用户名: 密码: 验证码:
高价碘催化的环醚化反应研究:二苯并螺环缩酮的构筑新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二苯并螺环缩酮骨架广泛存在于具有良好生物活性的天然产物当中。作为天然产物主要的药效基团和核心骨架,它的构筑成为这一系列天然产物全合成的重要研究内容。本论文系统地研究了高价碘化合物催化的两种环醚化反应,以碘离子为高价碘源,发展了一种新的高价碘制备方法和两种新的高价碘催化的环醚化反应,并基于此发现了两种制备螺环缩酮的新方法:一种四步串联和一种直接的氧化环醚化方法。主要包括以下三章内容:
     第一章有机高价碘化合物的研究进展以及氟离子参与的氧化反应(综述)
     本章详细介绍了有机高价碘试剂的研究进展,其中包括有机高价碘化合物的制备,高价碘试剂参与的各种反应及它们催化反应常见的机理。根据碘源的不同和催化的反应类型的不同本章将重点讨论下列四类反应:碘苯催化酚类衍生物的螺环化反应,芳基碘催化的羰基类化合物的α-氧化反应,离子碘(四丁基碘化铵)催化的羰基类化合物的α-氧化反应,碘(Ⅲ)催化的其他反应,并且例举了高价碘催化反应在天然产物合成中的应用。
     此外,本章还介绍了氟离子参与的各种氧化反应,包括:氟离子参与的活化C-Si键氧化反应以及氟离子参与的其他氧化反应。
     第二章氧气氛下光照反应体系的α-烷氧化反应构筑[5,5]螺环缩酮骨架的研究
     近年来,高价碘试剂催化的反应由于其高效、简便等原因一直备受关注,尤其是羰基化合物α-位的取代反应表现出了很高的研究价值。多步连续反应以及催化剂接力反应也是近些年人们研究高效反应的热点。基于此,我们设计了一种由Hetero-Diels-Alder反应,硅胶参与的胺水解,硅胶参与的脱羰基反应以及原位生成的高价碘催化的羰基α-烷氧化反应构成的四步催化剂接力连续反应构筑二苯并[5,5]螺环缩酮骨架的新方法,并通过实验证实了该方法具有较高的效率,同时还提出了新反应的可能机理。实验证实这里的高价碘催化的环醚化反应中,光照、氧气以及四丁基碘化铵对关环反应是必须的,四丁基氟化铵对这个反应来说是一个很好的辅助剂,该反应是高价碘试剂催化反应的一个新的应用。我们推测碘负离子在光照和氧气存在下被氧化成碘(Ⅰ)或者碘(Ⅲ),然后催化了环醚化反应。这是一种新的高价碘原位制备方法。迄今为止,这是首次关于光照氧气氛下生成高价碘催化的羰基化合物的分子内α-烷氧化构筑二苯并螺环缩酮骨架的报导。实验还对底物的电子效应进行了研究。同时这也是氟离子在催化反应中的新应用。这个四步的串联反应中还包含了一个新型的催化剂接力反应:第一步HDA反应的引发剂TBAF、水解反应的硅胶和环醚化反应的四丁基碘化铵连续的促进反应进行,特别的是,最后一步环醚化反应的催化剂还是第一步HDA反应的副产物。
     第三章过氧酸氧化高价碘催化反应构筑二苯并螺环缩酮骨架的研究
     本章重点研究了由mCPBA氧化四丁基碘化铵原位生成高价碘催化羰基化合物α-环醚化构筑二苯并螺环缩酮骨架的方法。通过一系列实验我们发现了一个新的羰基类化合物α-环醚化构筑二苯并螺环缩酮的方法就是:2.0eq.的四丁基氟化铵作为添加剂,15mol%的四丁基碘化铵作为催化剂,2.0eq.的mCPBA做为氧化剂,在室温下以四氢呋喃作为溶剂与化合物3-1反应5分钟。该方法能够以很短的时间,很高的效率构筑不同环系的二苯并螺环缩酮骨架,拓展了构筑二苯并螺环缩酮骨架的覆盖面。我们同时还提出了可能的关环机理。实验证实了当取代基R3为拉电子取代基时,关环反应更容易进行,同时还通过引入不同的氟离子源证实了氟离子是在这个反应中活化酚羟基进行SN反应所必需的试剂。
     上述工作为立体选择性的合成手性二苯并螺环缩酮骨架打下了基础,为rubromycin等天然产物的高效的手性合成打下了基础。
Bisbenzannelated spiroketals exist widely in biologically significant natural products as important pharmacophores and is the key challenge for the total synthesis of natural compounds, so it is of major importance to development new efficient methods for constructing this unit. Aiming at exploring the new construction of spiroketals, these thesis developed two new clycoetherification conditions involveing a new method for the formation of hypervalent iodine reagent, based on which two new methods were developed for the construction of spiroketals:one through a four-step reaction cascade and the other through an intramolecular a-oxyphenylation of carbonyl compounds. It consists of three parts as follows:
     Chapter1. The progress on organohypervalent iodine and fluoride mediated oxidative reaction (review).
     This chapter introduced progress on the research of organohypervalent iodine reagents, including the preparation of organohypervalent iodine compounds, hypervalent iodine catalyzed reactions, and the main catalytic mechanism. According to the iodine sources and the reactions, four kind of reactions were discussed mainly:the reaction of iodobenzene catalyzed spirocyclizations of phenols, iodoarenes catalyzed a-oxygenations of carbonyl compounds, ionic (tetrabutylammonium iodide) catalyzed a-oxygenations of carbonyl compounds, iodine (Ⅲ)-catalyzed other reactions, and the applications of high-priced iodine catalyzed reactions in the synthesis of natural products. In addition, the chapter also introduces the fluoride ions mediated the oxidative reaction, including:the activation of C-Si bond oxidative reaction of fluoride ion and other reactions.
     Chapter2. New method for the construction of spiroketals through a four-step reaction cascade and the involved new hypoiodite catalyzed cycloetherification.
     Organohypervalent iodine was found high potential catalytic application value, especially in the α-functionalization of carbonyl compounds. Multi-steps cascade reaction and catalytic relay reaction have aroused wide and continue interest for their high efficiency and conviniency. For these reasons, a four-step cascade reaction was desighed to construct the bisbenzannelated spiroketal core and got good results. This cascade includes a hetero-Diels-Alder reaction, a silica gel-mediated hydrolyzation of amino acetal, a silica gel-mediated decarbonylationof acetal, and in situ generated hypoiodite-catalyzed cycloetherification of carbonyl compounds. All of these experiments showed that irradiation, TBAI, and oxygen are obligatory, TBAF is a good auxiliary reagent for this transformation. A mechanism was hypotheisized where TBAI was converted to hypoiodite or hyperiodite under areoic irradiation and then catalyzed the cycloetherification. This is a new catalytic application of hypoiodite reagents and a new preparation method of hypoiodite. It is also the first case using hypoiodite in the construction of spiroketals. In this cascade, silica gel and TBAI acted as catalysts in succession, forming acatalytic relay, especially the TBAI for the cycloetherification generated from the first cycle HDA.Fluoride was found necessary for the high efficient transformation, which is an important development of the application of fluoride ion.
     Chapter3. New method for the constructing spirketals catalyzed by hypoiodite generated in-situ from oxidation of iodide by peroxide acids.
     In this chapter, a new hypoiodite-catalyzed cycloetherification using mCPBA as oxidant, TBAI as iodite source were developed to construct the bisbenzannelated spiroketal cores. So a new modified condition were found to be as follows:2.0eq. of TBAF as additive,15mol%of TBAI as catalyst source, and2.0eq. of mCPBA as oxidant were stirred at room temperature with3-1in THF as solvent in5minutes.This method provides a quick and efficient route to construct the bisbenzannelated cores. The possible mechanism was proposed. The electron effect of substituents in substrates was investigated and the fluoride was found to be obligatory for this cycloetherification as an activator.
     The above work also showed high potency in the stereoselective synthesis of enantiomeric spiroketals, the main challenge for the synthesis of natural products like rubromycins.
引文
1 (a) M. Hudlicky, Oxidations in Organic Chemistry, ACS Monograph Series 186, American Chemical Society, Washington, DC,1990; (b) Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford,1st edn,1991, vol.7; (c) R. A. Sheldon, in Catalytic Oxidation, ed. R. A. Sheldon andR. A. van Santen, World Scientific, Singapore,1995, p.239; (d) J. H. Clark and D. J. Macquarrie, Org. Process Res. Dev.,1997,1,149; (e) W. F. Hoelderich and F. Kollmer, Pure Appl. Chem.,2000,72,1273.
    2 (a) T. J. Collins, S. W. Gordon-Wylie,M. J. Bartos, C. P. Horwitz, C. G. Woomer, S. A. Williams, R. E. Patterson, L. D. Vuocolo, S. A. Paterno, S. A. Strazisar, D. K. Peraino and C. A. Dudash, Green Chem.,1998,46; (b) C. L. Hill, Nature,1999,401,436; (c) W. Adam, C. R. Saha-Moller and P. A. Ganeshpure, Chem. Rev.,2001,101,3499; (d) L. Guidoni, K. Spiegel, M. Zumstein and U. Roethlisberger, Angew. Chem., Int. Ed.,2004,43,3286; (e) A. Chanda, A. D. Ryabov, S. Mondal, L. Alexandrova, A. Ghosh, Y. Hangun-Balkir, C. P. Horwitz and T. J. Collins, Chem.-Eur. J.,2006,12,9336.
    3 (a) B. M. Trost, Angew. Chem., Int. Ed,1995,34,259; (b) C. W. Jones, Applications of Hydrogen Peroxide and Derivatives, Royal Society of Chemistry, Cambridge,1999; (c) J. H. Clark, Green Chem.,1999,1; (d) D. Hancu, J. Green and E. J. Beckman, Acc. Chem. Res., 2002,35,757; (e) R. Noyori, M. Aoki and K. Sato, Chem. Commun.,2003,1977; (f) D. Lenoir, Angew. Chem., Int. Ed.,2006,45,3206; (g) J. Piera and J.-E. Ba" ckvall, Angew. Chem., Int. Ed.,2008,47,3506; (h) R. A. Sheldon, Chem. Commun.,2008,3352.
    4 (a) P. J. Stang and V. V. Zhdankin, Chem. Rev.,1996,96,1123; (b) Y. Kita, T. Takada and H. Tohma, Pure Appl. Chem.,1996,68,627; (c) A. Varvoglis, Hypervalent Iodine in Organic Synthesis, Academic Press, San Diego, CA,1997; (d) A. Varvoglis, Tetrahedron,1997,53, 1179; (e) T. Kitamura and Y. Fujiwara, Org. Prep. Proced. Int.,1997,29,409; (f) A. Kirschning, Eur. J. Org. Chem.,1998,11,2267; (g) M. Ochiai, in Chemistry of Hypervalent Compounds, ed. K. Akiba, Wiley-VCH, New York,1999, ch.12; (h) V. V. Zhdankin and P. J. Stang, Chem. Rev.,2002,102,2523; (i) Hypervalent Iodine Chemistry, ed. T. Wirth, Springer-Verlag, Berlin,2003; (j) H. Tohma and Y. Kita, Adv. Synth. Catal.,2004,346,111; (k) R. M. Moriarty, J. Org. Chem.,2005,70,2893; (l) T.Wirth, Angew. Chem., Int. Ed.,2005,44, 3656; (m)M. Ochiai, Chem. Rec.,2007,7,12.
    5 A review:(a) H. Tohma and Y. Kita, Top. Curr. Chem.,2003,224,209; (b) Y. Tamura, T. Yakura, J. Haruta and Y. Kita, J. Org. Chem.,1987,52,3927; (c) Y. Tamura, T. Yakura, H. Tohma, K. Kikuchi and Y. Kita, Synthesis,1989,126; (d) Y. Kita, T. Yakura, H. Tohma, K. Kikuchi and Y. Tamura, TetrahedronLett.,1989,30,1119; (e) Y. Kita, H. Tohma, M. Inagaki, K. Hatanaka and T. Yakura, J. Am. Chem. Soc.1992,114,2175; (f) Y. Kita, T. Takada, M. Gyoten, H. Tohma, M. H. Zenk and J. Eichhorn, J. Org. Chem.,1996,61,5857; (g) Y. Kita, M. Arisawa, M. Gyoten, M. Nakajima, R. Hamada, H. Tohma and T. Takada, J. Org. Chem.,1998, 63,6625; (h) Y. Kita, M. Egi and H. Tohma, Chem. Commun.,1999,143.
    6 (a) Y. Kita, H. Tohma, M. Inagaki, K. Hatanaka and T. Yakura, Tetrahedron Lett.,1991,32, 4321; (b) Y. Kita, H. Tohma, K. Hatanaka, T. Takada, S. Fujita, S. Mitoh, H. Sakurai and S. Oka, J. Am. Chem. Soc.,1994,116.3684; (c) Y. Kita, M. Gyoten, M. Ohtsubo, H. Tohma and T. Takada, Chem. Commnn.,1996,1481; (d) Y. Kita, M Egi, A. Okajima, M. Ohtsubo, T. Takada and H. Tohma, Chem. Commun.,1996,1491; (e) Y. Kita, M. Egi, M. Ohtsubo, T. Saiki, T. Takada and H. Tohma, Chem. Commun.,1996,2225; (f) M. Arisawa, S. Utsumi, M. Nakajima, N. G. Ramesh, H. Tohma and Y. Kita, Chem. Commun.,1999,469; (g) H. Tohma, H. Morioka, S. Takizawa, M. Arisawa and Y. Kita, Tetrahedron,2001,57,345; (h) M. Arisawa, N. G. Ramesh, M. Nakajima, H. Tohma and Y. Kita, J. Org. Chem.,2001,66,59; (i) H. Hamamoto, Y. Shiozaki, H. Nambu, K. Hata, H. Tohma and Y. Kita, Chem.-Eur. J.,2004, 10,4977; (j) K. Hata, H. Hamamoto, Y. Shiozaki and Y. Kita, Chem. Commun.,2005,2465.
    7 (a) A. Pelter and S. Elgendy, Tetrahedron Lett.,1988,29,677; (b) R. S.Ward, A. Pelter and A. Abd-El-Ghani, Tetrahedron,1996,52,1303; (c) L. Ku?rti, P. Herczegh, J. Visy, M. Simonyi, S. Antus and A. Pelter, J. Chem. Soc., Perkin Trans.1,1999,379; (d) A. Pelter and R. S. Ward, Tetrahedron,2001,57,273.
    8 (a) N. Lewis and P. Wallbank, Synthesis,1987,1103; (b) A. Callinan, Y. Chen, G. W. Morrow and J. S. Swenton, Tetrahedron Lett.,1990,31,4551; (c) R. Barret and M. Daudon, Tetrahedron Lett.,1990,31,4871; (d) J. T. Hwang and C. C. Liao, Tetrahedron Lett.,1991,32, 6583; (e) B. D. Gates, P. Dalidowicz, A. Tebben, S. Wang and J. S. Swenton, J. Org. Chem., 1992,57,2135; (f)M. Kacan, D. Kouyuncu and A. McKillop, J. Chem. Soc., Perkin Trans.1, 1993,1771; (g) M. Murakata, K. Yamada and O. Hoshino, J. Chem. Soc., Chem. Commun., 1994,443; (h) N. A. Braun, M. A. Ciufolini, K. Peters and E.-M. Peters, Tetrahedron Lett., 1998,39,4667; (i) S. Quideau, M. A. Looney and L. Pouysegu, J. Org. Chem.,1998,63,9597; (j) S. Quideau, L. Pouysegu, M. Oxoby and M. A. Looney, Tetrahedron,2001,57,319; (k) H. Mizutani, J. Takayama, Y. Soeda and T. Honda, Tetrahedron Lett.,2002,43,2411; (1) M. Ousmer, N. A. Braun, C. Bavoux, M. Perrin and M. A. Ciufolini, J. Am. Chem. Soc.,2001, 123,7534; (m) J. L. Wood, J. K. Graeber and J. T. Njardarson, Tetrahedron.,2003,59,8855; (n) L. H. Mejorado, C. Hoarau and T. R. R. Pettus, Org. Lett.,2004,6,1535; (o) S. Canesi, D. Bouchu and M. A. Ciufolini, Org. Lett.,2005,7,175; (p) H. Shigehisa, J. Takayama and T. Honda, Tetrahedron Lett.,2006,47,7301; (q) M. A. Marsini, Y. Huang, R. W. Van De Water and T. R. R. Pettus, Org. Lett.,2007,9,3229; (r) N. T. Vo, R. D. M. Pace, F. O Hara and M. J. Gaunt, J. Am. Chem. Soc.,2008,130,404; (s) L. Pouysegu, S. Chassaing, D. Dejugnac, A. M. Lamidey, K. Miqueu, J. M. Sotiropoulos and S. Quideau, Angew. Chem., Int. Ed.,2008,47, 3552.
    9 See ref.5a and other reviews:(a) R. M. Moriarty and O. Prakash, Org. React,2001,57,327; (b) M. A. Ciufolini, N. A. Braun, S. Canesi, M. Ousmer, J. Chang and D. Chai, Synthesis, 2007,3759; (c) S. Quideau, L. Pouysegu and D. Deffieux, Synlett,2008,467.
    10 Recent applications in natural product synthesis, for examples:(a) H. Tohma, Y. Harayama, M. Hashizume, M. Iwata, M. Egi and Y. Kita, Angew. Chem., Int. Ed.,2002,41,348; (b) H. Tohma, Y. Harayama, M. Hashizume, M. Iwata, Y. Kiyono, M. Egi and Y. Kita,J. Am. Chem. Soc.,2003,125,11235; (c) K. C. Nicolaou, P. K. Sasmal, H. Xu, K. Namoto and A. Ritzen, Angew. Chem., Int. Ed.,2003,42,4225; (d) A. W. G. Burgett, Q. Li, Q. Wei and P. G. Harran, Angew. Chem., Int. Ed.,2003,42,4961; (e) S. Canesi, D. Bouchu and M. A. Ciufolini, Angew. Chem., Int. Ed.,2004,43,4336; (f) P. Wipf and S. R. Spencer, J. Am. Chem. Soc.,2005,127, 225; (g) L. H. Mejorado and T. R. R. Pettus,.J. Am. Chem. Soc.,2006,128,15625; (h) K. C. Nicolaou, D. J. Edmonds, A. Li and G. S. Tria, Angew. Chem., Int. Ed.,2007,46.3942.
    11 (a) D. B. Dess and J. C. Martin, J. Org. Chem.,1983,48,4155; (b) D. B. Dess and J. C. Martin, J. Am. Chem. Soc.,1991,113,7277.
    12 (a) C. Hartmann and V. Meyer, Chem. Ben.,1893,26, 1727; (b) M. Frigerio and M. Santagostino, Tetrahedron Lett.,1994,35,8019; (c) M. Frigerio, M. Santagostino, S. Sputore and G. Palmisano, J. Org. Chem.,1995,60,7272.
    13 See ref.4j and others:(a) T. Wirth, Angew. Chem., Int. Ed,2001,40,2812; (b) K. C. Nicolaou and C. J. N. Mathison, Angew. Chem., Int. Ed.,2005,44,5992; (c) U. Ladziata and V. V. Zhdankin, ARKIVOC,2006,9, and references therein.
    14 Various recycle types of reagents have been developed. See the last section of this article.
    15 Reviews:(a) T. Dohi and Y. Kita, Kagaku,2006,61,68; (b) R. D. Richardson and T. Wirth, Angew. Chem., Int. Ed.,2006,45,4402; (c) M. Ochiai and K. Miyamoto, Eur. J. Org. Chem., 2008,4229.
    16 (a) T. Fuchigami and T. Fujita, J. Org. Chem.,1994,59,7190; (b) T. Fujita and T. Fuchigami, Tetrahedron Lett.,1996,37,4725.
    17 S. Hara, T. Hatakeyama, S.-Q. Chen, K. Ishii, M. Yoshida, M. Sawaguchi, T. Fukuhara and N. Yoneda,.J. Fluorine Chem.,1998,87,189.
    18 T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H. Tohma and Y. Kita, Angew. Chem., Int. Ed.,2005,44,6193.
    19 T. Dohi, A. Maruyama, Y. Minamitsuji, N. Takenaga and Y. Kita, Chem. Commun.,2007, 1224.
    20 T. Dohi, Y. Minamitsuji, A. Maruyama, S. Hirose and Y. Kita, Org. Lett.,2008,10,3559.
    21 M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda and K. Miyamoto, J. Am. Chem. Soc.,2005, 127,12244.
    22 J. Sheng, X. Li, M. Tang, B. Gao and G. Huang, Synthesis,2007,1165.
    23 (a) Y. Yamamoto and H. Togo, Synlett,2006,798; (b) J. Akiike, Y. Yamamoto and H. Togo, Synlett,2007,2168; (c) Y. Yamamoto, Y. Kawano, P. H. Toy and H. Togo, Tetrahedron,2007, 63,4680; (d) Y. Kawano and H. Togo, Synlett,2008,217.
    24 D. C. Braddock, G. Cansell and S. A. Hermitage, Chem. Commun.,2006,2483.
    25 A. Moroda and H. Togo, Synthesis,2008,1257.
    26 A. P. Thottumkara, M. S. Bowsher and T. K. Vinod, Org. Lett.,2005,7,2933.
    27 (a) A. Schulze and A. Giannis, Synthesis,2006,257; (b) P. C. B. Page, L. F. Appleby, B. R. Buckley, S. M. Allin and M. J. McKenzie, Synlett,2007,1565.
    28 R. Mu, Z. Liu, Z. Yang, Z. Liu, L. Wu and Z.-L. Liu, Adv. Synth. Catal.,2005,347,1333.
    29 (a) R. Bell and K. J. Morgan, J. Chem. Soc,1960,1209; (b) R. M. Moriarty, O. Prakash and M. P. Duncan, Synthesis,1985,943; (c) R. M. Moriarty and O. Prakash, Acc. Chem. Res., 1986,19,244.
    30 In this step, both mechanisms via the ligand coupling and the SN2 displacement are suggested: (a) V. V. Grushin, Ace. Chem. Res.,1992,25,529; (b) Ligand Coupling Reaction with Heteroatomic Compounds, ed. P. Finet, Tetrahedron Organic Chemistry Series, Pergamon, Oxford,1998, vol.18; (c) A. Ozanne-Beaudenon and S. Quideau, Angew. Chem., Int. Ed., 2005,44,7065.
    31 (a) R. C. Cambie, B. G. Lindsay, P. S. Rutledge and P. D. Woodgate. J. Chem. Soc., Chem. Commun.,1978,919; (b) H. J. Reich and S. L. Peake, J. Am. Chem. Soc.,1978,100,4888; (c) R. I. Davidson and P. J. Kropp, J. Org. Chem.,1982,47,1904; (d) S. Yamamoto, H. Itani, T. Tsuji and W. Nagata, J. Am. Chem. Soc.,1983,105,2908; (e) N. S. Zefirov, V. V. Zhdankin, G. V. Makhon'kova, Y. V. Dan'kov and A. S. Koz'min, J. Org. Chem.,1985,50,187.
    32 D. G. Morris and A. G. Shepherd, J. Chem. Soc., Chem. Commim.,1981,1250.
    33 H. Tohma, A. Maruyama, A. Maeda, T. Maegawa, T. Dohi, M. Shiro, T. Morita and Y. Kita, Angew. Chem., Int. Ed.,2004,43,3595.
    34 (a) D.Magdziak, S. J. Meek and T. R. R. Pettus, Chem. Rev.,2004,104,1383; (b) S. Rodriguez and P. Wipf, Synthesis,2004,17,2767, and references therein.
    35 (a) B. R. Davis, D. M. Gash, P. D. Woodgate and S. D. Woodgate, J. Chem. Soc., Perkin Trans. 1,1982,1499; (b) Y. Endo, K. Shudo and T. Okamoto, J. Am. Chem. Soc.,1982,104,6393; (c) N. Haga, Y. Endo, K. Kataoka, K. Yamaguchi and K. Shudo, J. Am. Chem. Soc.,1992,114, 9795.
    36 Kita's group have utilized 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and TFE for the first time in hypervalent iodine-mediated oxidative transformations as stabilizing solvents of the reactive cationic intermediates, see refs.5 and 6.
    37 (a) E. Miyazawa, T. Sakamoto and Y. Kikugawa, J. Org. Chem.,2003,68,5429; (b) Y. Kikugawa, A. Nagashima, T. Sakamoto, E. Miyazawa and M. Shiiya, J. Org. Chem.,2003,68, 6739.
    38 (a) D. J. Wardrop and A. Basak, Org. Lett.,2001,3,1053; (b) D. J. Wardrop and W. Zhang, Org. Lett.,2001,3,2353; (c) D. J. Wardrop, C. L. Landrie and J. A. Ortiz, Synlett,2003,1352; (d) D. J. Wardrop and M. S. Burge, Chem. Commun.,2004,1230; (e) D. J.Wardrop, W. Zhang and C. L. Landrie, TetrahedronLett.,2004,45,4229.
    39 The formation of insoluble iodoxybenzene oligomers from iodobenzene was reported in ref. 31e.
    40 P. A. Krasutsky, I. V. Kolomitsyn and R. M. Carlson, Org. Lett.,2001,3,2997.
    41 (a) R. M. Moriarty, R. K. Vaid and G. F. Koser, Synlett,1990,365; (b) R. M. Moriarty and O. Prakash, Org. React.,1999,54,273; (c) G. F. Koser, Aldrichimica Acta,2001,34,89.
    42 F. Mizukami, M. Ando, T. Tanaka and J. Imamura, Bull. Chem. Soc. Jpn.,1978,51,335.
    43 Y. Yamamoto and H. Togo, Synlett,2005,2486.
    44 (a) O. Prakash, N. Saini and P. Sharma, Heterocycles,1994,38,409; (b) R. M. Moriarty and O. Prakash, Adv. Heterocyclic Chem.,1998,69,1; (c) G. F. Koser, Adv. Heterocycl. Chem., 2004,56,225.
    45 (a) H. Tohma, S. Takizawa, T. Maegawa and Y. Kita, Angew. Chem., Int. Ed.,2000,39,1306; (b) H. Tohma, T. Maegawa, S. Takizawa and Y. Kita, Adv. Synth. Catal.,2002,344,328.
    46 M. Uyanik, H. Okamoto, T. Yasui, and K. Ishihara, Science,2010,328,1376-1379.
    47 M. Uyanik, D. Suzuki, T. Yasui, and K. Ishihara, Angew. Chem. Int. Ed.,2011.50,5331-5334.
    48 D. C. Braddock, G. Cansell, S. A. Hermitage and A. J. P. White, Chem. Commun.,2006,1442.
    49 More than hundreds of thousands of iodoarenes are known in the literature.
    50 L. Ziqiang, P. Yan and Y. Yang, Catal. Lett.,2007,118,69.
    51 (a) T. Yakura and T. Konishi, Synlett,2007,765; (b) T. Yakura, Y. Yamauchi, Y. Tian and M. Omoto, Chem. Pharm. Bull.,2008,56,1632.
    52 (a) R. D. Richardson, T. K. Page, S. Altermann, S. M. Paradine. A. N. French and T. Wirth, Synlett,2007,538; (b) S. M. Altermann, R. D. Richardson, T. Keri Page, R. K. Schmidt, E. Holland, U. Mohammed, S. M. Paradine, A. N. French, C. Richter, A. Masih Bahar, B. Witulski and T. Wirth, Eur. J. Org. Chem.,2008,5315.
    53 T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji, H. Fujioka, S. B. Caemmerer and Y. Kita, Angew. Chem., Int. Ed.,2008,47,3787.
    54 (a) T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H. Tohma, M. Shiro and Y. Kita, Chem. Commun.,2005,2205; (b) T. Dohi, K. Morimoto, N. Takenaga, A. Maruyama and Y. Kita, Chem. Pharm. Bull.,2006,54,1608; (c) T. Dohi, K. Morimoto, N. Takenaga, A. Goto, A. Maruyama, Y. Kiyono, H. Tohma and Y. Kita, J. Org. Chem.,2007,72,109. See, also ref.38.
    55 (a) Y. Yamada and M. Okawara, Makromol. Chem.,1972,152,153; (b) M. L. Hallensleben, Angew. Makromol. Chem.,1972,27,223; (c) review:H. Togo and K. Sakuratani, Synlett, 2002,1966.
    56 Representative examples:(a) T. Imamoto and H. Koto, Chem. Lett.,1986,967; (b) E. Hatzigrigoriou, A. Varvoglis and M. Bakola-Christianopoulou, J. Org. Chem.,1990,55,315; (c) D. G. Ray and G. F. Koser, J. Org. Chem.,1992,57,1607; (d) H. Tohma, S. Takizawa, H. Watanabe, Y. Fukuoka, T. Maegawa and Y. Kita, J. Org. Chem.,1999,64,3519; (e) M. Ochiai, Y. Kitagawa, N. Takayama, Y. Takaoka and M. Shiro, J. Am. Chem. Soc,1999,121,9233; (f) U. Ladziata, J. Carlson and V. V. Zhdankin, Tetrahedron Lett.,2006,47,6301.
    57 (a) T. Wirth and U. H. Hirt, Tetrahedron:Asymmetry,1997,8,23; (b) U. H. Hirt, B. Spingler and T. Wirth, J. Org. Chem.,1998,63,7674; (c) U. H. Hirt, M. F. H. Schuster, A. N. French, O. G. Wiest and T. Wirth, Eur. J. Org. Chem.,2001,1569.
    58 (a)M. D. Hossain and T. Kitamura, J. Org. Chem.,2005,70,6984; (b) M. D. Hossain and T. Kitamura, Bull. Chem. Soc. Jpn.,2006,79,142.
    59 Recent reports on the biological activities:(a) U. Rinner and T. Hudlicky, Synlett,2005,365; (b) J. Marco-Contelles, M. C. Carreiras, C. Rodriguez, M. Villarroya and A. G. Garcia, Chem. Rev.,2006,106,116; (c) N. Unver, Phytochem. Rev.,2007,6,125; (d) J. McNulty, J. J. Nair, C. Codina, J. Bastida, S. Pandey, J. Gerasimoff and C. Griffin, Phytochemistry,2007,68, 1068.
    60 K. C. Nicolaou, D. J. Edmonds, A. Li and G. S. Tria, Angew. Chem., Int. Ed.,2007,46, 3942-3945.
    61 L. H. Mejorado and T. R. R. Pettus, J. Am. Chem. Soc.,2006,128,15625-15631
    62 J. H. Clark, Chem. Rev.,1980,80,429-452.
    631. Huertas, I. Gallardo and J. Marquet, Tetrahedron Lett.,2001,42,3439-3441.
    64 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc.,1972.94,6190-6191.
    65 K. K. Ogilvle and S. L.Beaucage, Nucleic Acids Res.,1979,7,805.
    66 W. Prescott, Chem. Ind. (London),1978,56.
    67 W. T. Miller, J. H. Fried, and H. Goldwhite,J.Am. Chem..Soc.,1960,82,3091-3099.
    68 See, for example, "Fluorocarbon and Related Chemistry", Vol.2, R. E. Banks and M. G. Bariow, Senior Reporters, Periodical Report, Chemical Society, London,1974.
    69 (a) J. H. Smitrovich and K. A. Woerpel, J. Org. Chem.1996,61,6044-6046; (b) Z. H. Peng and K. A. Woerpel, Org. Lett.,2002,4,2945-2948.
    70 T. Pei and R. A. Widenhoefer, J. Org. Chem.,2001,66,7639-7645.
    71 V. K. Yadav, N. V. Kumara and M. Parvez. Chem. Commun.,2007,2281-2283.
    72 A. Inoue, H. Shinokubo. and K. Oshima,J. Am. Chem. Soc.,2003,125,1484-1485.
    73 J. Barluenga and et. al., J. Org. Chem.2004,69,7352-7354.
    74 R. Lerebours and C. Wolf, J. Am. Chem. Soc.,2006,128,13052-13053.
    75 C. Willgerodt, J. Prakt. Chem.,1886,33,154.
    1 (a) M. Uyanik, H. Okamoto, T. Yasui, K. Ishihara, Science,2010,328,1376-1379; (b) M. Uyanik, D. Suzuki, T. Yasui, K. Ishihara, Angew. Chem., Int. Ed.,2011, 50,5331-5334.
    2 (a) S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-Beaudenon, T. Buffeteau, D. Cavagnat and A. Chenede, Angew. Chem., Int. Ed.,2009,48,4605-4609; (b) T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji, H. Fujioka, S. B. Caemmerer and Y. Kita, Angew. Chem., Int. Ed.,2008,47,3787-3790; (c) M. Uyanik, T. Yasuiand K. Ishihara, Angew. Chem., Int. Ed.,2010,49,2175-2177; (d) R. D. Richardson and T. Wirth, Angew. Chem., Int. Ed.,2006,45,4402-4404; (e) V. V. Zhdankin and P. J. Stang, Chem. Rev.,2008, 108,5299-5358; (f) T. Dohi and Y. Kita, Chem. Commun.,2009,2073-2085; (g) M. Uyanik and K. Ishihara, Chem. Commun.,2009,2086-2099.
    3 V. V. Zhdankin, J. Org. Chem.,2011,76,1185-1197.
    4 (a) K. L. Wu, E. V. Mercado, and T. R. R. Pettus, J. Am. Chem. Soc.,2011,133,6114-6117; (b) J. Sperry, Z. E. Wilson, D. C. K. Rathwell, and M. A. Brimble, Nat. Prod. Rep.,2010,27, 1117-1137; (c) D. H. Qin, R. X. Ren, T. Siu, C. S. Zheng, and S. J. Danishefsky, Angew. Chem. Int. Ed.,2001,40, No.24; (d) D. C. K. Rathwell, S. H. Yang, K. Y. Tsang, and M. A. Brimble, Angew. Chem. Int. Ed.,2009,48,7996-8000;(e) M. Lejkowski, P. Banerjee, J. Runsink, and H. J. Gais, Org. Lett.,2008,10,2713-2716; (f) S. Sorgel, C. Azap, and H. U. ReiBig, Eur. J. Org. Chem.,2006,4405-4418.
    5 (a) Y. C. Hu, X. F. Wu, S. Gao, S. S. Yu, Y. Liu, J. Qu, J. Liu, and Y. B. Liu, Org. Lett.,2006,8, 2269-2272; (b) D. Kong, X. Liu, M. Teng, and Z. Rao, Acta Pharm. Sin.,1985,20,747-751; (c) H. W. Luo, S. X. Chen, J. N. Lee, and J. K. Snyder, Phytochemistiy,1988,27,290-292; (d) F. Asari, T. Kusumi, G. Z. Zheng, Y. Z. Cen, and H. Kakisawa, Chem. Lett.,1990,1885-1888; (e) M. H. Al Yousuf, A. K. Bashir, G. Blunden, T. A. Crabb, and A. V. Patel, Phytochemistry,2002,61,361-365; (f) US Pat.6 297 043,2001; (g) L. Vertesy, M. Kurz, E. F. Paulus, D. Schummer, and P. Hammann, J. Antibiot.,2001,54,354-363.
    6 (a) G. L. Zhou, J. R. Zhu, Z. X. Xie, Y. Li, Org. Lett.,2008,10,721-724; (b) Y. Zhang, J. J. Xue, Z. J. Xin, Z. X. Xie, Y. Li, Synlett,2008,6,940-944; (c) Z. J. Xin, Y. Zhang, H. Tao, J. J. Xue, Y.Li,Synlett,2011,11,1579-1584.
    7 A. F. Barrero, J. F. Qui'lez del Moral, M. Mar Herrador, P. Arteaga, M. Corte's, J. Benites, A. Rosellon, Tetrahedron,2006,62,6012-6017.
    8 The compound 2-3 was purified by chromatography in a silica gel support doped with NEt3.
    9 M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda, K. Miyamoto, J. Am. Chem. Soc.2005,127, 12244-12245.
    10 (a) M. T. Reetz, Angew. Chem., Int. Ed.,2001,40,284-310; (b) C. Y. Wu, C. F. Chang, J. Szu, Y. Chen, C. H. Wong, C. H. Lin, Angew. Chem., Int. Ed.,2003,42,4661-4664; (c) F. Balkenhohl, C. von dem Bussche-Hunnefeld, A. Lansky, C. Zechel, Angew. Chem., Int. Ed., 1996,35,2288-2337; (d) T. Kodadek, Chem. Commun.,2011,47,9757-9763; (e) M. J. Duart, G. M. Anton-Fos, P.A. Aleman, J. B. Gay-Roig, M. E. Gonzalez-Rosende, J. Galvez, R. Garcia-Domenech,J. Med. Chem.,2005,48,1260-1264.
    11 (a) T. Gehrmann, J. L. Fillol, S. A. Scholl, H. Wadepohl, L. H. Gade, Angew. Chem. Int. Ed., 2011,50,5757-5761; (b) L. Wang, S. Y. Peng, J. Wang, Chem. Commum.,2011,47. 5422-5424; (c) W. J. Li, X. Li, W. B. Wu, X. M. Liang, J. X. Ye, Chem. Commun.,2011,47, 8325-8327; (d) M. Padmanaban, A. T. Biju, F. Gloriu, Org. Lett.,2011,13,5624-5627; (e) K. A. Davies, J. E. Wulff, Org. Lett.,2011,13,5552-5555.
    12 (a) H. U. Vora, T. Rovis,J. Am. Chem. Soc.,2007,129,13796-13797; (b) K. Sorimachi, M. Terada, J. Am. Chem. Soc.,2008,130,14452-14453; (c) Z. Y. Han, H. Xiao, X. H. Chen, L. Z. Gong,J.Am. Chem. Soc.,2009,131,14452-14453; (d) S. P. Latheop, T. Rovis, J. Am. Chem. Soc.,2009,131,13628-13630; (e) Y. Wang, R. G. Han, Y. L. Zhao, S. Yang, P. F. Xu, D. J. Dixon, Angew. Chem., Int. Ed.,2009,48,9834-9838.
    13 (a) D. Enders, M. R. M. Huettl, C. Grondal, G. Raabe, Nature,2006,441,861-863; (b) I. V. Alabugin, K. Gilmore, S. Patil, M. Manoharan, S. V. Kovalenko, R. J. Clark, I. Ghiviriga, J. Am. Chem. Soc.,2008,130,11535-11545; (c) Y. H. Liu, F. J. Song, S. H. Guo, J. Am. Chem. Soc.,2006,128,11332-11333; (d) B. J. Albert, H. Yamamoto, Angew. Chem., Int. Ed.,2010, 49,2747-2749; (e) D. Enders, M. R. M. Huettl, J. Runsink, G. Raabe, B. Wendt, Angew. Chem., Int. Ed.,2007,46,467-469; (f) H. F. Cui, K. Y. Dong, G. W. Zhang, L. Wang, J. A. Ma, Chem. Commun.,2007,43,2284-2286.
    14 (a) G. B. Dong, P. L. Teo, Z. K. Wickens, R. H. Grubbs, Science,2011,333,1609-1612; (b) Q. A. Chen, D. S. Wang, Y. G. Zhou, Y. Duan, H. J. Fan, Y. Yang, Z. Zhang, J. Am. Chem. Soc., 2011,133,6126-6129.
    15 (a) H. J. Zheng, J. Y. Zheng, B. X. Yu, Q. Chen, X. L. Wang, Y. P. He, Z. Yang, X. G. She, J. Am. Chem. Soc.,2010,132,1788-1789; (b) A. Serra-Muns, A. Guerinot, S. Reymond, J. Cossy, Chem. Commun.,2010,46,4178-4180; (c) B. Basu, S.Paul, A. Nanda, Green Chem., 2010,12,767-771; (d) J. S. Yadav, G. Satheesh, C. V. S. R. Murthy, Org. Lett.,2010,12, 2544-2547.
    1 (a) S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-Beaudenon, T. Buffeteau, D. Cavagnat, and A. Chenede, Angew. Chem., Int. Ed.,2009,48,4605-4609; (b) T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji, H. Fujioka, S. B. Caemmerer and Y. Kita, Angew. Chem., Int. Ed.,2008,47,3787-3790; (c) M. Uyanik, T. Yasui, and K. Ishihara, Angew. Chem., Int. Ed.,2010,49,2175-2177; (d) R. D. Richardson, T. Wirth, Angew. Chem., Int. Ed.,2006,45,4402-4404; (e) V. V. Zhdankin, P. J. Stang, Chem. Rev.,2008,108, 5299-5358; (f) T. Dohi, Y. Kita, Chem. Commun.,2009,2073-2085; (g) M. Uyanik, K. Ishihara, Chem. Commun.,2009,2086-2099.
    2 V. V. Zhdankin, J. Org. Chem.,2011,76,1185-1197
    3 (a) M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda, and K. Miyamoto, J. Am. Chem. Soc., 2005,127,12244-12245; (b) T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H. Tohma, and Y. Kita, Angew. Chem., Int. Ed.,2005,44,6193-6196.
    4 (a) T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji, H. Fujioka, S. B. Caemmerer, and Y. Kita, Angew. Chem., Int. Ed.,2008,47,3787-3790; (b) M. Uyanik, T. Yasui, and K. Ishihara, Angew. Chem., Int. Ed.,2010,49,2175-2177; (c) M. Uyanik, D. Suzuki, T. Yasui, and K. Ishihara, Tetrahedron,2010,66,5841-5851; (d) M. Uyanik, H. Okamoto, T. Yasui, and K. Ishihara, Science,2010,328,1376-1379.
    5 M. Uyanik, D. Suzuki, T. Yasui, and K. Ishihara, Angew. Chem., Int. Ed.,2011,50,5331-5334.
    6 (a) T. Kano, H. Mii, and K. Maruoka, J. Am. Chem. Soc.,2009,131,3450-3451; (b) H. Gotoh, Y. Hayashi, Chem. Commun.,2009,3083-3085; (c) M. J. P. Vaismaa, S. C. Yau, and N. C. O. Tomkinson, Tetrahedron Lett.,2009,50,3625-3627.
    7 (a) J. H. Clark, Chem. Rev.,1980,80,429-452; (b) R. Lerebours and C. Wolf, J. Am. Chem. Soc,2006,128,13052-13053; (c) V. K. Yadav, N. V. Kumara, and M. Parvez, Chem. Commun.,2007,2281-2283; (d) Z. H. Peng and K. A. Woerpel, Org. Lett.,2002,4, 2945-2948; (e) T. Pei and R. A. Widenhoefer, J. Org. Chem.,2001,66,7639-7645; (f) J. H. Smitrovich and K. A. Woerpel, J. Org. Chem.,1996,61,6044-6046.
    8 I. Huertas, I. Gallardo, and J. Marquet, Tetrahedron Lett.,2001,42,3439-3441.
    9 To a stirring solution of compound 3-1a 24 mg (0.1 mmol) in 5 mL THF is added TBAI 5 mg (15 mol%) and then added dropwise the solution of mCPBA 20 mg(2.0 eq.), KF 12 mg(2.0 eq.), and 18-crown-653 mg(2.0eq.) in 5 mL THF at room temperature in 5 min. The result solution is quenched with saturated NaHCO3, extracted(DCM),washed with Na2SO3 NaHCO3 and brine, dried with Na2SO4, filtered, and concentrated. Chromatography on silica gel (Petro Ether/EtOAc 16:1, v/v)
    10 W. Wei, Y. Wang, J. P. Yin, J. J. Xue, and Y. Li, Org. Lett.,2012,14,1158-1161。
    11 D. Lesieur and et al, J. Med. Chem.,2002,45,2788-2800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700