用户名: 密码: 验证码:
先进储钠电极材料及其电化学储能应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钠离子电池具有资源丰富、成本低廉、环境友好等特点,被认为是替代锂离子电池作为下一代电动汽车动力电源及大规模储能电站配套电源的理想选择。因此,探寻高容量及优异循环性能的储钠电极材料已成为目前电池领域的研究热点。本论文旨在探索钠离子电池正负极材料新体系,主要研究内容和结果如下:
     1.本论文首次提出采用过渡金属六氰配合物Na_4Fe(CN)_6及NaxMyFe(CN)_6M=(Fe,Co,Ni,Mn)作为钠离子电池正极材料。采用高能球磨法制备了Na_4Fe(CN)_6/C纳米复合物,该材料能实现理论上1个Na+的可逆脱嵌容量87mAhg~(-1),电压平台为3.4V;在10C倍率下,仍可给出理论比容量的45%;500周循环容量保持率为88%,并具有卓越的大电流充放电性能和优异的长期循环稳定性。另外,采用溶液沉淀法制备了四种普鲁士蓝类钠盐NaxMyFe(CN)_6(M=Fe,Co,Ni,Mn)。电化学测试结果表明,当M为Fe、Co、Mn时,材料中Fe(CN)_64-和金属M离子两个活性中心都参与电化学氧化还原反应,首周可逆容量分别为113mAh g~(-1)、120mAh g~(-1)和113mAh g~(-1),循环比较稳定。当M为Ni时,普鲁士蓝类材料的可逆容量仅为64mAh g~(-1),但循环性能非常优异。这类无机配合物的可逆嵌钠能力为探索钠离子电池正极材料提供了新体系.
     2.以聚苯胺(PAn)和聚三苯胺(PTPAn)两种共轭聚合材料为代表,本论文初步探索了聚合物储钠正极材料的可行性。采用化学氧化法合成了这两种聚合物材料,并研究了它们的结构、反应机理及电化学储钠性能。实验结果表明:这类聚合物的电化学氧化还原反应通过阴离子的掺杂/脱掺杂而实现; PAn电极在钠离子电解液中的首周放电比容量高达163mAh g~(-1),平均放电电压为3.16V,100周循环后容量稳定在118mAh g~(-1)。以300mA g~(-1)电流密度充放电,可逆容量仍有60mAh g~(-1),超过了现有的无机正极材料;PTPAn电极在钠离子电解液中的首周放电容量93mAh g~(-1),接近于理论上1个电子的转移反应,平均放电电压为3.56V;在500mA g~(-1)的大电流密度下充放电,可逆容量仍高达72mAh g~(-1)。由此可见,导电聚合物具有优异的循环稳定性和大电流充放电性能,且制备方法简单,原料易得,有望发展成为兼具高能量密度和高功率密度的钠离子电池正极材料。
     3.为了寻找合适的嵌钠负极材料,本论文工作研究了几类不同碳材料的嵌钠行为和反应机理,进而发现硬碳类负极材料具有较好的储钠性能。无定形排列的碳层以及结构中的纳米微孔都可作为钠离子嵌入的活性位点,并具有不同的嵌钠电位。基于实验比较,本工作主要采用聚氯乙烯PVC和聚苯胺PAn两种聚合物为前驱体,通过改变煅烧条件来优化其储钠性能。结果表明:控制升温速率为1℃/min,煅烧温度为700℃,保温时间为2h制备的PVC热解碳具有最佳的储钠性能。该材料首周可逆容量为200mAh g~(-1),循环100周后容量保持率为85%;在200mAg~(-1)电流密度下,仍有117mAh g~(-1)的可逆容量。采用聚苯胺(PAn)为前驱体制备的热解碳材料首周可逆脱钠容量为194mAh g~(-1),循环200周后容量保持率为97%;在500mA g~(-1)下,可逆容量仍有103mAh g~(-1),具有优异的储钠性能和循环稳定性。这些结果表明,通过调整碳材料的结构,包括体相晶格、尺寸形貌、表面织构和结构缺陷等,有望获得高性能的碳基储钠负极材料,以满足钠离子电池的实用化要求。
     4.为了寻找更高性能的嵌钠负极材料,本论文将目光转向合金类负极材料。理论上,Na可与Sn、P、Sb等元素形成Na15Sn4(847mAh g~(-1)),Na3P(2596mAh g~(-1)),和Na3Sb (660mAh g~(-1))化合物,具有超常的理论比容量。但是,这些合金类负极材料在嵌脱钠过程中的体积变化巨大(Sn→Na15Sn4膨胀525%),容易引起材料粉化,丧失电化学活性,导致其无法直接用作钠离子电池负极材料。为了限制体积膨胀对电极的冲击,本论文工作采用纳米化、核壳结构、无定形化和碳包覆等手段进行改性研究。首先,采用原位置换法制备了核壳结构的Sn@Cu纳米复合物,利用表面包覆Cu的限制作用,缓解Na-Sn合金化过程的体积膨胀。该材料的可逆储钠容量为290mAh g~(-1),20周循环后仍保持在200mAh g~(-1)以上。其次,以红磷和高比表面碳载体为原料,制备了无定形磷/碳复合物,该材料可逆储钠容量高达1764mAh g~(-1),40周后容量保持率为96.7%,表现出优异的循环稳定性;并且在4000mA g~(-1)的超大电流密度下,放电容量仍有1725mAh g~(-1),具有非常卓越的脱钠反应动力学。再次,采用高能球磨法制备了Sn4P3/C纳米复合材料,该材料的可逆储钠容量高达816mAh g~(-1),实现了接近于理论24个Na离子的嵌入反应,100周后容量保持率为89%。最后,将单质Sb纳米化并分散在碳载体中制备了Sb/C纳米复合物,该材料实现了接近3个Na离子的可逆合金化反应,并具有优异的大电流充放电性能。另外,通过优化电解液的组成,加入5%的SEI成膜剂-FEC,使得Sb/C纳米复合电极经循环100周后容量保持率为95%,表现出非常优异的长期循环稳定性。以上工作证明了锡Sn,磷P,磷化锡Sn4P3和锑Sb四种材料都具有非常高的储钠容量、良好的倍率性能以及优异的循环稳定性,并且制备方法简单,原料易得,为发展实用化的高性能钠离子电池负极材料提供了可借鉴的经验和广阔的研究空间。
Sodium ion batteries are now actively pursued as the most attractive alternativeto Li-ion batteries for electric vehicle propulsion and renewable electric power storage,because of their potential advantages of low cost and widespread availability ofsodium resources. To realize Na-ion technology, a critical issue is to find out suitablehost materials that can accommodate sufficient Na ions for reversible electrochemicalinsertion reaction. In this thesis, we were aimed at exploring new anode and cathodematerials and optimize their performance to realize their potentionally high redoxcapacity for reversible Na-storage。The main results and new findings in this work aresummarized as follows:
     1. A new family of sodium transition metal cyanides, such as hexacyanoferratesNa_4Fe(CN)_6and Prussian blue NaxMyFe(CN)_6(M=Fe,Co,Ni,Mn) were proposed ascathode materials for sodium ion batteries. Firstly, a Na_4Fe(CN)_6/C nanocompositewere prepared simply by mechanical ball-milling Na_4Fe(CN)_6and conductive carbonpowders. The as-prepared Na_4Fe(CN)_6/C composite displays a full utilization of itsredox capacity of87mAh g~(-1)at a high potential of~3.4V, an excellent cyclingstability with a88%capacity retention over500cycles and a superior high ratecapability with45%capacity delivery at a10C rate. Secondly, four types of Prussianblue NaxMyFe(CN)_6(M=Fe, Co, Ni, Mn) compounds were prepared simply bysolution precipitation method and tested as cathode materials for sodium-ion batteries.Electrochemical tests revealed very different electrochemical behaviors of these foursamples of NaxMyFe(CN)_6(M=Fe, Co, Ni, Mn). When M was Fe, Co and Mn, thespecific capacities of NaxFeyFe(CN)_6, NaxCoyFe(CN)_6and NaxMnyFe(CN)_6can reach113,120and113mAh g~(-1), respectively, indicating that both of the Fe(CN)_64-and M+2ions in the Prussian blue lattices were electrochemically activated. When M was Ni,Ni ions in the Prussian blue lattice was found to be electrochemically inactive and theNaxNiyFe(CN)_6delivered a specific capacity of only64mAh g~(-1)but with quite stablecyclability. These results suggest a possible use of the transition metal cyanides as lowcost and environmentally benign cathode materials for sodium-ion batteries.
     2. Two typical conductive polymers: Polyaniline (PAn) and Polytriphenylamine(PTPAn) were chemically synthesized and suggested as promising cathode materials for sodium ion batteries, due to their good conductivity and electrochemical redoxproperty. It was found Na/PAn cell displays a quite high capacity of163mAh g~(-1)at anaverage discharge voltage of3.16V, an excellent cycling stability with118mAh g~(-1)reserved after100cycles and a superior high rate capability with60mAh g~(-1)deliveryat300mA g~(-1)current density, exceeding most of the current inorganic cathodes;Na/PTPAn cells also give a high capacity of93mAh g~(-1)and a quite high averagedischarge voltage of3.56V. Even cycled at a very high rate of500mA g~(-1), thepolymer can still deliver a capacity of72mAh g~(-1), that is78%of initial capacity.Overall, these conductive polymers can realize their potential high redox capacitieswith sufficient cycleability and superior high power capability, suggesting a promisingcathode for high energy density and power density sodium ion batteries.
     3. In the search for suitable Na host materials for sodium ion batteries, weinvestigated the electrochemical sodium insertion behavior of several types ofcarbonaceous materials. Hard carbon materials were found to possess the best sodiuminsertion performance, as they contain random stacked carbon layers and significantquantities of nanosized pores, which can serve as active sites for sodium insertion.Base on these results, two kinds of polymers: polyvinyl chloride (PVC andpolyaniline (PAn, were selected as the precursors to make pyrolyzed hard carbon,and their performance were optimized by adjusting proper calcination condition. Itwas found that the PVC electrode can deliver quite a high reversible capacity of~200mAh g~(-1), corresponding to the formation of Na0.54C6, an excellent cycling stabilitywith85%reserved after100cycles and a high rate capability with117mAh g~(-1)delivered at a current density of200mA g~(-1). The PAn-pyrolysed carbon can also givea high capacity of194mAh g~(-1), and97%capacity reserved at200th cycle, and ahigh rate capability with103mAh g~(-1)delivery at500mA g~(-1). In principle, highperformance carbon anodes can be achieved by adjusting the structure of carbonmaterials, including crystal lattice, surface texture, and structural defect, so as to meetthe practical requirements of the sodium ion batteries.
     4. Sodium alloying reactions with metals or semi-metals would be an effective wayto provide larger specific capacity and suitable thermodynamic potentials than carbonbased materials. For example, Na can alloy with Sn, P, Sb elements to produceNa15Sn4(847mAh g~(-1), Na3P (2560mAh g~(-1), and Na3Sb (660mAh g~(-1), respectively.In order to suppress enormous volume changes (i.e., a525%volume increase ongoing from Sn to Na15Sn4during sodium alloying reaction, several strategies, such as nanosizing, core-shell structure, amorphisizing and carbon coating, were adopted tooptimize their performances. Firstly, core-shell structured Sn@Cu nanocomposite wassynthesized by a simple substitutional reaction between Sn and Cu2+. The as preparedSn@Cu material can give an enhanced capacity of290mAh g~(-1), with200mAh g~(~(-1))reserved after20cycles. Secondly, an amorphous P/C nanocomposite was simplyprepared by mechanical ball-milling red P and conductive carbon powders. The a-P/Ccomposite displays an quite high capacity of1764mAh g~(-1),an excellent cyclingstability with96.7%reserved after40cycles, and a superior fast sodiumdeintercalation kinetics with1725mAh g~(-1)achieved at a current density of4000mAg~(-1). Thirdly, a Sn4P3/C nanocomposite was synthesized by ball-milling method, andcan exhibit a reversible capacity of816mAh g~(-1), approaching to its theoretical24Na-storage capacity and retain89%of initial capacity after100cycles. Finally, weprepared a novel Sb/C nanocomposite, simply by mechanical ball-milling commercialSb powder with conductive carbon, which demonstrates a nearly full utilization of itstheoretical3Na storage capacity, a strong rate capability with50%capacity realizedat a very a very high current of2000mA g~(-1). Particularly, in the optimized electrolytewith a SEI film-forming additive, the Sb/C anode demonstrates a long-term cyclingstability with94%capacity retention over100cycles. Overall, these excellentelectrochemical performances of four samples represent the highest level of the Nastorage materials, offering a practical feasibility as a high capacity and cycling-stableanode for room temperature Na-ion batteries.
引文
[1]吴宇平.电化学储能系统及其材料[J].世界科学,2010,03):36-37.
    [2] P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, Y. Liu. Energy storage systems foradvanced power applications [J]. Proceedings of the IEEE,2001,89(12):1744-1756.
    [3] B. Dunn, H. Kamath, J. M. Tarascon. Electrical Energy Storage for the Grid: A Battery ofChoices [J]. Science,2011,334(6058):928-935.
    [4]田军,朱永强,陈彩虹.储能技术在分布式发电中的应用[J].电气技术,2010,32(08):28-32.
    [5]杨裕生,张立,文越华,程杰,曹高萍.液流电池蓄电技术的进展与前景[J].电源技术,2007,31(03):175-178.
    [6]张华民,张宇,刘宗浩,王晓丽.液流储能电池技术研究进展[J].化学进展,2009,11):2333-2340.
    [7]陈亚昕,郑克文.氧化还原液流电池的研究进展[J].船电技术,2006,05):67-71.
    [8] M. Rychcik, M. Skyllas-Kazacos. Characteristics of a new all-vanadium redox flow battery[J]. J. Power Sources1988,22(1):59-67.
    [9] E. Sum, M. Skyllas-Kazacos. A study of the V (II)/V (III) redox couple for redox flow cellapplications [J]. J. Power Sources1985,15(2-3):179-190.
    [10] M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, A. Fane, M. Green. New all-vanadium redoxflow cell [J]. J. Electrochem. Soc.,1986,133(05):1057-1058.
    [11] M. Skyllas Kazacos, G. Kazacos, G. Poon, H. Verseema. Recent advances with UNSWvanadium‐based redox flow batteries [J]. Int. J. Energy Res.,2010,34(2):182-189.
    [12]张胜涛,李文坡,封雪松,韩晓燕.液流电池的研究进展[J].电源技术,2008,09):569-572.
    [13] Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, et al. Carbon-based supercapacitorsproduced by activation of graphene [J]. Science,2011,332(6037):1537.
    [14] M. Armand, J. M. Tarascon. Building better batteries [J]. Nature,2008,451(7179):652-657.
    [15] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries [J].Nature,2001,414(6861):359-367.
    [16]查全性.试论高比能量电池进展[J].物理,1998,27(010):592-598.
    [17]艾新平,杨汉西.电动汽车与动力电池[J].电化学,2011,02):123-133.
    [18] K. Mizushima, P. Jones, P. Wiseman, J. Goodenough. LixCoO2: A new cathode material forbatteries of high energy density [J]. Mater. Res. Bull.,1980,15(6):783-789.
    [19] J. Cho, Y. J. Kim, B. Park. Novel LiCoO2cathode material with Al2O3coating for a Li ioncell [J]. Chem. Mater.,2000,12(12):3788-3791.
    [20] T. Ohzuku, Y. Makimura. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2forlithium-ion batteries [J]. Chem. Lett.,2001,30(7):642-643.
    [21] M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, et al.Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J. Mater.Chem.,2007,17(30):3112-3125.
    [22] J. S. Kim, C. S. Johnson, J. T. Vaughey, M. M. Thackeray, S. A. Hackney, et al.Electrochemical and Structural Properties of x Li2M'O3(1-x) LiMn0.5Ni0.5O2Electrodes forLithium Batteries (M'=Ti, Mn, Zr;0x0.3)[J]. Chemistry of materials,2004,16(10):1996-2006.
    [23]杜柯,胡国荣.锂离子电池正极材料富锂锰基固溶体的研究进展[J].科学通报,2012,10):794-804.
    [24] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines asPositive-Electrode Materials for Rechargeable Lithium Batteries [J]. J. Electrochem. Soc.,1997,144(4):1188-1194.
    [25] J. Qian, M. Zhou, Y. Cao, X. Ai, H. Yang. Template-Free Hydrothermal Synthesis ofNanoembossed Mesoporous LiFePO4Microspheres for High-Performance Lithium-IonBatteries [J]. J. Phys. Chem. C,2010,114(8):3477-3482.
    [26] Y. Wang, Y. Wang, E. Hosono, K. Wang, H. Zhou. The Design of a LiFePO4/CarbonNanocomposite With a Core-Shell Structure and Its Synthesis by an In Situ PolymerizationRestriction Method [J]. Angew. Chem., Int. Ed.,2008,47(39):7461-7465.
    [27] S.-Y. Chung, J. T. Bloking, Y.-M. Chiang. Electronically conductive phospho-olivines aslithium storage electrodes [J]. Nat. Mater.,2002,1(2):123-128.
    [28] Y. Wu, E. Rahm, R. Holze. Carbon anode materials for lithium ion batteries [J]. J. PowerSources2003,114(2):228-236.
    [29] G. Derrien, J. Hassoun, S. Panero, B. Scrosati. Nanostructured Sn-C Composite as anAdvanced Anode Material in High-Performance Lithium-Ion Batteries [J]. Adv. Mater.,2007,19(17):2336-2340.
    [30] H. Kim, J. Cho. Superior Lithium Electroactive Mesoporous Si@Carbon Core-shellNanowires for Lithium Battery Anode Material [J]. Nano Letters,2008,8(11):3688-3691.
    [31] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, et al. High-performance lithium-ionanodes using a hierarchical bottom-up approach [J]. Nat. Mater.,2010,9(4):353-358.
    [32] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka. Tin-Based Amorphous Oxide: AHigh-Capacity Lithium-Ion-Storage Material [J]. Science,1997,276(5317):1395-1397.
    [33] Y. Yu, L. Gu, C. B. Zhu, P. A. van Aken, J. Maier. Tin Nanoparticles Encapsulated in PorousMultichannel Carbon Microtubes: Preparation by Single-Nozzle Electrospinning andApplication as Anode Material for High-Performance Li-Based Batteries [J]. J. Am. Chem.Soc.,2009,131(44):15984-+.
    [34]仇卫华,张刚.锂离子电池负极材料—树脂包覆石墨的性能[J].电源技术,1999,23(1):7-9.
    [35]杨瑞枝,徐仲榆.树脂炭包覆石墨作为锂离子电池负电极的研究[J].无机材料学报,2000,15(4):711-716.
    [36] C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn. Li-alloy based anode materials for Li secondarybatteries [J]. Chem. Soc. Rev.,2010,39(8):
    [37] H. Kim, B. Han, J. Choo, J. Cho. Three-Dimensional Porous Silicon Particles for Use inHigh-Performance Lithium Secondary Batteries [J]. Angew. Chem., Int. Ed.,2008,47(52):10151-10154.
    [38] H. Z. X. H. C. Jiang, C. Wan. Recent Advance of Tin-Based Alloy Anodes for Lithium IonBatteries [J]. Progress In Chemistry,2006,18(12):1710-1719.
    [39] J. Wolfenstine, S. Campos, D. Foster, J. Read, W. Behl. Nano-scale Cu6Sn5anodes [J]. J.Power Sources2002,109(1):230-233.
    [40] H. T. Chung, S. K. Jang, H. W. Ryu, K. B. Shim. Effects of nano-carbon webs on theelectrochemical properties in LiFePO4C composite [J]. Solid State Commun.,2004,131(8):549-554.
    [41]艾新平,杨汉西.高比能电池新材料与安全性新技术研究进展[J].电化学,2010,3(16):239-243.
    [42]艾新平,杨汉西,曹余良,查全性.锂离子电池的过充安全保护技术研究[J].合成化学,2007,15(B11):92-92.
    [43]朱文龙,黄万抚.国内外锂矿物资源概况及其选矿工艺综述[J].现代矿业,2010,7(1-4.
    [44]邓菲菲.锂提取方法的研究进展[J].沈阳工程学院学报:自然科学版,2010,3(285-288.
    [45] J.-M. Tarascon. Is lithium the new gold?[J]. Nature Chem.,2010,2(6):510-510.
    [46]李建国,焦斌,陈国初.钠硫电池及其应用[J].上海电机学院学报,2011,03):146-151.
    [47] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, et al. Na-ionbatteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy Environ. Sci.,2012,5(3):5884-5901.
    [48] L. Viciu, J. W. G. Bos, H. W. Zandbergen, Q. Huang, M. L. Foo, et al. Crystal structure andelementary properties of NaxCoO2(x=0.32,0.51,0.6,0.75, and0.92) in the three-layerNaCoO2family [J]. Phys. Rev. B2006,73(17):174104.
    [49] C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller. Electrochemical intercalation ofsodium in NaxCoO2bronzes [J]. Solid State Ion.,1981,3–4(0):165-169.
    [50] Y. Ma, M. M. Doeff, S. J. Visco, L. C. De Jonghe. Rechargeable Na∕NaCoO and NaPb∕NaCoO Polymer Electrolyte Cells [J]. J. Electrochem. Soc.,1993,140(2726.
    [51] R. Berthelot, D. Carlier, C. Delmas. Electrochemical investigation of the P2–NaxCoO2phasediagram [J]. Nat. Mater.,2011,10(1):74-80.
    [52] X. Ma, H. Chen, G. Ceder. Electrochemical Properties of Monoclinic NaMnO2[J]. J.Electrochem. Soc.,2011,158(12): A1307-A1312.
    [53] A. Caballero, L. Hernan, J. Morales, L. Sanchez, J. Santos Pena, et al. Synthesis andcharacterization of high-temperature hexagonal P2-Na0.6MnO2and its electrochemicalbehaviour as cathode in sodium cells [J]. J. Mater. Chem.,2002,12(4):1142-1147.
    [54] M. M. Doeff, T. J. Richardson, J. Hollingsworth, C. W. Yuan, M. Gonzales. Synthesis andcharacterization of a copper-substituted manganese oxide with the Na0.44MnO2structure [J].J. Power Sources2002,112(1):294-297.
    [55] M. M. Doeff, M. Y. Peng, Y. Ma, L. C. D. Jonghe. Orthorhombic NaxMnO2as a CathodeMaterial for Secondary Sodium and Lithium Polymer Batteries [J]. J. Electrochem. Soc.,1994,141(11): L145-L147.
    [56] F. Sauvage, L. Laffont, J. M. Tarascon, E. Baudrin. Study of the insertion/deinsertionmechanism of sodium into Na0.44MnO2[J]. Inorg. Chem.,2007,46(8):3289-3294.
    [57] Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, et al. Reversible Sodium Ion Insertion in SingleCrystalline Manganese Oxide Nanowires with Long Cycle Life [J]. Adv. Mater.,2011,23(28):3155-3160.
    [58] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, et al. Electrochemical NaInsertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application toNa-Ion Batteries [J]. Adv. Funct. Mater.,2011,21(20):3859-3867.
    [59] D. Kim, S.-H. Kang, M. Slater, S. Rood, J. T. Vaughey, et al. Enabling Sodium BatteriesUsing Lithium-Substituted Sodium Layered Transition Metal Oxide Cathodes [J]. Adv.Energy Mater.,2011,1(3):333-336.
    [60] D. Kim, E. Lee, M. Slater, W. Lu, S. Rood, et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2cathodes forNa-ion battery application [J]. Electrochem. Commun.,2012,18(0):66-69.
    [61] H. Liu, H. Zhou, L. Chen, Z. Tang, W. Yang. Electrochemical insertion/deinsertion of sodiumon NaV6O15nanorods as cathode material of rechargeable sodium-based batteries [J]. J.Power Sources2011,196(2):814-819.
    [62] S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. Zuo, M. Balasubramanian, et al.Nanostructured Bilayered Vanadium Oxide Electrodes for Rechargeable Sodium-IonBatteries [J]. ACS Nano,2011,6(1):530-538.
    [63] M. Nishijima, I. D. Gocheva, S. Okada, T. Doi, J.-i. Yamaki, et al. Cathode properties ofmetal trifluorides in Li and Na secondary batteries [J]. J. Power Sources2009,190(2):558-562.
    [64] I. D. Gocheva, M. Nishijima, T. Doi, S. Okada, J.-i. Yamaki, et al. Mechanochemicalsynthesis of NaMF3(M=Fe, Mn, Ni) and their electrochemical properties as positiveelectrode materials for sodium batteries [J]. J. Power Sources2009,187(1):247-252.
    [65] Y. Yamada, T. Doi, I. Tanaka, S. Okada, J.-i. Yamaki. Liquid-phase synthesis of highlydispersed NaFeF3particles and their electrochemical properties for sodium-ion batteries [J]. J.Power Sources2011,196(10):4837-4841.
    [66] K. Zaghib, J. Trottier, P. Hovington, F. Brochu, A. Guerfi, et al. Characterization of Na-basedphosphate as electrode materials for electrochemical cells [J]. J. Power Sources2011,196(22):9612-9617.
    [67] K. T. Lee, T. N. Ramesh, F. Nan, G. Botton, L. F. Nazar. Topochemical Synthesis of SodiumMetal Phosphate Olivines for Sodium-Ion Batteries [J]. Chem. Mater.,2011,23(16):3593-3600.
    [68] Z. Jian, L. Zhao, H. Pan, Y.-S. Hu, H. Li, et al. Carbon coated Na3V2(PO4)3as novel electrodematerial for sodium ion batteries [J]. Electrochem. Commun.,2012,14(1):86-89.
    [69] B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, L. F. Nazar. A multifunctional3.5V iron-based phosphate cathode for rechargeable batteries [J]. Nature Mater.,2007,6(10):749-753.
    [70] N. Recham, J.-N. Chotard, L. Dupont, K. Djellab, M. Armand, et al. Ionothermal Synthesis ofSodium-Based Fluorophosphate Cathode Materials [J]. J. Electrochem. Soc.,2009,156(12):A993-A999.
    [71] N. Recham, J. N. Chotard, L. Dupont, K. Djellab, M. Armand, et al. Ionothermal Synthesis ofSodium-Based Fluorophosphate Cathode Materials [J]. J. Electrochem. Soc.,2009,156(12):A993-A999.
    [72] B. L. Ellis, W. R. M. Makahnouk, W. N. Rowan-Weetaluktuk, D. H. Ryan, L. F. Nazar.Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A=Na, Li;M=Fe, Mn, Co, Ni)[J]. Chem. Mater.,2009,22(3):1059-1070.
    [73] H. Zhuo, X. Wang, A. Tang, Z. Liu, S. Gamboa, et al. The preparation of NaV1-xCrxPO4Fcathode materials for sodium-ion battery [J]. J. Power Sources2006,160(1):698-703.
    [74] Y. Katayama, M. Yukumoto, T. Miura. Electrochemical intercalation of lithium into graphitein room-temperature molten salt containing ethylene carbonate [J]. Electrochem. Solid-StateLett.,2003,6(A96.
    [75] R. Alcantara, F. J. F. Madrigal, P. Lavela, J. L. Tirado, J. M. J. Mateos, et al. Characterisationof mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells[J]. Carbon,2000,38(7):1031-1041.
    [76] R. Alcántara, J. M. Jiménez-Mateos, P. Lavela, J. L. Tirado. Carbon black: a promisingelectrode material for sodium-ion batteries [J]. Electrochem. Commun.,2001,3(11):639-642.
    [77] P. Thomas, D. Billaud. Effect of mechanical grinding of pitch-based carbon fibers andgraphite on their electrochemical sodium insertion properties [J]. Electrochim. Acta2000,46(1):39-47.
    [78] D. A. Stevens, J. R. Dahn. High Capacity Anode Materials for Rechargeable Sodium-IonBatteries [J]. J. Electrochem. Soc.,2000,147(4):1271-1273.
    [79] R. C. Asher, S. A. Wilson. Lamellar Compound of Sodium with Graphite [J]. Nature,1958,181(4606):409-410.
    [80]P. Ge, M. Fouletier. Electrochemical intercalation of sodium in graphite [J]. Solid State Ionics,1988,28(6):1172-1175.
    [81] P. Thomas, J. Ghanbaja, D. Billaud. Electrochemical insertion of sodium in pitch-basedcarbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte [J].Electrochim. Acta1999,45(3):423-430.
    [82] R. Alcantara, P. Lavela, G. F. Ortiz, J. L. Tirado. Carbon microspheres obtained fromresorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].Electrochem. Solid-State Lett.,2005,8(4): A222-A225.
    [83]V. L. Chevrier, G. Ceder. Challenges for Na-ion Negative Electrodes [J]. J. Electrochem. Soc.,2011,158(9): A1011-A1014.
    [84] T. R. Jow, L. W. Shacklette, M. Maxfield, D. Vernick. The Role of Conductive Polymers inAlkali-Metal Secondary Electrodes [J]. J. Electrochem. Soc.,1987,134(7):1730-1733.
    [85]肖彩英.新型锂离子电池负极材料的研究[D];天津大学,2011.
    [86] L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, et al. High capacity, reversible alloyingreactions in SnSb/C nanocomopsites for Na-ion battery applications [J]. Chem. Commun.,2012,
    [87] R. Alcántara, M. Jaraba, P. Lavela, J. L. Tirado. NiCo2O4Spinel: First Report on a TransitionMetal Oxide for the Negative Electrode of Sodium-Ion Batteries [J]. Chem. Mater.,2002,14(7):2847-2848.
    [88] P. Senguttuvan, G. l. Rousse, V. Seznec, J.-M. Tarascon, M. R. Palaci n. Na2Ti3O7: LowestVoltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries [J]. Chem. Mater.,2011,23(18):4109-4111.
    [1]马礼敦.近代X射线多晶体衍射:实验技术与数据分析[M].化学工业出版社,2004.
    [2]曾毅,吴伟,高建华.扫描电镜和电子探针的基础及应用[M].上海科学技术出版社,2009.
    [3]阿伦J,巴德,拉里R,福克纳.电化学方法原理和应用[M].北京:化学工业出版社.2005.
    [1] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, et al. Na-ionbatteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy Environ. Sci.,2012,5(3):5884-5901.
    [2] S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, et al. Voltage, stability and diffusionbarrier differences between sodium-ion and lithium-ion intercalation materials [J]. EnergyEnviron. Sci.,2011,4(9):3680-3688.
    [3] R. Berthelot, D. Carlier, C. Delmas. Electrochemical investigation of the P2–NaxCoO2phasediagram [J]. Nat. Mater.,2011,10(1):74-80.
    [4] Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, et al. Reversible Sodium Ion Insertion in SingleCrystalline Manganese Oxide Nanowires with Long Cycle Life [J]. Adv. Mater.,2011,23(28):3155-3160.
    [5] S. Komaba, T. Nakayama, A. Ogata, T. Shimizu, C. Takei, et al. Electrochemically ReversibleSodium Intercalation of Layered NaNi0.5Mn0.5O2and NaCrO2[J]. ECS Transactions,2009,16(42):43-55.
    [6] Z. Jian, L. Zhao, H. Pan, Y.-S. Hu, H. Li, et al. Carbon coated Na3V2(PO4)3as novel electrodematerial for sodium ion batteries [J]. Electrochem. Commun.,2012,14(1):86-89.
    [7] T. Jiang, G. Chen, A. Li, C. Wang, Y. Wei. Sol-gel preparation and electrochemical propertiesof Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries [J]. J. Alloy.Compd.,2009,478(1-2):604-607.
    [8] N. Recham, J. N. Chotard, L. Dupont, K. Djellab, M. Armand, et al. Ionothermal Synthesis ofSodium-Based Fluorophosphate Cathode Materials [J]. J. Electrochem. Soc.,2009,156(12):A993-A999.
    [9] C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller. Electrochemical intercalation ofsodium in NaxCoO2bronzes [J]. Solid State Ion.,1981,3–4(0):165-169.
    [10] Y. Ma, M. M. Doeff, S. J. Visco, L. C. De Jonghe. Rechargeable Na/NaCoO andNaPb/NaCoO Polymer Electrolyte Cells [J]. J. Electrochem. Soc.,1993,140(10):2726-2733.
    [11] L. Viciu, J. W. G. Bos, H. W. Zandbergen, Q. Huang, M. L. Foo, et al. Crystal structure andelementary properties of NaxCoO2(x=0.32,0.51,0.6,0.75, and0.92) in the three-layerNaCoO2family [J]. Phys. Rev. B2006,73(17):174104.
    [12] A. Bhide, K. Hariharan. Physicochemical properties of NaxCoO2as a cathode for solid statesodium battery [J]. Solid State Ion.,2011,192(1):360-363.
    [13] Y. Kim, J. B. Goodenough. Lithium Intercalation into ATi2(PS4)3[J]. Electrochem.Commun.,2008,10(4):497-501.
    [14] N. Recham, J. N. Chotard, L. Dupont, C. Delacourt, W. Walker, et al. A3.6[thinsp]Vlithium-based fluorosulphate insertion positive electrode for lithium-ion batteries [J]. Nat.Mater.,2010,9(1):68-74.
    [15] Y. Lu, J. B. Goodenough, Y. Kim. Aqueous Cathode for Next-Generation Alkali-Ion Batteries[J]. J. Am. Chem. Soc.,2011,133(15):5756-5759.
    [16] M. Jayalakshmi, F. Scholz. Performance characteristics of zinc hexacyanoferrate/Prussianblue and copper hexacyanoferrate/Prussian blue solid state secondary cells [J]. J. PowerSources2000,91(2):217-223.
    [17]曹晓卫,王荣,王桂华,章宗穰.普鲁士蓝膜修饰铂电极的现场拉曼光谱电化学表征(英文)[J].电化学,2001,01):71-73.
    [18] N. Imanishi, T. Morikawa, J. Kondo, R. Yamane, Y. Takeda, et al. Lithium intercalationbehavior of iron cyanometallates [J]. J. Power Sources1999,81-82(0):530-534.
    [19] A. Eftekhari. Potassium secondary cell based on Prussian blue cathode [J]. J. Power Sources2004,126(1-2):221-228.
    [20] J. Qian, M. Zhou, Y. Cao, X. Ai, H. Yang. Template-Free Hydrothermal Synthesis ofNanoembossed Mesoporous LiFePO4Microspheres for High-Performance Lithium-IonBatteries [J]. J. Phys. Chem. C,2010,114(8):3477-3482.
    [21] M. G. Kim, J. Cho. Reversible and High-Capacity Nanostructured Electrode Materials forLi-Ion Batteries [J]. Adv. Funct. Mater.,2009,19(10):1497-1514.
    [22]钱江锋,周敏,曹余良,杨汉西. NaxMyFe(CN)6(M=Fe,Co,Ni):一类新颖的钠离子电池正极材料[J].电化学,2012,18(2):108-112.
    [23] N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O. Yamamoto, et al. Lithium intercalationbehavior into iron cyanide complex as positive electrode of lithium secondary battery [J]. J.Power Sources1999,79(2):215-219.
    [1]朱嫦娥.聚吡咯(聚苯胺)基复合材料的制备及其作锂二次电池正极的性能研究[D];河北工业大学,2005.
    [2]邓凌峰.锂二次电池聚合物正极材料的合成与性能研究[D];中南大学,2004.
    [3]李金霞.新型有机二硫聚合物作锂二次电池阴极材料的基础研究[D];武汉大学,2004.
    [4]景遐斌,王利祥,王献红,耿延候,王佛松.导电聚苯胺的合成、结构、性能和应用[J].高分子学报,2005,5(5)655-663.
    [5]武克忠,王庆飞,马子川,段晓伟,李彩宾, et al.循环伏安法电化学合成聚苯胺[J].绍兴文理学院学报,2010,30(8):24-27.
    [6] D. Carlier, J. H. Cheng, R. Berthelot, M. Guignard, M. Yoncheva, et al. TheP2-Na2/3Co2/3Mn1/3O2phase: structure, physical properties and electrochemical behavioras positive electrode in sodium battery [J]. Dalton Trans.,2011,40(36):9306-9312.
    [7] Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, et al. Reversible Sodium Ion Insertion in SingleCrystalline Manganese Oxide Nanowires with Long Cycle Life [J]. Adv. Mater.,2011,23(28):3155-3160.
    [8] G. Kim, F. Basarir, T. H. Yoon. Synthesis and characterization of poly (triphenylamine) s withelectron-withdrawing trifluoromethyl side groups for emissive and hole-transporting layer [J].Synth. Met.,2011,
    [9] A. Petr, C. Kvarnstr m, L. Dunsch, A. Ivaska. Electrochemical synthesis of electroactivepolytriphenylamine [J]. Synth. Met.,2000,108(3):245-247.
    [10]佘秋洁,魏志凯,郑明森,董全峰.聚三苯胺/活性炭电极的电化学性能研究[J].电化学,2011,01):53-56.
    [11] J. K. Feng, Y. L. Cao, X. P. Ai, H. X. Yang. Polytriphenylamine: A high power and highcapacity cathode material for rechargeable lithium batteries [J]. J. Power Sources,2008,177(1):199-204.
    [1] A. K. Shukla, T. P. Kumar. Materials for next-generation lithium batteries [J]. Curr. Sci.,2008,94(3):314-331.
    [2] N. A. Kaskhedikar, J. Maier. Lithium Storage in Carbon Nanostructures [J]. Adv. Mater.,2009,21(25-26):2664-2680.
    [3] Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, et al. Electrochemical EnergyStorage for Green Grid [J]. Chem. Rev.,2011,111(5):3577-3613.
    [4] V. L. Chevrier, G. Ceder. Challenges for Na-ion Negative Electrodes [J]. J. Electrochem. Soc.,2011,158(9): A1011-A1014.
    [5] S. Wenzel, T. Hara, J. Janek, P. Adelhelm. Room-temperature sodium-ion batteries:Improving the rate capability of carbon anode materials by templating strategies [J]. EnergyEnviron. Sci.,2011,4(9):3342-3345.
    [6] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, et al. Electrochemical NaInsertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application toNa-Ion Batteries [J]. Adv. Funct. Mater.,2011,21(20):3859-3867.
    [7]孙学亮,秦秀娟,卜立敏,吴伟.锂离子电池碳负极材料研究进展[J].有色金属,2011,02):147-151.
    [8] S. Pruvost, C. Hérold, A. Hérold, P. Lagrange. Co-intercalation into graphite of lithium andsodium with an alkaline earth metal [J]. Carbon,2004,42(8-9):1825-1831.
    [9] R. C. Asher, S. A. Wilson. Lamellar Compound of Sodium with Graphite [J]. Nature,1958,181(4606):409-410.
    [10] R. Alcantara, F. J. F. Madrigal, P. Lavela, J. L. Tirado, J. M. J. Mateos, et al. Characterisationof mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells[J]. Carbon,2000,38(7):1031-1041.
    [11] R. Alcántara, J. M. Jiménez-Mateos, P. Lavela, J. L. Tirado. Carbon black: a promisingelectrode material for sodium-ion batteries [J]. Electrochem. Commun.,2001,3(11):639-642.
    [12] T. Yamamoto, T. Sugimoto, T. Suzuki, S. R. Mukai, H. Tamon. Preparation andcharacterization of carbon cryogel microspheres [J]. Carbon,2002,40(8):1345-1351.
    [13] R. Alcantara, P. Lavela, G. F. Ortiz, J. L. Tirado. Carbon microspheres obtained fromresorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].Electrochem. Solid-State Lett.,2005,8(4): A222-A225.
    [14] O. Tanaike, M. Inagaki. Sodium intercalation into various carbon hosts in2-methyltetrahydrofuran solution [J]. Synth. Met.,1997,90(1):69-72.
    [15] O. Tanaike, M. Inagaki. Effect of ether coordination for sodium intercalation into poly(vinylchloride) cokes with different graphitization degree [J]. Synth. Met.,1998,96(2):109-116.
    [16]卓海涛.钠离子电池正极材料NaVPO4F及其掺杂化合物的研究[D];湘潭大学,2006.
    [17] L. Joncourt, M. Mermoux, P. H. Touzain, L. Bonnetain, D. Dumas, et al. Sodium reactivitywith carbons [J]. Journal of Physics and Chemistry of Solids,1996,57(6-8):877-882.
    [18] D. A. Stevens, J. R. Dahn. High Capacity Anode Materials for Rechargeable Sodium-IonBatteries [J]. J. Electrochem. Soc.,2000,147(4):1271-1273.
    [19]杨瑞枝,徐仲榆.树脂炭包覆石墨作为锂离子电池负电极的研究[J].无机材料学报,2000,15(4):711-716.
    [20] Y. Wu, E. Rahm, R. Holze. Carbon anode materials for lithium ion batteries [J]. J. PowerSources2003,114(2):228-236.
    [21] F. Zhang, K.-X. Wang, G.-D. Li, J.-S. Chen. Hierarchical porous carbon derived from ricestraw for lithium ion batteries with high-rate performance [J]. Electrochem. Commun.,2009,11(1):130-133.
    [1] M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim, et al. Amorphous Carbon-Coated Tin AnodeMaterial for Lithium Secondary Battery [J]. Chem. Mater.,2005,17(8):1926-1929.
    [2] W. Wang, P. N. Kumta. Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures:Reversible High-Capacity Lithium-Ion Anodes [J]. ACS Nano,2010,4(4):2233-2241.
    [3] U. G. Nwokeke, R. Alcantara, J. L. Tirado, R. Stoyanova, M. Yoncheva, et al. ElectronParamagnetic Resonance, X-ray Diffraction, Mo ssbauer Spectroscopy, and ElectrochemicalStudies on Nanocrystalline FeSn2Obtained by Reduction of Salts in Tetraethylene Glycol [J].Chem. Mater.,2010,22(7):2268-2275.
    [4] C.-M. Park, H.-J. Sohn. Quasi-Intercalation and Facile Amorphization in Layered ZnSb forLi-Ion Batteries [J]. Adv. Mater.,2010,22(1):47-52.
    [5]肖彩英.新型锂离子电池负极材料的研究[D];天津大学,2011.
    [6] Z. Chen, Y. Cao, J. Qian, X. Ai, H. Yang. Facile synthesis and stable lithium storageperformances of Sn-sandwiched nanoparticles as a high capacity anode material forrechargeable Li batteries [J]. J. Mater. Chem.,2010,20(34):7266-7271.
    [7] V. L. Chevrier, G. Ceder. Challenges for Na-ion Negative Electrodes [J]. J. Electrochem. Soc.,2011,158(9): A1011-A1014.
    [8] G. Derrien, J. Hassoun, S. Panero, B. Scrosati. Nanostructured Sn-C Composite as anAdvanced Anode Material in High-Performance Lithium-Ion Batteries [J]. Adv. Mater.,2007,19(17):2336-2340.
    [9] S. Yoon, A. Manthiram. Sb-MOx-C (M=Al, Ti, or Mo) Nanocomposite Anodes forLithium-Ion Batteries [J]. Chem. Mater.,2009,21(16):3898-3904.
    [10] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka. Tin-Based Amorphous Oxide: AHigh-Capacity Lithium-Ion-Storage Material [J]. Science,1997,276(5317):1395-1397.
    [11] C. M. Park, H. J. Sohn. Black Phosphorus and its Composite for Lithium RechargeableBatteries [J]. Adv. Mater.,2007,19(18):2465-2468.
    [12] D. C. S. Souza, V. Pralong, A. J. Jacobson, L. F. Nazar. A Reversible Solid-State CrystallineTransformation in a Metal Phosphide Induced by Redox Chemistry [J]. Science,2002,296(5575):2012-2015.
    [13] Y. Lu, J.-p. Tu, Q.-q. Xiong, Y.-q. Qiao, X.-l. Wang, et al. Synthesis of dinickel phosphide(Ni2P) for fast lithium-ion transportation: a new class of nanowires with exceptionallyimproved electrochemical performance as a negative electrode [J]. RSC Advances,2012,2:2430-3436.
    [14] C.-M. Park, H.-J. Sohn. Tetragonal Zinc Diphosphide and Its Nanocomposite as an Anode forLithium Secondary Batteries [J]. Chem. Mater.,2008,20(20):6319-6324.
    [15] W. C. Zhou, H. X. Yang, S. Y. Shao, X. P. Ai, Y. L. Cao. Superior high rate capability of tinphosphide used as high capacity anode for aqueous primary batteries [J]. Electrochem.Commun.,2006,8(1):55-59.
    [16] N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, et al. Effect of fluoroethylene carbonateadditive on interfacial properties of silicon thin-film electrode [J]. J. Power Sources,2006,161(2):1254-1259.
    [17] S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, A. Ito, et al. Fluorinated EthyleneCarbonate as Electrolyte Additive for Rechargeable Na Batteries [J]. ACS Appl. Mater.Interfaces,2011,3(11):4165-4168.
    [18] R. McMillan, H. Slegr, Z. X. Shu, W. Wang. Fluoroethylene carbonate electrolyte and its usein lithium ion batteries with graphite anodes [J]. J. Power Sources,1999,81–82(0):20-26.
    [19] H. Li, X. Huang, L. Chen. Electrochemical impedance spectroscopy study of SnO andnano-SnO anodes in lithium rechargeable batteries [J]. J. Power Sources,1999,81–82(0):340-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700