用户名: 密码: 验证码:
空气曝气和生物曝气技术修复石油类污染地下水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油勘探开发过程中,从钻井工程施工到采油、工艺处理、输油、储油等各个环节,都不同程度地存在着石油的泄漏,造成地下水的严重污染。石油中含有许多毒性较强的物质,其中许多组分具有致癌、致畸和致突变作用,对人体健康和生态系统的安全都构成巨大威胁。因此,对石油类污染地下水的修复和治理研究已经迫在眉睫。
     目前,用于石油类污染地下水的治理主要包括异位修复和原位修复两种方式。其中,空气曝气技术(Air-sparging,AS)术和生物曝气技术(Bio-sparging,BS),是近年来迅速发展起来的地下水污染原位修复技术,因其具备可持续原位处理多种污染物、处理效果好、对环境扰动小、安装施工方便及成本低等显著优点,已成为国际上地下水污染原位修复的主要发展方向。国外在空气曝气和生物曝气技术修复石油类污染地下水方面已有成功实例,但在我国少见相关文献报道,因此,积极开展有关空气曝气和生物曝气技术修复石油类污染地下水的尝试和探索研究是十分必要的。
     本论文以国家水体污染控制与治理科技重大专项“松花江沿岸地下水污染控制关键技术及工程示范课题”的子专题“松花江沿岸地区浅层地下水石油类污染的修复技术”为依托,以地下水中石油类污染物为修复目标,采用经济、高效、对环境扰动小的生物曝气和空气曝气技术作为修复手段。结合场地水文地质条件及地下水污染特征,开展室内模拟实验。模拟污染场地地下水为第四系松散岩类孔隙微承压水,含水层厚度约17m,由上至下,含水介质由黄褐色细纱、粉砂逐渐过渡到砂砾,岩性颗粒逐渐变粗。地下水位观测资料显示,污染场地地下水流方向为东南至西北方向,水位埋深约3.4m,平均水力坡度为5‰。污染场地地下水的主要补给来源为微波岗地地下水侧向径流补给,径流条件和赋存规律与地形地貌、岩性密切相关,排泄方式主要为侧向径流排泄。
     论文以0#柴油为石油基底,选取苯、二甲苯、萘作为目标石油污染物,砾砂、粗砂和中砂为模拟含水层介质。首先进行了静态吸附实验研究,考察了污染物在介质中的吸附时间和吸附特性。实验结果表明:污染物在各含水层介质的吸附平衡时间为24h,污染物在介质中的吸附符合线性吸附,污染物在介质中吸附容量大小顺序依次为柴油、萘、二甲苯、苯;3种含水层介质对污染物的吸附能力大小顺序为中砂、粗砂、砾砂,污染物在中砂上吸附量最大。表明砂土的粒径越小,对污染物的吸附越大,在AS处理污染物的过程中,去除难度就越大。
     AS运行过程中影响因素研究通过土柱模拟实验进行,实验结果表明:曝气量和介质渗透性对AS的修复效果有较大影响,污染物的去除效率随着曝气量的增加而增大,但曝气量超过300mL/min,污染物的去除率不随曝气量的增加而增加;介质渗透性越强,污染物的去除率越高;对于渗透系数较低的中砂介质,间歇曝气污染物的去除率好于连续曝气效果,对于渗透系数相对较高的砾砂和粗砂介质,两种曝气方式效果相差不大。
     AS运行过程中的影响半径和修复效果研究通过砂槽实验进行,采用电阻层析成像技术测定AS过程中的影响半径。实验结果表明:随着曝气量的增加,影响半径不断增大,但当曝气量增大到一定量后,影响半径不再增大;在有边界的槽子存在边壁效应,即当曝气量达到极限值后,气体随着槽子的边壁逸出,影响曝气效果;单井曝气时,曝气量为0.16m3/h的影响半径明显大于曝气量为0.12m3/h;在非均匀介质中曝气影响半径不是以曝气井为中心对称分布的,存在气体偏流和绕流现象,曝气影响区域基本呈倒锥形分布;双井曝气曝气量为0.28m3/h,在砾砂层、粗砂层及中砂层的影响半径分别为24cm、27cm和55cm。TPH和苯在含水层介质中的迁移速度较快,二甲苯在介质中具有中等程度的迁移,萘在土壤中具有比较低的迁移性;由于地下水流作用污染物在水平方向的迁移速度大于在垂直方向的迁移速度。曝气15天后,AS对TPH、苯和二甲苯的去除率分别为77.4%、75.6%和71.3%;在不同土壤介质层中AS去除效果也有差异,苯和二甲苯在中砂层中的去除效果要好于砾砂层和粗砂层,这主要是抽提井深入位置影响所致,抽提井穿过粉砂层深入中砂5cm,使得中砂层附近空气阻力较小,空气沿着阻力小的方向上升到中砂层,故在中砂层气体分布较多,AS的去除效果好;苯的总体去除率好于二甲苯。AS在去除污染物的过程中,还有相当一部难挥发的石油污染物残留而未被去除,一旦曝气停止,残留在介质孔隙中的污染物又重新向地下水中释放。对空气曝气前后出水水样进行GC/MS全扫描分析,空气曝气后污染物组分与曝气前基本相同。
     空气曝气技术去除了约为75%的污染物,还有相当一部难挥发的石油污染物残留而未被去除,同时在空气曝气技术存在曝气停止后,还会有部分吸附的污染物重新释放现象,因此对于地下水石油类污染仅采用空气曝气技术不能达到彻底去除污染物的目的,需要采用生物曝气技术对地下水石油类污染进行进一步的修复研究。
     通过筛选和驯化得到污染物降解菌群,分离得到5株降解单菌,其中2株为高效降解菌,菌B对苯、二甲苯、萘降解效果良好,菌C对TPH降解效果良好,菌B和菌C所属菌属分别为假单胞菌属和无色杆菌属。污染物最佳降解条件为,在8-15℃的低温环境下,最佳pH范围为6-8、DO浓度为4-7mg/L、投加氮磷营养盐。筛选得到高效降解菌满足本研究对菌种的要求,可以作为后续实验的菌种来源。
     微生物在地下水中的迁移规律、BS修复效果及去除机制研究在砂槽实验中进行。实验结果表明:微生物在介质中的迁移速度从大到小依次为砾砂、粗砂、中砂;介质吸附微生物量的顺序从大到小为中砂、粗砂、砾砂,微生物的迁移能力随着介质粒径的减小而降低,介质粒径是影响介质吸附微生物量的重要因子。生物曝气4个月后,TPH、苯和二甲苯最高去除率分别为88.2%、86.4%和81.7%,介质吸附微生物量对污染物的去除有重要影响,中砂的去除率好于粗砂和砾砂,苯的去除效果好于二甲苯,生物曝气对TPH、苯和二甲苯的去除较为彻底,污染物去除率均能达到75%以上。实验进行初期挥发作用是主要的去除机制,实验进行的中后期生物作用是主要的去除机制,由挥发去除污染物的百分比为46.24%,生物降解去除污染物的百分比为36.98%。生物曝气结束后,各混合烷烃都被显著降解。微生物降解后,碳原子数较少的直链烷烃优先被生物降解。对于目标污染物萘适合用生物曝气技术去除,不适合用空气曝气技术去除。
     苯、二甲苯、萘的降解动力学方程大部分与1级反应动力学方程拟合效果良好,苯的降解半衰期在0.4-1.7d之间,二甲苯降解半衰期在1.5-3.6d之间,萘的降解半衰期在4.4-7d之间。萃取不同时刻污染物代谢产物,通过全扫描图谱及检索出的代谢产物明确了微生物降解苯、二甲苯、萘的降解途径。
In petroleum exploration and development process, drilling construction,petroleum extraction, fabrication processing, transportation and storage lead topetroleum leak inordinately and consequently cause serious pollution of groundwater.Petroleum contains many highly toxic substances that are carcinogenic, teratogenicand mutagenic, leading to a great threaten to human health and ecological systemsafety. Therefore, developing the cost-efficient remediation technology of petroleumcontamination groundwater is imminent.
     For petroleum contamination groundwater, the remediation technologies areex-situ and in-situ remediation technology. Recently, the air-sparging andbio-sparging are widely used in remediation of contaminated groundwater, due to itsmany advantages such as in situ treatment a variety of pollutants sustainable, goodtreatment efficiency, little disturbance to environment, easy installation andconstruction and low cost. There are many successful examples on petroleumcontaminated groundwater remediation by using air-sparging and bio-sparging abroad,but rare related reports exist in the literature in China. Therefore, it’s essential to carryout air-sparging and bio-sparging technology in remediation of contaminatedgroundwater.
     This paper supported by The National Water Pollution Control and ManagementTechnology Major Projects–Shallow Groundwater Pollution Control Subject of KeyRemediation Technology and Engineering Demonstration along the Bank ofSonghuajing River which was sub-project of The Remediation Technology of shallowgroundwater petroleum contamination along the Bank of Songhuajing River. By usingairsparging and biosparging which were economic, efficient, little disturbance ofenvironment technology as repair measures remediate petroleum contaminatedgroundwater.Based on the hydro-geological conditions of petroleum contaminated sites in Northeast of China, the lab scale experiments were setup. The groundwater ofcontamination site is Quaternary loose rock pore micro-pressure water. Thickness ofaquifer is about17m. Aquifer is brown fine sand, silty sand gradually transition togravel sand, rock particles gradually thicken from top to bottom. The groundwaterflow direction of contaminated sites is southeast to northwest, water depth is about3.4m, the average hydraulic gradient is5‰which showed the obtained observations data.The main supply source of the groundwater is lateral recharge from groundwater ofmicrowave form mound. The runoff conditions and occurrence regularity and areclosely related to topography and lithology. The main mode of excretion is lateral runoff discharge.
     In this study,0#diesel was selected as petroleum basement. Benzene, xylene andnaphthalene were selected as target petroleum pollutants. Gravel sand, coarse sand,medium sand and silty sand were used to simulated aquifers. The static adsorptionexperiments were investigated including pollutants of adsorption equilibrium time andadsorption characteristics in the media. The experimental results showed that thepollution adsorption equilibrium time were24h in aquifer and the adsorption ofpollutants fitted linear adsorption. The sequence of adsorption capacity of pollutantsin aquifer follows as: diesel, naphthalene, xylene and benzene. The sequence ofaquifer media adsorption capacity of pollutants follows as: medium sand, coarse sandand gravel sand. The largest adsorption capacity of pollutants was medium sand. It isdemonstrated that the smaller the particle size of sand is, the greater the adsorption ofpollutants is.
     A one-dimensional column was set up to study the effect of factors on theremoval rate of contaminants. The results showed that the air flow rate and mediumpermeability greatly affected AS remediation efficiency. The contaminant removalrate increased with the increment of air flow rate, but the removal rate increasedslightly when the flow rate exceeding300mL/min. The bigger the hydraulicconductivity is, the better the removal efficiency is with AS remediate contaminations.In the same operating time, pulsed air injection had advantages over continuous airinjection for medium sand with low hydraulic conductivity, while the effects of two air injection modes were similar for coarse sand and gravel sand with higher hydraulicconductivity.
     A two-dimensional laboratory sand tank was setup to study removal rate andradius of influence during AS operation. The results showed that increased air flowrate led to wider radius of influence. But when the air flow rate increased to a certainamount, the radius of influence was no longer increased. The tank which has side wallexist boundary effect during AS operation. The gas escapes with the side wall of thetank when the air flow rate reached maximum value influencing aeration effect. Thegas distribution is not presented axisymmetric around aeration well, existing bios flowand flow around in heterogeneous media. The shape of influence aeration area wasbasically inverter cone distribution. The radius of influence with air flow rate of0.16m3/h was greater than0.12m3/h with single aeration well. The radius of influencewere24cm,27cm,55cm in gravel sand coarse sand and medium sand with air flowrate of0.28m3/h.The migration rate of TPH and benzene were faster. Xylene hasmoderate migration rate while naphthalene was lowest. The migration rate ofpollutant was faster in horizontal than in vertical. In different media layers AS removeeffects are also different. The removal efficiency in medium sand is better than that incoarse sand and gravel sand. After15days’ running, the removal efficiencies of TPH,benzene and xylene reached up to77.4%,75.6%and71.3%. The removal efficiencyof benzene is better than of xylene. A number of non-volatile organic contaminantswhich remain exist in aquifer are difficult to remove. Once the aeration is stopped, theresidual contaminants in the medium will release to the groundwater.
     The75percents of contaminants was removed by air-sparging. A number ofnon-volatile organic contaminants which remain exist in aquifer are difficult toremove. Once the aeration is stopped, the residual contaminants in the medium willrelease to the groundwater. Therefore, petroleum contaminated groundwater was onlyused air-sparging which not achieve the purpose of completely remove pollutants, so this paper continue to remediate petroleum contaminated groundwater by usingbio-sparging. Through the screening and domestication get pollution degradationbacteria flora.5strains were obtained after separation and purification. Two strainswere high efficiency degradation bacterium. Bacteria B had good degradation effecton benzene, xylene and naphthalene while the bacteria C has good degradation effecton TPH. Bacteria B and C respectively belongs to Pseudomonas and Achromobacter.The optimal condition of pollutants degradation is that the temperature is8-15°C, pHis6-8, DO concentration is4-7mg/L, adding nitrogen and phosphorus nutrient source.Screened bacteria flora achieved the requirements in this study, the degrading bacteriacan be used as bacteria sources of follow-up experiments.
     A laboratory sand tank was setup to study migration rule of bacteria ingroundwater, removal rate of contaminants and removal mechanism by usingbio-sparging technique. The results showed that the sequence of transport velocity ofbacteria follows as gravel sand, coarse sand and medium sand. The sequence ofadsorption of bacteria in the aquifer follows as medium sand, gravel sand and coarsesand. After4months’ bio-sparging running, the removal efficiencies of TPH, benzeneand xylene were reached up to88.2%,86.4%and81.7%. The percentage of removalcontamination is46.24%by volatilization and36.98%by biodegradation.Naphthalene was fitted to remove by using bio-sparging not by air-sparging.
     Benzene, xylene and naphthalene degradation kinetic equation fit well tofirst-order kinetic equation. The degradation half-life of benzene was0.4-1.7d, ofxylene was1.5-3.6d, of naphthalene was4.4-7d. Extraction metabolites of pollutants atdifferent times and through the scan analyze the degradation pathway of benzene,xylene and naphthalene.
     Benzene, xylene, naphthalene degradation kinetic equation fit first-orderkinetic equation well. The degradation half-life of benzene was0.4-1.7d, of xylenewas1.5-3.6d, of naphthalene was4.4-7d. Extraction metabolites of pollutants atdifferent times and through the scan analyse the degradation pathway of benzene,xylene and naphthalene.
引文
[1] Semer R, Adams J A, and Reddy K R. An experimental investigation of air flowpatterns in saturated soils during air sparging[J].Geotechnical and GeologicalEngineering,1998,5(16):59–75.
    [2]郭孟卓,赵辉.世界地下水资源利用与管理现状[J].中国水利,2005,3:59-62.
    [3]张永宏,张娇.我国地下水污染现状与防治措施[J].中国招标,2011,35:33-35.
    [4]胥思勤,王焰新.土壤及地下水有机污染生物修复技术研究进展[J].环境保护,2001,2:22-23.
    [5]罗兰.我国地下水污染现状与防治对策研究[J].中国地质大学学报(社会科学版),2008,2(8):72-75.
    [6]何晶晶,李慧,张颖,等.沈抚灌区石油污染土壤微生物多样性的研究[J].新疆农业大学学报,2008,31(4):33~37.
    [7]侯杰.大庆市地下水石油类污染系统形成机制研究[J].中国岩溶,1999,4(18):361-365.
    [8]付新建,张修田,苗长军.中原油田石油污染地下水现状分析[J].地下水,2005,3(30):48-49.
    [9]孙剑锋,杨丽芝,刘春华.胜利油田陆上采油区浅层地下水与土壤有机污染特征研究[J].地球学报,2011,6(32):725-731.
    [10]刘建立,朱学愚,陈余道.淄博市大武水源地地下水石油污染的数值模拟及敏感性分析研究[C].第十四届全国水动力学研讨会文集.北京:[出版者不祥],2000.
    [11]胡红亮,刘国东,余世娇,等.石油污染物在滨海潜水层中的迁移预测[J].人民黄河,2011,8(33):86-90.
    [12]Luelseged Tekola. Remediation of NAPLs in Groundwater Using In Situ AirSparging[D].Chicago:University of Illinois,2002.
    [13]Janey V, Mark D,Eugene J. Inland waterway resource and spill managementneeds in Southeastern USA[J].Disaster Prevention and Management,2010,19(4):483-497.
    [14]Borden Rc,Ca Gomez,Mt Becker. Geochemical indicators of intrinsicbioremediation [J].Ground Water,1995,33(2):180-189.
    [15] NorioTase.日本地下水污染[J].北京地质,1995,2:14-19.
    [16]唐伟,杜雪萍.美国地下水污染与近期对策概况[J].水与污水处理,1988,3:26-29.
    [17] Paul Nelson. Australia’s National plan to Combat pollution of the Sea by oil andOther Noxious and Hazard Substances-Overview and Current Issues[J]. SpillScience&Technology Bulletin,2000,6(l):3-11.
    [18]Borden Rc,Ca Gomez,Mt Becker.Geochemical indicators of intrinsicbioremediation [J].Ground Water,1995,33(2):180-189.
    [19]Thornton J C,Wootan W L. Effects of the air flow rate on petroleum contaminatedsoil[J].Jounal of Enviroment Sci Health,1984,A17(1):31~42.
    [20]吴玉成.地下水有机污染抽出处理技术影响因素分析[J].水文地质工程地质,1998,1:27-29.
    [21]张文静,董维红,苏小四,等.地下水污染修复技术综合评价[J].水资源保护,2006,5(22):1-4.
    [22]白大勇,范金霞,鲍万民.受污染地下水的处理技术发展与探讨[J].齐鲁石油化工,2004,32(3):185~188.
    [23] EPA, Draft Interim Final OSWER on Monitored Natural Attenuation Policy,Directive9200.4-17, US EPA, Office of Solid Waste and Emergency Response,Washington, DC,1997.
    [24] Faisal I K, Tahir H. Risk-based monitored natural attenuation-a case study[J].Journal of Hazardous Materials,2001, B85:243–272.
    [25]张翠云,张胜,殷密英,等.地下水污染自然衰减研究进展[J].南水北调与水利科技,2010,6(8):50-52.
    [26]焦珣.地下水土有机污染MNA修复研究综述[J].上海国土资源,2011,2:30-35.
    [27]Zhang Ying, Zhang Chao yu. In-situ remediation of petroleum contaminatedgroundwater: Application and prospect of permeable reactive barrier[C].2011International Conference on Consumer Electronics, Communications and Networks,CECNet2011-Proceedings,2011,3226-3229.
    [28] Turlough F G, Stuart H,Terry Mc,Brent D. An application of permeable reactivebarrier technology to petroleum hydrocarbon contaminated groundwater[J]. WaterResearch,2002,1(36):15-24.
    [29]李晓斌,赵玉军.渗透性反应墙在地下水污染修复中的应用[J].内蒙古环境科学,2008,3:238-242.
    [30]孙立波.渗透性反应墙在地下水处理上的应用[J].山西科技,2007,1:137-138.
    [31]谷庆宝,颜增光,周友亚,等.美国超级基金制度及其污染场地环境管理[J].环境科学研究,2007,5(20):85-88.
    [32]刘燕.地下水曝气法的模型试验研究[D].北京:清华大学,2009.
    [33]Unger A J A, Sudicky E A, Forsyth P A. Mechanisms controlling vacuumextraction coupled with air sparging for remediation of heterogeneousformations contaminated by dense nonaqueous phase liquids[J].Water ResourcesResearch,1995,31(8):1913-1925.
    [34]赵勇胜.地下水污染场地污染的控制与修复[J].吉林大学学报:地球科学版,2007,37(2):303-310.
    [35]秦传玉,赵勇胜,郑苇.空气扰动技术对地下水中氯苯污染晕的控制及去除效果[J].吉林大学学报:地球科学版,2010,40(1):164-168.
    [36]Jang W Y, Aral M M. Multiphase Flow Fields in In-situ Air sparging and itseffect on remediation [J]. Transp. Porous. Med.,2009,76:99–119.
    [37]David W. DePaoli.Design equations for soil aeration via bioventing[J].Separations Technology,1996,6:165174
    [38]王春艳,陈鸿汉,杨金凤,等.强化生物通风修复柴油污染土壤影响因素的正交实验[J].农业环境科学学报,2009,28(7):1422-1426
    [39]杨金凤,陈鸿汉,王春艳,等.强化生物通风修复过程中柴油衰减规律及其影响因素研究[J].环境工程学报,2009,82(3):1488-1492.
    [40]张峰,薛晓虎.石油污染土壤的生物通风修复[J].能源环境保护,2008,2(22):147-151.
    [41]段云霞,隋红,韩振为,等.生物通风修复石油污染土壤的研究进展[J].环境与生态.2003,120(29):25-28.
    [42]张玉平.地下水石油污染曝气修复理论探讨[J].山西建筑,2007,30(33):348-349.
    [43]Ji W, Dahmani A, Ahlfield D P, et a.l. Laboratory study of air sparging: Air flowvisualization [J].Groundwater Monitoring andRemediation,1993,13:115-126.
    [44]Unger A J A,Sudicky E A,Forsyth P A.Mechanisms controlling vacuumextraction coupled with air sparging for remediation of heterogeneous formationscontaminated by dense nonaqueous phase liquids[J].Water Resources Research,1995,31(8):1913-1925
    [45]郑艳梅.原位曝气去除地下水中MTBE及数学模拟研究[D].天津:天津大学化学学院,2005.
    [46]陈华清.原位曝气修复地下水NAPLS污染实验研究及模拟[D].武汉:中国地质大学(武汉),2010.
    [47]Reddy K R, Adams J A. Effects of ground water flow on remediation ofdissolved-phase VOC contamination using air sparging[J]. Journal of Hazard Master,2000,72:147-165.
    [48]Reddy K R, Adams J A. System effects on benzene removal from saturated soilsand ground water using air sparging[J].Journal of Geotechnical andGeoenvironmental Engineering,2001,127(3):234-247.
    [49]Reddy K R, Adams J. Effects on benzene removal from saturated soils andground water using air sparging[J]. Journal of Environmental Engineering,1998,3:288-299.
    [50]Rogers S W, Ong S K. Influence of porous media,airflow rates,and air channelspacing on benzene NAPL removal during air sparging[J].Environment Technology,2000,34:764-770.
    [51]Chen.M R,Hinkley R E, Killough J E.Computerized tomography imaging of airsparging in porous media[J]. Water Research,1996,32(10):2013-3024.
    [52]Peterson J W, Lepczyk P A, Lake K L.Effect of sediment size on area of influenceduring groundwater remediation by air sparging:a laboratory approach[J].Journal ofcontamination hydrological,2000,41:385-402.
    [53]Rutherford K W, Johnson P C. Effects of process control changes on aquiferoxygenation rates during in situ airsparging in homogenous aquifers[J]. Ground WaterMonitoring and Review,1996,16(4):132-141.
    [54]Gordon M J.Case history of a large-scale air sparging/soil vapor extraction systemfor the remediation of chlorinated volatile organic compounds in groundwater[J].Ground Water Monitoring and Remediation,1998,18(2):137-149.
    [55]Demera R, Hill M R, Murali D, et al. Rapid clean up of a multiple fuel spill,InProceedings of the Fourth International Symposium on in situ and on siteBioremediation[C]. Columbus,Ohio,Batelle Press,1996,1:109-204.
    [56]Murray W A, Lunardini Jr R C,Ullo Jr F J,et al.Site5air sparging pilot test,NavalAir Station Cecil Field,Jacksonville,Florida[J].Journal of Hazardous Material,1995,40:191-201.
    [57]Barbara L H, Thomas E L, Dupont R R. Field monitoring and performanceevaluation of an in situ air sparging system at a gasoline-contaminated site[J]. Journalof Hazardous Materials,2000,B74:165–186.
    [58]郑艳梅,黄国强,姜斌,等.地下水曝气理论模型研究进展[J].环境污染与防治,2006,7(28):521-525.
    [59]Falta R W. Numerical modeling of kinetic interphase mass transfer during airsparging using a dual-media approach[J].Water Resources Research,2000,36(12):3391-3400.
    [60]Arvin A J,Blayden J M. Analyical model for contaminatant mass removak by airsparging[J].Ground Water Monitoring and Remediation.1998,18(4):120-130.
    [61]Marley M C, Hazebrouck D J and Walsh M T.The application of in situ airsparging as an innovative soils and groundwater remediation technology[J]. GroundWater Monitoring and Review,1992,12(2):137-145.
    [62]Yih-Jin Tsai. Air flow paths and porosity/permeability change in a saturated zoneduring in situ air sparging[J]. Journal of Hazardous Materials,2007,142:315–323.
    [63]Krishna R R, Jeffrey A. A. Effect of groundwater flow on remediation ofdissolved-phase VOC contamination using air sparging[J]. Journal of HazardousMaterials,2000,72:147–165.
    [64]Washington J B, Say Kee Ong. Air sparging effectiveness: laboratorycharacterization of air-channel mass transfer zone for VOC volatilization[J]. Journalof Hazardous Materials2001,B87:241–258.
    [65]Paul D. Lundegarda, Doug LaBrecque. Air sparging in a sandy aquifer (Florence,Oregon,U.S.A.)" Actual and apparent radius of influence[J].Journal of ContaminantHydrology,1995,19:1-27. J al of Contaminant Hydrology19(1995)1-27ournal
    [66]Johnston C D, Rayner J L, Patterson B M, et al. Volatilisation and biodegradationduring air sparging of dissolved BTEX-contaminated groundwater[J]. Journal ofContaminant Hydrology,1998,33:377–404.
    [67]Robin Semer, Krishna R.Reddy. Mechanisms controlling toluene removal fromsaturated soils during in situ air sparging[J]. Journal of Hazardous Materials,1998,57:209-230.
    [68]Washington J. Braida, Say Kee Ong. Modeling of air sparging of VOC–contaminated soil columns[J]. Journal of Contaminant Hydrology,2000,41:385–402.
    [69]Wonyong Jang. Unsteady multiphase flow modeling of in situ air sparging systemin a variably saturated subsurface environment [D]. Georgia:Georgia Institute ofTechnology,2005.
    [70]Washington Braida, Say Kee Ong. Influence of Porous Media and Airflow Rateon the Fate of NAPLs Under Air Sparging[J]. Transport in Porous Media,2000,38:29–42.
    [71]Lazik D, Krauss G, Geistlinger H, Vogel H J. Multi-scale Optical Analyses ofDynamic Gas Saturation During Air Sparging into Glass Beads[J]. Transp PorousMed,2008,74:87–104.
    [72]D.W. Tomlinson, N.R. Thomson, R.L. Johnson, J.D. Redman. Air distribution inthe Borden aquifer during in situ air sparging[J]. Journal of Contaminant Hydrology2003,67:113–132.
    [73]K.F. Liang, M.C. Tom Kuo. A model and experimental study for dissolutionefficiency of gaseous substrates through in situ sparging[J]. Journal of HazardousMaterials,2009,164:204–214.
    [74]Semer R, Adams J A, Reddy K R. An experimental investigation of airflowpatterns in saturated soils during air sparging[J]. Geotechnical and GeologicalEngineering,1998,16:59–75.
    [75]Waduge W A P, Soga K, Kawabata J. Effect of NAPL entrapment conditions onair sparging remediation efficiency[J]. Journal of Hazardous Materials,2004,110:173–183.
    [76]郑艳梅,李鑫钢,王战强,等. AS技术修复MTBE污染地下水的传质研究[J].农业环境科学学报,2005,24(3):503-505.
    [77]姜斌,张英,黄国强,等.曝气处理甲苯的传质机理[J].天津大学学报,2005,2(38):163-166.
    [78]郑艳梅,李鑫钢,黄国强.地下水曝气过程中空气流场的数学模拟[J].化工学报,2005,5(58):1277-1282.
    [79]刘晓娜,程莉蓉,张可霓,等.地下水LNAPL层的原位曝气模拟研究[J].环境科学与技术,2012,2(35):19-24.
    [80]陈华清,李义连.地下水苯系物污染原位曝气修复模拟研究[J].中国环境科学,2010,10(1):46-51.
    [81]武强,王志强,杨淑君,等.地下水曝气工程技术研究:以德州胜利油田地下水石油污染治理为例[J].地学前缘,2007,14(6):214-221.
    [82]范伟,杨悦锁,路莹,等.层间地下水污染曝气修复的影响带[J].化工学报,2011,9(62):89-93.
    [83]范伟,杨悦锁,曹玉清,等.石油类污染地下水土环境的曝气修复实验研究[J].节水灌溉,2010,5:5-8.
    [84]秦传玉,赵勇胜,李雨松,等.空气扰动技术修复氯苯污染地下水的影响因素研究[J].水文地质工程地质,2009,6:99-103.
    [85]段云霞.生物通风(BV)法去除土壤中石油污染物的研究[D].天津:天津大学化学学院,2004.
    [86]徐亚同,史家梁,张明.生物修复技术的作用机理和应用[J].上海化工,2001,19:4-7.
    [87]滕应,骆永明,李振高.污染土壤的微生物修复原理与技术进展[J].土壤,2007,39(4):497~502
    [88]张兰英,刘娜,孙立波.现代环境微生物技术[M].北京,清华大学出版社.2005
    [89]贾燕.石油降解菌和生物表面活性剂在水体石油污染生物修复中的应用及机理研究[D].广州:暨南大学,2007.
    [90]王春艳.强化生物通风修复柴油污染土壤的正交实验[J].北京:中国地质大学,2009.
    [91]Jonson P C, Kemblowski M W, Colthart J D. Quantitative analysis for thecleanup of Hydrocarbon-contaminated soil by in-situ soil Venting[J]. GroundWarer.1990,5:413~429
    [91]隋红.生物通风和共代谢生物通风去除有机污染物及数学模拟研究[D].天津:天津大学化学学院,2004.
    [92]Breedveld G D,Gunnar O,Tormod B et al. Nutrient demandin bioventing of fueloil PollutionIn Situ Aeration:AirsParging,Bioventing,and Related Processes[C].Battelle Press Columbus Richland Bioremediation.1995.391-39
    [93]Dibble J,et al.Effect of environmental Parameters on the biodegradation of oilysludges[J].Apply of Environment Microbiology,1979,6:729~739
    [94]Morgan P. Microbiological methods for the cleanup of soil and ground watercontaminated with halogenated organic compounds[J]. Fems Microbiology Reviews1989,63:277-300.
    [96]Gruiz K, Kriston. In situ bioremediation of hydrocarbon in soil[J]. Journal of SoilContamination,1995,4(2):163-173.
    [97]Josee Gagnon,Michel Perrier,et al,Development of a real-time dontrol system forthe bioventing process[C].In situ bioremediation of petroleum hydrocarbon and otheroganic compounds.Battelle press,1997,177~182.
    [98]Patrick J, Ashcom D.W., Kurrus J.A.Remote monitoring of aBunker C fuel oilbioventing system[J]. In situ bioremediation of petroleum hydrocarbon and otherorganic compounds. Battellepress,1997,189~194.
    [99]Hogg D S, Burden R J,Riddel P J.HMCRI R&D. Conference[C],SanFrancisco,1992.
    [100]Michael D L. Bioventing for in situ remediatin.In Situ Aeration:Air sparging,Bioventing, and RelatedProcesses[J].Battelle Press Columbus. RichlandBioremediation1995,3(2):273~282.
    [101] Downey Douglas C.,Guest Peter R.,Ratz John W..Results of a two-year in situbioventing demonstration[J].Environmental Progress,1995,14(2):121.
    [102]Chen Y M. Mathematical modeling of in-situ bioremediation of volatile organicsin variably saturated aquifers[D] Michigan:University of Michigan,1996.
    [103]Shelton DR, Doherty M A. Model describing Pesticide bioavailbaility andbiodegradation in soil[J]. Soil Science Society of America Journal,1997,61(4):1078-1084.
    [104]Sleep B E,Sykes J F. Modeling the transport of volatile organics in variablysuatrated media,[J]Water Resources Research.1989,25(l):81-92.
    [105]Kao, C. M., C. Y. Chen, et al. Application of in situ biosparging to remediate apetroleum-hydrocarbon spill site: Field and microbial evaluation[J]. Chemosphere,2008,70(8):1492-1499.
    [106]Klaus M. Rathfelder, John R. Lang, Linda M. Abriola. A numerical model(MISER)for the simulation ofcoupled physical, chemical and biological processesin soil vapor extraction and bioventing systems[J]. Journal of Contaminant Hydrology2000,43:239–270.
    [107]F. Javier García Frutosa, Olga Escolanoa, Susana Garcíaa, et al. Bioventingremediation and ecotoxicity evaluation of phenanthrene-contaminated soil[J]. Journalof Hazardous Materials183(2010)806–813.
    [108]F. Diele, F. Notarnicola, I. Sgura. Uniform air velocity field for a bioventingsystem design: some numerical results[J]. International Journal of EngineeringScience2002,40:1199–1210
    [109]R Schwarze, J Mothes, F. Oberneier,H Schreiber. Numerical Modeling of SoilBioventing Processes-Fundamentals and Validation[J]. Transport in Porous Media,2004,55:257–273,.
    [110]J M LLER, P Winther, B Lund, K Kirkebjerg,P Westermann. Bioventing ofdeisel Oil Contaminated soil:composition of degradation rates in soil based on actualoil concentration and on respirometric data[J].Journal of industrial Microbiology,1996,16:110-116.
    [111]Patricia sterreicher-Cunha, Eur′pedes do Amaral Vargas, Jr.,Jean RémyDavée Guimar es, et. al. Evaluation of bioventing on a gasoline–ethanolcontaminated undisturbed residual soil[J]. Journal of Hazardous Materials,2004,110:63–76.
    [112]Kirsten Shewfelt, Hung Lee, Richard G. Zytner. Optimization of nitrogen forbioventing of gasoline contaminated soil[J] J. Environ. Eng. Sci.,2005,4:29–42.
    [113]郑艳梅,李鑫钢,韩玉峰,等.生物曝气去除MTBE的实验[J].天津大学学报,2007,12:1495-1499.
    [114]侯冬利,韩振为,郑艳梅,等.AS和BS去除地下水甲基叔丁基醚污染的研究[J].农业环境科学学报,2006,25(2):364-367.
    [115]隋红,李鑫钢,姜斌,等.甲苯在渗流区的生物通风去除模拟[J].环境科学学报,2004,3(24):470-473.
    [116]杨金凤,陈鸿汉,王春艳,等.强化生物通风修复过程中柴油衰减规律及其影响因素研究[J].环境工程学报,2009,8(3):1488-1492.
    [117]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法
    [M].3版,北京:中国环境科学出版社,1989.
    [118]张英.地下水曝气(AS)去除有机化合物的研究[D].天津:天津大学化工学院,2004:34-36
    [119]Reddy K R, Adams J A. Effect of soil heterogeneity on airflow patterns andhydrocarbon removal during in situ air sparging [J]. Journal of geotechnical andgeoenvironmental engineering,2001,3:234-24.
    [120]Jerffye A Admas.Systeme effects on the remediation of contaminated suatratedsoils and groundwater using airsparging[D]. Chicgao,Universiyt of Illinois,1999.
    [121]Harry J S,Erwin K. On the Role of Metabolic Activity on theTransport andDeposition of Pseudomonas Fluorescens in Saturatedporous Media[J].WaterResearch,2010,44(4):1288-1296.
    [122]Bekhita H M, Mohamed A E, Ahmed E H. Contaminant Transport inGroundwater in the Presence of Colloids and Bacteria: Model Development andVerification[J].Journal of Contaminant Hydrology,2009,108(9):152-167.
    [123]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法
    [M].4版,北京:中国环境科学出版社,2002.
    [124]毛丽华.石油污染土壤生物通风堆肥修复研究[D].北京:中国地质大学,2006.
    [125]郭笃发,姜爱霞.微生物在土壤中的迁移及其影响机制[J].土壤通报,1998,29(4):188-190.
    [126]张瑞玲.甲基叔丁基醚的生物降解机理与微生物在地下水中的迁移[D].天津:天津大学,2007.
    [127]Gargiulo G, Bradford S, im nek J, et al.Bacteria Transport and Depositionunder Unsaturated Conditions: The Role of the Matrix Grain Size and the BacteriaSurface Protein[J]. Journal of Contaminant Hydrology,2007,92:255–273.
    [128]Barton J W,Ford R M. Determination of Effective Transport Coefficients forBacterial Migration in Sand Columns [J]. Application EnvironmentalMicrobiol,1995,61:3329-3335.
    [129]Deeb R A, Alvarez-Cohen L. Temperature Effects and Substrate InteractionsDuring the Aerobic Biotransformation of BTEX Mixtures by Toluene-EnrichedConsortia and Rhodococcus rhodochrous[J]. Biotechnology and bioengineering,1999,62(5):531-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700