用户名: 密码: 验证码:
东辽河流域水生态功能分区与控制单元水质目标管理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东辽河流域做为辽河的源头区,水环境形势日益严峻,水质性缺水对流域内的工农业生产、居民生活和生态环境造成了严重的影响。目前对东辽河流域水环境特征和水环境管理技术体系缺乏系统深入的研究,尚未建立“污染源—入河排污口—水环境质量”的总量监控体系,不能对污染物排放实施有效的监督管理,难以对东辽河的水环境实现有效保护。
     因此,本文结合典型重点流域水污染防治的实际需求和国家污染控制的重大需求,在“分区、分类、分级、分期”水环境管理理念指导下,以东辽河流域为研究区,调查分析了流域水生态系统特征,对流域水生态健康状况进行了评价;在此基础上,对影响东辽河流域水生态格局的主要控制因子进行识别,提出了流域水生态功能区与控制单元划分的基本原则及方法;对各控制单元的污染负荷进行模拟计算;应用WASP模型建立了流域污染源排放与河流水质之间的输入-响应关系;研究了控制单元的水环境容量计算和污染负荷削减技术方法,提出了东辽河流域水质目标管理方案。研究成果为保障东辽河流域水生态安全与健康,制订东辽河流域水污染防治总体方案提供技术支持。本文主要包括以下几个方面的
     内容:
     1、东辽河流域水生态系统调查与特征分析
     (1)流域水生态环境调查与分析
     针对辽河流域自然地理条件的特点,基于“3S”技术、统计资料收集和监测等手段,分别于2010年7月和10月、2011年4月对东辽河水体的物理、化学和水文特征进行了调查与分析,在2010年9月对东辽河水质、河岸带植被、土壤理化性质、底质、水生生物的种类、数量和分布特征等进行了全面调查与分析。野外调查与室内分析结果表明,目前东辽河TN超标最为严重,其次为氨氮、TP和CODMn,水质整体呈V类,大部分监测河段未能达到水功能区的水质目标要求。
     (2)流域水生态系统健康评价
     在对东辽河18个断面水文、水质、水生生物、栖息地状况实地调查的基础上,应用层次分析法和模糊综合评价法,建立东辽河流域水生态健康评价指标体系,评价了东辽河水生态系统的健康状况。评价结果表明,东辽河水生态健康的状况为:在18个采样点中,2个健康,1个亚健康,5个临界,10个病态,说明东辽河流域水生态健康状况不容乐观。
     2、水生态功能区与控制单元的划分
     根据野外调查结果,参考研究区地形地貌、水文水质、气象、植被、水资源分布状况及社会经济状况等资料,识别影响东辽河流域水生态格局的主要控制因子。建立了东辽河流域一、二、三级水生态功能分区的指标体系,并提出了区划方法,将东辽河流域划分为2个水生态功能一级区、4个水生态功能二级区和13个水生态功能三级区;综合考虑水生态功能三级分区结果、主要污染影响范围、水文单元完整性、行政单元完整性以及流域污染控制可操作性等因素,将东辽河流域划分为14个控制单元。
     3、控制单元污染负荷核算
     (1)非点源污染负荷计算
     首先建立了东辽河流域空间数据库和属性数据库(数字高程模型,土壤类型、土地利用空间和属性数据库);然后应用SWAT模型,将研究区划分为35个子流域和357个水文响应单元,并采用东辽河泉太站点2005-2009年的实测逐月径流数据对模型进行校准和验证,建立东辽河流域非点源污染模拟模型;最后应用建立的非点源污染模拟模型模拟计算了2009年东辽河流域氮、COD等非点源污染负荷量,分析了非点源污染的时空分布特征。
     (2)点源污染负荷计算
     根据2009年统计数据及污染源普查数据,应用排污系数法计算点源污染物的排放量。
     (3)东辽河流域污染源分析
     通过对东辽河各控制单元污染负荷核算结果的分析表明,东辽河上游氨氮负荷主要来源于畜禽养殖,下游主要来源于农业非点源污染,COD负荷来源于非点源、畜禽养殖、居民生活污染源。总体上,东辽河流域COD和氨氮主要来源于农业非点源和畜禽养殖业,其中农业非点源其对COD和氨氮排放的贡献率分别为22.5%、50%,畜禽养殖对COD和氨氮排放的贡献率为71.8%、34.6%。
     4、流域污染源排放与河流水质之间的输入-响应关系的建立
     开发应用流域水质模型(WASP7.3),建立了与控制单元水体特征相适应的东辽河水质模拟模型,分析了东辽河主要污染物(氨氮、COD)的空间分布特征,建立了东辽河水质状况和污染源排放污染物数量之间的响应关系。结果表明,东辽河氨氮和COD在第8段到第10段(辽源市入口到二龙山水库入口处)浓度最大,此河段氨氮浓度在枯水期最大,COD在平水期浓度较大,其余各河段污染物浓度在时间上变化不大。
     5、控制单元水环境容量的计算
     确定各断面的设计水文条件和水质目标,依据所建立东辽河水质模拟模型,应用试错法对东辽河水环境容量进行了研究,然后应用层次分析法获得了各控制单元的水环境容量。结果表明:在P25、P50、P75流量保证率和30Q10的四个设计流量下,东辽河的氨氮环境容量分别为1754.75吨/年、720.33吨/年、155.69吨/年/、56.18吨/年;COD环境容量分别为158055.23吨/年、67651.49吨/年、13977.00吨/年、1104.31吨/年
     6、东辽河水质目标管理方案
     参考美国TMDL水质管理模式,采用等比分配法将允许负荷分配到各污染源,同时考虑安全临界值,计算了东辽河各控制单元在不同流量模式下的污染负荷削减量,据此提出了东辽河水质目标管理方案。
Dongliao River watershed, as the headwater region of Liao River, the situation of water environment is imminent. Water scarcity and degraded water quality have posed great threat to the industrial and agricultural production, resident life and ecological environment in Dongliao River watershed. In addition, it is lack of analysis on the water Environment Characteristics and water quality target management technology in Dongliao River watershed. Total quantity control system of pollution source-pollution discharge-water quality is also not established. So it can not implement effective supervision and management of pollutants, causing the water quality control and improvement of Dongliao River in extremely difficulty.
     The study is based on the actual demand of water pollution control in main typical river and the great demand of national pollution control. Under guidance of "regionalization, classification, grading, staging" water environment management theory, taking Dongliao River as study area, the regional characteristics and health status of aquatic ecosystem were studied, and spatial heterogeneity and drive mechanism of regional environmental factors were identified. The method and technology of aquatic ecoregion and control unit devision were established. The pollution loads in control unit were modeling and calculated. Based on WASP model, the input-response relation between pollution loads and water quality was established. The technology and methods of control-unit-based water environment capacity calculation and pollution loads reduction were studied and control-unit-based management technology of water quality target in Dongliao River watershed was established. The results provide technology support for the security and health of aquatic ecosystem and general scheme establishment of water pollution control in Dongliao River. The main contents include:
     1. Investigation and characteristic analysis of aquatic ecosystem in Dongliao River watershed
     (1) The investigation and analysis of aquatic ecosystem
     According to the characteristics of the natural conditions in Dongliao River, the investigation and analysis of physical, chemistry and hydrology characteristic of Dongliao River water body was carried out in July and October2010, April2011. In September2010, water quality, riparian zone vegetation and soil, sediment, the species, quantity and distribution of aquatic organisms were investigated and analyzed. The results showed that the concentration of TN went beyond the standard greatly, then were ammonia nitrogen, TP, CODMn·The water quality was mainly Class V, and monitoring reaches could not come up to the water quality target in functional area.
     (2) Assessment of aquatic eco-health in the watershed
     Based on investigation of hydrology, water quality, aquatic organisms and habitat condition, the analytical hierarchy process and fuzzy synthetic evaluation method were used to set up assessment index system of aquatic eco-health and evaluate the aquatic ecos-health grade in Dongliao River watershed. The results showed that among18samplings, there are two health, one sub-health, five threshold, ten morbidity, which illustrate that the aquatic eco-health condition of Dongliao River is not optimistic.
     2. Aquatic ecoregion and control unit devision
     Based on the field investigation results and the related data of Dongliao river (spatial information data, hydrology and water quality, meteorological data, geology geomorphology, vegetation, water source distribution and socioeconomic status), the main control factors that influencing the aquatic ecosystem pattern in Dongliao River watershed were identified and the division method and index system of first, second and third level aquatic ecoregion were also established. Dongliao River watershed can be divided into2Grade I aquatic eco-regions,4Grade II aquatic eco-regions,13Grade III aquatic eco-regions. Considering the Grade III aquatic eco-regions, pollution influence area, integrity of hydrological unit and administration cell, operability of pollution control, Dongliao River watershed can be divided into14control units based on GIS technology.
     3. Estimation of pollution loads in control unit
     According to the spatial and attribute database of Dongliao River watershed, SWAT model was applied to establish non-point source pollution model. First, the whole watershed was divided into35sub-basins and357HRU. Then the observed monthly streamflow data from2005to2009were used to calibrate and validate the model. Finally, the model was used to simulate the non-point source pollutant loads (nitrogen, COD) in2009, analyze the temporal and spatial distribution characteristics of non-point source pollution.
     (2) Estimate the point source pollution load
     According the statistical data and pollution source census data, pollution discharging coefficient method was used to estimate the discharge amount of point source pollutants.
     (3) Pollutant source solution analysis
     Through the analysis of pollution loads accounting results, the ammonia nitrogen load in upstream mainly came from livestock and poultry raising, and the ammonia nitrogen load in downstream mainly came from agricultural non-point source pollution. The COD load mainly came from livestock and poultry raising, agricultural non-point source pollution and domestic discharge. In general, the ammonia nitrogen and COD loads were mainly from livestock and poultry raising, agricultural non-point source pollution. The contribution rates of agricultural non-point source pollution to ammonia nitrogen and COD loads were22.5%,50%, respectively, and that of livestock and poultry raising were71.8%、34.6%, respectively.
     4. Establishment of input-response relationship between pollutant and water quality
     Applied WASP7software, the water quality of control unit in Dongliao River is modeled, which explains the temporal and spatial distribution characteristics of ammonia nitrogen and COD. Then the response relationship of water quality with pollution load was set up. The results showed that the concentration of ammonia nitrogen and COD were highest in segment8and10, which was located in the Liaoyuan city, and the concentration of ammonia nitrogen in this segment was highest in dry period, while the concentration of COD in this segment was highest in normal water flow period. The concentration of pollutants in other segments changed little in temporal and spatial distribution.
     5. Calculation of water environment capacity in control unit
     According to the water quality target and design hydrological conditions, the input-response relationship of pollutant and water quality was applied to calculate the water environment capacity of control unit using the trial-and-error method. The AHP (the analytic hierarchy process) was used to calculate the weighted ratio of the water environment capacity in each control unit to the water environment capacity of the study area, and the water environment capacity was allocated in each control unit. The results showed that the NH3-N environmental capacities in25%,50%,75%assurance rate and30Q10design flow in Dongliao River was1754.75t/a,720.33t/a,155.69t/a,56.18t/a, respectively. The COD environmental capacities in25%,50%,75%assurance rate and30Q10design flow in Dongliao River was158055.23t/a,67651.49t/a,13977.00t/a,1104.31t/a.
     6. Control-unit-based management technology of water quality target in Dongliao River watershed
     Based on the TMDL in total load control technology of pollutants in watershed, the ration apportionment method was used to allocate permitting pollution load to point source and non-point source and the margin of safety was also considered. Then the reduction load of pollution was calculated according to different flow pattern. Finally the control-unit-based water-quality target management technology scheme for Dongliao River was proposed.
引文
[1]杨玲.纂江干流江津段水环境容量研究[D].重庆:西南大学,2009.[2]赵璐璐.辽河流域水生态系统功能评价及主要驱动因子识别[D].沈阳:辽宁大学,2011.[3]苏杰.辽河流域水环境时空差异性评价[D].沈阳:辽宁大学,2011.[4]尹华,董晨阳,刘适搏,等.东辽河流域吉林省境内水环境污染现状及防治措施研究[J].长春理工大学学报(自然科学版),2010,33(3):111-114.[5]刘建,邹晓天,尹华.东辽河流域水资源开发利用现状及节水潜力分析[J].长春理工大学学报(自然科学版),2011,34(3):125-127.[6]贾纯刚,李克东.东辽河上游水文特征分析[J].吉林水利,2010(5):87-90.[7]严登华,何岩,邓伟,等.东辽河水质演化及其对环境酸化的响应[J].水土保持通报,2002,22(4):1-5.[8]严登华,何岩,邓伟,等.东辽河流域地表水水质空间格局演化[J].中国环境科学,2001,21(6):564-568.[9]谭恒,赵文晋,伦王.东辽河分水期污染物通量估算研究[J].安徽农业科学,2012,40(1):337-339.[10]冯明一,王文泽.东辽河河道内生态需水量分析计算[J].吉林水利,2006(11):11-16.[11]罗阳.流域水体污染物最大日负荷总量控制技术研究[D].杭州:浙江大学,2010.[12]史铁锤.湖州市环太湖河网区水环境容量与水质管理研究[D].杭州:浙江大学,2010.[13]孟伟,张楠,张远,等.流域水质目标管理技术研究—控制单元的总量控制技术[J].环境科学研究,2007,20(4):1-8.[14]U S EPA. Overview of current total maximum daily load-tmdl-program and regulations[EB/OL].[2011-06-15]. http://www.epa.gov/owow/tmdl/intro.html.[15]Ormsbee L, Elshorbagy A, Zechman E. Methodology for pH total maximum daily loads:Application to beech creek water shed [J]. Journal of Environmental Engineering-ASCE,2004,130(2):167-174.[16]Rothenberg S E, Ambrose R F, Jay J A. Evaluating the potential efficacy of??mercury total maximum daily loads on aqueous methylmercury levels in four coastal watersheds [J]. Environmental Science&Technology,2008,42(14):5400-5406.[17]莫蕾.鄱阳湖污染物最大日负荷估算和分配研究[D].江西:南昌大学,2009.[18]刘赣明.最大负荷总量(TMDL)模式下的污染负荷分配研究[D].广东:中山大学,2005.[19]Dilks D W, Freedman P L. Improved consideration of the margin of safety in total maximum daily load development[J]. Journal of Environmental Engineering-ASCE,2004,130(6):690-694.[20]方晓波.钱塘江流域水环境承载能力研究[D].杭州:浙江大学,2009.[21]Elshorbagy A, Teegavarapu R S V, Ormsbee L. Total maximum daily load (TMDL) approach to surface water quality management: nconcepts, issues, and applications[J]. Canadian Journal of Civil Engineering,2005,32(2):442-448.[22]Kang M S, Park S W, Lee J J, et al. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields[J]. Agricultural Water Management,2006,79(1):72-92.[23]White D A, King K W. Use of SWAT to quantify TMDL load allocations for a large watershed in western Ohio (USA)[A].2nd Conference on Total Maximum Daily Load (TMDL) Environmental Regulations [C]. Albuquerque:NM Amer Soc Agr Engineers,2003.[24]石秋池.欧盟水框架指令及其执行情况[J].中国水利,2005,52(22):65-66.[25]王卫平.九龙江流域水环境容量变化模拟及污染物总量控制措施研究[D].厦门:厦门大学,2007.[26]赵华林,郭启民,黄小赠.日本水环境保护及总量控制技术与政策的启示—日本水污染物总量控制考察报告[J].国际瞭望,2007,386(12):82-87.[27]张丽.湖泊水环境容量研究——以洱海为例[D].昆明:昆明理工大学,2008.[28]李迪.基于SWAT模型的东辽河流域农业非点源污染模拟研究[D].长春:吉林大学,2011.[29]曹艳,张宝新.东辽河流域水文气象特性分析[J].吉林水利,2006(6):30-32.[30]HJ/T91-202,地表水和污水监测技术规范[S].[31]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境??科学出版社,2002.[32]SL219-98.水环境监测规范[S].[33]GB3838-2002.《地表水环境质量标准》[S].[34]宋述军,周万村.沱江流域地表水水质的模糊综合评价[J].水土保持研究,2007,14(6):128-130.[35]李俊.石头口门水库汇水流域农业非点源污染的模拟研究[D].长春:吉林大学,2009.[36]王博,韩合.内梅罗指数法在水质评价中的应用和缺陷[J].中国城乡企业卫生,2005,12(6):16-17.[37]丁雪卿.改进的内梅罗污染指数法在集中式饮用水源地环境质量评价中的应用[J].四川环境,2010,29(2):47-51.[38]郑奕.塔里木河上游与下游地区天然植被群落特征对比分析[J].干旱区资源与环境,2008,22(1):152-156.[39]Margalef R. Information theory in ecology[J]. General Systems,1958(3):36.[40]蔡立哲,马丽,高阳,等.海洋底栖动物多样性指数污染程度评价标准的分析[J].厦门大学学报:自然科学版,2002,41(5):641-646.[41]GB15618-1995.土壤环境质量标准[S].[42]桑稳姣,程建军.墨水湖底泥重金属污染现状与评价研究[J].安徽农业大学学报,2008,35(3):469-472.[43]郭坤荣.大汶河生态健康评价研究[D].山东师范大学,2007.[44]李春晖,崔嵬,庞爱萍,等.流域生态健康评价理论与方法研究进展[J].地理科学进展,2008,27(1):9-17.[45]付爱红,陈亚宁,李卫红.基于层次分析法的塔里木河流域生态系统健康评价[J].资源科学,2009,31(9):1535-1544.[46]赵彦伟,杨志峰.城市河流生态系统健康评价初探[J].水科学进展,2005,16(3):349-355.[47]吴阿娜.河流健康状况评价及其在河流管理中的应用[D].上海:华东师范大学,2005.[48]张远,郑丙辉,刘鸿亮,等.深圳典型河流生态系统健康指标及评价[J].水资源保护,2006,22(5):13-18.[49]Zhang M K, Ke Z X. Heavy metals, Phosphorus and someother elements in??Urban soil of Hangzhou City, China[J]. Pedosphere,2004,14(2):177-185.[50]滑丽萍,华珞,高娟,等.中国湖泊底泥的重金属污染评价研究[J].土壤,2006,38(4):366-373.[51]蔡立哲.大型底栖动物污染指数(MPI)[J].环境科学学报,2003,23(5):265-269.[52]Crowly J M. Biogeography[J]. Canadian Geographer1967,11(4):312-326.[53]Bryce S A, Clarke S E. Landscape-level ecological regions:Linking state-level ecoregion frameworks with stream habitat classifications[J]. Environmental Management,1996,20(4):297-311.[54]Hessburg P F, Salter R B, Richmond M B, et al. Ecological subregions of the interior Columbia Basin, USA[J]. Applied Vegetation Science,2000,3(2):163-180.[55]McMahon Q Gregonis S M, Waltman S W, et al. Developing a spatial framework of common ecological regions for the conterminous United States[J]. Environmental Management,2001,28(3):293-316.[56]Jenerette D, Lee J, Waller D, et al. Multivariate analysis of the ecoregion delineation for aquatic systems[J]. Environmenta Management,2002,29(1):67-75.[57]Loveland T R, Merchant J M. Ecoregions and ecoregionalization geographical and ecological perspectives [J]. Environmental Management,2004,34(s1): s1-s13.[58]谢高地,鲁春霞,甄霖,等.区域空间功能分区的目标、进展与方法[J].地理科学,2009,28(3):561-570.[59]黄艺,蔡佳亮,郑维爽.流域水生态功能分区以及区划方法的研究进展[J].生态学杂志,2009,28(2):542-548.[60]黄艺,蔡佳亮,吕明姬,等.流域水生态功能区划及其关键问题[J].生态环境学报,2009,18(5):1995-2000.[61]Spalding M D, Fox H E, Allen G R, et al. Marine ecoregions of the world:a bioregionalization of coast and shelf areas [J]. Bioscience,2007,57(7):573-583.[62]Abell R, Thieme M L, Revenga C, et al. Freshwater ecoregions of the world:a new map of biogeographic units for freshwater biodiversity conservation[J].??Bioscience,2008,58(5):403-414.[63]孟伟,张远,郑丙辉,等.水生态区划方法及其在中国的应用前景[J].水科学进展,2007,18(2):293-300.[64]唐涛,蔡庆华.水生态功能分区研究中的基本问题[J].生态学报,2010,30(22):6255-6263.[65]刘星才,徐宗学,徐琛.水生态一、二级分区技术框架[J].生态学报,2010,30(17):4804-4814.[66]Gao Y N A, Gao J F, Chen J F, et al. Regionalizing Aquatic Ecosystems Based on the River Subbasin Taxonomy Concept and Spatial Clustering Techniques[J]. International Journal of Environmental Research and Public Health,2011,8(11):4367-4385.[67]Zhou B H, Zheng B H. Research on aquatic ecoregions for lakes and reservoirs in China[J]. Environmental Monitoring and Assessment,2008,147(1-3):339-350.[68]李艳梅,曾文炉,周启星.水生态功能分区的研究进展[J].应用生态学报,2009,20(12):3101-3107.[69]国家环境保护总局.生态功能区划暂行规程[R].2003.[70]环境保护部,中国科学院.全国生态功能区划[R].2008.[71]吕晋,邬红娟,林济东,等.主成分及聚类分析在水生态系统区划中的应用[J].武汉大学学报(理学版),2005,51(4):461-466.[72]孟伟,张远,郑丙辉.辽河流域水生态分区研究[J].环境科学学报,2007,7(6):911-918.[73]郑乐平,乐嘉斌,瞿书锐.国外水生态区评价对我国的启示[J].水资源保护,2009,26(3):83-85.[74]张鹤.辽河流域控制单元划分与典型污染物识别[D].沈阳:辽宁大学,2011.[75]中国环境规划院.全国水环境容量核定技术指南[R].2003.[76]田旭东,汪小泉.钱塘江流域污染负荷及水环境容量研究[J].环境污染与防治,2008,30(7):74-78.[77]金蕾,华蕾,荆红卫,等.非点源污染负荷估算方法研究进展及对北京市的应用[J].环境污染与防治,2010,32(4):72-78.[78]杨勇,张宏伟,王媛,等.天津市非点源污染现状研究[J].江苏环境科技,2007,20(3):1-4.[79]李怀恩.估算非点源污染负荷的平均浓度法及其应用[J].环境科学学报,2000,20(4):397-400.[80]李家科,李怀恩,刘健,等.基于暴雨径流过程监测的渭河非点源污染特征及负荷定量研究[J].水土保持通报,2008,28(2):106-111.[81]Basnyat P, Teeter L D, Flynn K M, et al. Relationships between landscape characteristics and nonpoint source pollution inputs to coastal estuaries[J]. Environmental Management,1999,23(4):539-549.[82]蔡明,李怀恩,庄咏涛.估算流域非点源污染负荷的降雨量差值法[J].西北农林科技大学学报,2005,33(4):102-106.[83]Evans B M, Lehning D W, Corradini K J, et al. A Comprehensive GIS-Based Modeling Approach for Predicting Nutrient Loads in Watersheds[J]. J. of Spatial Hydrology,2002,2(2):1-18.[84]Young R A, Onstad C A, Bosch D D, et al. AGNPS, Agricultural nonpoint source pollution model:A watershed analytical tool[R]. Washington, D.C.:USD A,1986.[85]Beasley D B, Huggins L F, Monke E J. ANSWERS:A model for watershed planning [J]. Trans of the ASAE,1980,23(4):938-944.[86]Arnold J Q Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment:Part I. Model development[J]. J. Am. Water Resources Assoc,1998,34(1):73-89.[87]Bicknell B R, Imhoff J C, Kittle J L, et al. Hydrologic Simulation Program-FORTRAN (HSPF) User's Manual for Release10[R]. Athens, Ga.:U.S. EPA Environmental Research Lab,1993.[88]赵磊.非点源污染负荷核算方法研究[J].环境科学导刊,2008,27(4):9-13.[89]郝芳华,程红光,杨胜天.非点源污染模型—理论方法与应用[M].北京:中国环境科学出版社,2006.[90]Gassman P W, Reyes M R, Green C H, et al. The Soil and Water Assessment Tool: historical development, applications and future research directions[J]. Trans.Am.Soc.Agric.Biol.Engrs,2007,50(4):1211-1250.[91]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.[92]陈军锋,陈秀万.SWAT模型的水量平衡及其在梭磨河流域的应用[J].北京大学学报(自然科学版),2004,40(2):265-270.[93]Lei Zhang, Wenxi Lu, Yonglei An, et al. Response of non-point source pollutant loads to climate change in the Shitoukoumen reservoir catchment[J]. Environ Monit Assess,2012,184:581-594.[94]吴秀芹,张洪岩.ArcGIS9地理信息系统应用与实践[M].北京:清华大学出版社,2007.[95]吉林省土壤肥料总站.吉林土壤[M].北京:中国农业出版社,1998.[96]吉林省土壤肥料总站.吉林土种志[M].长春:吉林科技出版社,1997.[97]原杰辉.SWAT模型在农业非点源污染研究中的应用[D].吉林大学,2009.[98]王艳君,吕宏军,姜彤.子流域划分和DEM分辨率对SWAT径流模拟的影响研究[J].水文,2008,28(3):22-26.[99]Muleta M K, Nicklow J W. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model[J]. Journal of Hydrology,2005,306(1-4):127-145.[100]Nasha J E, Sutcliffea J V. River flow forecasting through conceptual models: part I-a discussion of principles [J]. Journal of Hydrology,1970(10):282-290.[101]Santhi Q Arnold J Q Williams J R, et al. Validation of the SWAT model on a large river basin with point and nonpoint sources[J]. Journal of American Water Resources Association,2001,37(6):1169-1188.[102]王素娜.曹娥江支流水质评价与河流水系环境容量分析[D].杭州:浙江大学,2005.[103]流域水污染总量控制技术与示范[M].北京:中国科学出版社,2008.[104]程美莉.成都市河网水系水环境容量研究[D].成都:西南交通大学,2008.[105]赵庆娟.水质模型预测东河河段最大允许排污量[J].云南环境科学,2005,24(z1):85-88.[106]安立强.辽河流域水力与水质数值分析[D].哈尔滨:哈尔滨工业大学,2009.[107]Shu Wenpin. The use of a water quality model to evaluate the impacts of combined sewer overflows on the Lower Hudson River[D]. Newark, New Jersey, United States:New Jersey Institute of Technology,2004.[108]Ambrose R B, Jr P E. WASP7Stream Transport-Model Theory and User's Guide??[R]. U.S. Environmental Protection Agency, Office of Research and Development National Expsoure Research Laboratory-Ecosystems Research Division,2009.[109]Peng Sen, Fu George Yu-zhu, Zhao Xin-hua. Integration of USEPA WASP model in a GIS platform[J]. Journal of Zhejiang University-Science A,2010,11(12):1015-1024.[110]Wool T A, Ambrose R B, Martin J L, et al. Water Quality Analysis Simulation Program (WASP) Version6.0, DRAFT: User's Manual[M]. Georgia:US Environmental Protection Agency-Region4, Atlanta,2001.[111]Rui Z, Stephen C, Leslie S, et al. Integrated hydrodynamic and water quality modeling system to support nutrient total maximum daily load development for Wissahickon Creek, Pennsylvania[J]. Journal of Environmental Engineering-ASCE,2006,132(4):555-566.[112]杨家宽,肖波,刘年丰,等.WASP6水质模型应用于汉江襄樊段水质模拟研究[J].水资源保护,2005,21(4):8-10.[113]Absar Ahmad Kazmi, Ian Sehested Hansen. Numerical models in water quality management:a case study for the Yamuna river (India)[J]. Water Science and Technology,2006,36(5):193-200.[114]Ming-liang Zhang. development and application of a eutrophication water quality model for river networks[J]. Hournal of Hydrodynamics,2008,20(6):719-726.[115]Samuela Franceschinia,Tsaib Christina W. Assessment of uncertainty sources in water quality modeling in the Niagara River[J]. Advances in Water Resources,2010,33(4):493-503.[116]Sen Peng, George Yu-zhu Fu,Zhao Xin-hua. Integration of USEPA WASP model in a GIS platform [J]. Journal of Zhejiang University-Science A,2010,11(12):1015-1024.[117]Kish S M, Barkett J, Warwick J J, et al. Long-term dynamic modeling approach to quantifying attached algal growth and associated impacts in dissolved oxygen in the Lower Truckee River, Nevada[J]. Journal of Environmental Engineering,2006,132(10):1366-1375.[118]Bongartz K, Steele T D, Baborowski M, et al. Monitoring. Assessment and modelling using water quality data in the Saale River Basin, Germany[J]. Environmental Monitoring and Assessment,2007,135:227-240.[119]Lina C E, Chena C T, Kaoa C M, et al. Development of the sediment and water quality management strategies for the Salt-water River, Taiwan[J]. Marine Pollution Bulletin,2011,63(5-12):528-534.[120]孙文章,曹升乐,徐光杰.应用WASP对东昌湖水质进行模拟研究[J].山东大学学报(工学版),2008,38(2):83-86.[121]王旭东,刘素玲,张树深,等.白洋淀水域WASP富营养化模型改进研究[J].环境科学与技术,2009,32(10):19-24.[122]李云生,刘伟江,吴悦颖,等.美国水质模型研究进展综述[J].水利水电技术,2006,37(2):68-73.[123]孙学成,邓晓龙,张彩香,等.WASP6系统在三峡库区水质仿真中的应用[J].三峡大学学报(自然科学版),2003,25(2):184-188.[124]刘兰岚,张永红.WASP水质模型在辽河干流污染减排模拟中的应用[J].环境科学与管理,2010,35(5):160-163.[125]路成刚.基于WASP7.3的南四湖水质模拟分析研究[D].青岛:青岛理工大学,2010.[126]程一曼.基于WASP7的渭河陕西段水质模拟分析研究[D].陕西:西北大学,2008.[127]于顺东.WASP水质模型应用与DO模型评价[D].天津:天津大学,2007.[128]Li Yingxia, Qiu Ruzhi, Yang Zhifeng, et al. Parameter determination to calculate water environmental capacity in Zhangweinan Canal Sub-basin in China[J]. Journal of Environmental Sciences,2010,22(6):904-907.[129]杨杰军,王琳,王成见,等.中国北方河流环境容量核算方法研究[J].水利学报,2009,40(2):194-200.[130]张俊.大沽河干流青岛段水环境容量研究[D].青岛:中国海洋大学,2003.[131]张永量,刘培哲.水环境容量综合手册[M].北京:清华大学出版社,1991.[132]Su Baolin, Wang chengwen, Shengtong Cheng. Water environmental capacity at watershed scale:a case study in the Yong River system[J]. IAHS Publ.,2009,335:266-275.[133]孟伟.流域水污染物总量控制技术与示范[M].北京:中国环境科学出版社,2008.[134]DB22/388-2004.吉林省地表水功能区[S].[135]夏杰.大渡河泸定段水环境容量研究[D].四川:四川农业大学,2009.[136]袁寿荣.陆良县水污染控制线性规划研究[J].云南环境科学,2000,19(4):21-22.[137]孙秀喜,冯耀奇,丁和义.河道污染物总量分配模型的建立及分析方法研究[J].地下水,2005,27(6):427-429.[138]李如忠,钱家忠,汪家权.水污染物允许排放总量分配方法研究[J].水利学报,2003(5):112-116.[139]王涛.区域水环境容量测算方法及总量分配研究[D].北京:北京交通大学,2009.[140]孟伟,张远,张楠,等.流域水生态功能分区与质量目标管理技术研究的若干问题[J].环境科学学报,2011,31(7):1345-1351.[141]叶兴平,张玉超.TMDL计划在污染物总量控制中的应用初探[J].环境科学与管理,2008,33(8):13-17.[142]梁博,王晓燕,曹利平.最大日负荷总量计划在非点源污染控制管理中的应用[J].水资源保护,2004(4):37-41.[143]邢乃春,陈捍华.TMDL计划的背景、发展进程及组成框架[J].水利科技与经济,2005,11(9):534-537.[144]吴英霞.珠江凤凰城水污染物总量控制研究[D].北京:中国海洋大学,2004.[145]沈松涛.安昌河流域绵阳市培城区段[D].成都:西南交通大学,2005.[146]郭蕾.水污染物排放总量控制研究—以天津市为例[D].江苏:江苏大学,2010.[147]柴群宇.富春江流域水环境容量研究[D].杭州:浙江大学,2004.[148]王娜.玉门河水环境评价及排放总量控制研究[D].天津:天津大学,2007.[149]刘忠熳.松花江哈尔滨市江段地表水环境容量测算及总量控制研究[D].长春:吉林大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700