,―Enhancement in surface exchange coefficient and electrochemical performance ofSr2Fe1.5Mo0.5O6electrodes by Ce0.8Sm0.2O1.9nanoparticles,‖ElectrochemistryCommunications, 13 (2011) 711-713
    [22] Zhiyi Jiang, Lei Zhang, Kai Feng, Changrong Xia,―Nanoscale bismuth oxide impregnated(La,Sr)MnO3cathodes for intermediate-temperature solid oxide fuel cells,‖Journal of PowerSources, 185 (2008) 40-48
    [23] T. Hibino, A. Hashimoto, M. Suzuki,―High performance anodes for SOFCs operating inmethane-air mixture at reduced temperatures,‖J. Electrochem. Soc. 149 (2002)1508.
    [24] R.R. Peng, Y. Wu, L.Z. Yang, Z.Q.Mao,―Electrochemcial properties ofintermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3electrolytethin film,‖Solid State Ionics 177 (2006) 389.
    [25] L. Yang, C. D. Zuo, S. Z. Wang, Z. Cheng, and M. L. Liu, "A novel composite cathode forlow-temperature SOFCs based on oxide proton conductors," Advanced Materials, 20: (2008)3280-3282.
    [26]R.Mukundan, P.K.Davies, W.L.Worrell,―Electrochemical Characterization of MixedConducting Ba (Ce0.8-yPryGd0.2) O2.9Cathodes,”J.Electrochem.Soc.148 (1) (2001) A82-A86.
    [27]R.J.Drost, W.T.Fu,―Preparation and characterization of the perovskitesBaCe1-xBixO3,‖Materials Research Bulletin 30 (1995) 471.
    [28] Hui Zhao, Shouhua Feng,―Hydrothermal Synthesis and Oxygen Ionic Conductivity ofCo-doped Nanocrystalline Ce1-xMxBi0.4O2.6-x, M = Ca, Sr, and Ba,‖Chem. Mater.11 (1999)958-964.
    [29] Inami Michiaki, Takagi Hiroshi, Japanese Patent, JP 07006770(1995).
    [30]Hui Zhao, Pijolat Miche`le,―Preparation, chemical stablity, and electrical properties ofBa(Ce1-xBix)O3(x=0.0-0.5),‖J. Mater. Chem. 12(2002) 3787–3791.
    [31] Hanping Ding, Bin Lin,et al.―Low-temperature protonic ceramic membrane fuel cells(PCMFCs) with SrCo0.9Sb0.1O3 cubic perovskite cathode J. Power Sources. 185 (2008)937–940.
    [32] Bin Lin, Shangquan Zhang, et al.―Prontonic ceramic membrane fuel cells with layeredGdBaCo2O5+xcathode prepared by gel-casting and suspension spray,‖J. Power Sources 177(2008) 330–333 .
    [33] L. Zhang, S.P. Jiang, W. Wang, Y.J. Zhang,―NiO/YSZ, anode-supported, thin-electrolyte,solid oxide fuel cells fabricated by gel casting,‖J. Power Sources 170 (2007) 55.
    [1] R.R. Peng, Y. Wu, L.Z. Yang, Z.Q.Mao,―Electrochemcial properties ofintermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3electrolytethin film,‖Solid State Ionics 177 (2006) 389.
    [2] Q.L. Ma, R.R. Peng, Y.J. Lin, J.F. Gao, G.Y. Meng,―A high-performance ammonia-fueledsolid oxide fuel cell,‖Journal of Power Sources 161(2006) 95.
    [3] T Wu, R Peng, C Xia,―Sm0.5Sr0.5CoO3δ–BaCe0.8Sm0.2O3-composite cathodes forproton-conducting solid oxide fuel cells,‖Solid State Ionics 179(2008) 1505-1508.
    [4] C.R. Xia, W. Rauch, F.L. Chen, M.L. Liu,―Sm0.5Sr0.5CoO3cathodes for low-temperatureSOFCs,‖Solid State Ionics. 149 (2002)11–19.
    [5] X.G. Zhang, M. Robertson, S. Yick, C. Deces-Petit, E. Styles,W. Qu, Y.S.Xie, R. Hui, J.Roller, O. Kesler, R. Maric, D. Ghosh, J. Power Sources 160(2006) 1211–1216.
    [6] V. Dusastre, J.A. Kilner,―Optimisation of composite cathodes for intermediate temperatureSOFC applications,‖Solid State Ionics. 126 (1999) 163–174.
    [7] H.J. Hwang, M.B. Ji-Woong, L.A. Seunghun, E.A. Lee,―Electrochemical performance ofLSCF-based composite cathodes for intermediate temperature SOFCs,‖J. Power Sources145(2005) 243–248.
    [8] E.P. Murray, M.J. Sever, S.A. Barnett,―Electrochemical performance of (La, Sr) (Co, Fe)O3–(Ce, Gd) O3composite cathodes,‖Solid State Ionics. 148 (2002) 27–34.
    [9] Z.P. Shao, S.M.Haile,―Ahigh-performance cathode for the nixt generation of solid-oxide fuelcells,‖Nature 431 (2004) 170.
    [10] B. Wei, Z. Lu, S.Y. Li, Y.Q. Liu, K.Y. Liu, W.H. Su,―Thermal and Electrical Properties ofNew Cathode Material Ba0.5Sr0.5Co0.8Fe0.2O3 for Solid Oxide Fuel Cells,‖Electrochem.Solid State Lett. 8 (2005) A428–A431.
    [11] S. Lee, Y. Lim, E.A. Lee, H.J. Hwang, J.W. Moon,―Ba0.5Sr0.5Co0.8Fe0.2O3δ(BSCF) andLa0.6Ba0.4Co0.2Fe0.8O3δ(LBCF) cathodes prepared by combined citrate-EDTA method forIT-SOFCs,‖J. Power Sources 157(2006) 848–854.
    [12] S.P. Simner, J.F. Bonnett, N.L. Canfield, K.D. Meinhardt, V.L. Sprenkle, J.W. Stevenson,―Optimized Lanthanum Ferrite-Based Cathodes for Anode-Supported SOFCs,”Electrochem.Solid State Lett. 5 (2002) A173–A175.
    [13] J.M. Ralph, C. Rossignol, R. Kumar,―Cathode materials for reduced-temperature SOFCs,‖J.Electrochem. Soc. 150 (2003) A1518–A1522.
    [14] K. Huang, H.Y. Lee, J.B. Goodenough,―Sr- and Ni-Doped LaCoO3and LaFeO3Perovskites,‖J. Electrochem. Soc. 145 (1998)3220–3227.
    [15] S.I. Hashimoto, K. Kammer, P.H. Larsen, F.W. Poulsen, M. Mogensen,―A study ofPr0.7Sr0.3Fe1 xNixO3 as a cathode material for SOFCs with intermediate operatingtemperature,‖Solid State Ionics. 176 (2005) 1013–1020.
    [16] G.Y. Zhu, X.H. Fang, C.R. Xia, X.Q. Liu,―Preparation and Electrical Properties ofLa0.4Sr0.6Ni0.2Fe0.8O3Using a Glycine Nitrate Process,‖Ceram. Int. 31 (2005) 115–119.
    [17] H.C. Yu, F. Zhao, A.V. Virkar, K.Z. Fung,―Electrochemical characterization andperformance evaluation of intermediate temperature solid oxide fuel cell withLa0.75Sr0.25CuO2.5δcathode,‖J. Power Sources 152 (2005)22–26.
    [18] Xuefeng Zhu, Haihui Wang , Weishen Yang,―Novel cobalt-free oxygen permeablemembrane,‖Chem . Commun. (2004) 1130–1131
    [19] Xuefeng Zhu, You Cong, Weishen Yang,―Effects of synthesis methods on oxygenpermeability of BaCe0.15Fe0.85O3δceramic membranes,‖J. Membrane Science 283 (2006)158–163
    [20] L. Zhang, S.P. Jiang, W. Wang, Y.J. Zhang,―NiO/YSZ, anode-supported, thin-electrolyte,solid oxide fuel cells fabricated by gel casting,‖J. Power Sources 170 (2007) 55.
    [21] Hanping Ding, Bin Lin,et al.―Low-temperature protonic ceramic membrane fuel cells(PCMFCs) with SrCo0.9Sb0.1O3 cubic perovskite cathode J. Power Sources. 185 (2008)937–940.
    [22] Bin Lin, Shangquan Zhang, et al.―Prontonic ceramic membrane fuel cells with layeredGdBaCo2O5+xcathode prepared by gel-casting and suspension spray,‖J. Power Sources 177(2008) 330–333 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700