用户名: 密码: 验证码:
外源信号分子及肠道菌群对脆弱拟杆菌群体感应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     细菌之间的交流是通过分泌和感应一种被称为自诱导剂(Autoinducer, AI)的信号分子来实现的。细菌根据这种特定信号分子浓度的变化来监测周围环境中其他细菌数量的变化,这种信号传递的过程称为群体感应(Quorum-sensing, QS)。现有报道的细菌QS环路有三种机制:革兰阳性菌以修饰多肽作为信号调节分子;革兰阴性菌主要以典型的LuxI/LuxR系统通过产生一类信号分子N-酰基-高丝氨酸内酯类(AHL)进行群体感应;另外一种QS分子目前认为是二类信号分子(呋喃硼酸二酯),为革兰阴性菌和阳性菌共有。最近几年,有关需氧菌的QS系统研究方兴未艾,研究范围越来越广。但是,厌氧菌的QS系统类似研究至今还未见报道。
     脆弱拟杆菌占人体肠道菌群的比例约为1%-2%,是引起胃肠感染的最主要的厌氧菌,多种因素导致该菌可以在肠道内大量存在并形成生物膜。脆弱拟杆菌生物膜形成是否与QS有关,该菌是否产生一类QS信号分子AHL,以及AHL与肠道菌群对该菌生物学活性的影响,目前相关研究报道极少,因此,本研究重点研究了UPLC-MS(四极杆飞行时间质谱,Q-TOF-MS)检测AHL分子的影响因素,创建了基于UPLC-MS技术的细菌群体感应一类信号分子AHL的检测平台,为系统研究肠道微生态细菌的信号传导提供实验技术和方法。另外采用分子生物学技术探讨脆弱拟杆菌是否存在QS环路系统,同时分析了与脆弱拟杆菌密切相关的其他肠道细菌及外源性AHL对脆弱拟杆菌QS相关基因表达的影响,为进一步研究其群体感应发生机制奠定基础。
     实验一N-酰基-高丝氨酸内酯类群体感应信号分子检测方法的建立
     方法:采用UPLC/MS (Q-TOF-MS)代谢组学分析方法检测6种N-酰基-高丝氨酸内酯标准品,重点考察UPLC-MS检测AHL分子的各种参数,包括溶剂的选择、流动相的优化、滤膜孔径、质谱的电喷雾离子化模式、色谱柱的选择、质谱条件的优化、AHL提取分离的前处理条件、AHL分子在质谱中的离子化特点等。
     结果:创建了基于UPLC-MS技术的细菌群体感应系统一类信号分子AHL的检测平台,其检测参数为:正离子电喷雾离子化模式、Aquity C181.7μm2.1mm×100mm色谱柱,乙腈作为AHL溶剂及流动相。AHL内酯环结构在质谱鉴定过程中不会被破坏,在电喷雾电离四极杆飞行时间质谱中总保持m/z为102.05和74.05的特征峰组合(N-已酰-DL-酰基高丝氨酸内酯只见102.05特征峰),三氯甲烷甲醇水混合液作为萃取剂提取细菌培养液中AHL的灵敏度为5ng/ml。
     实验二基于UPLC-MS技术检测脆弱拟杆菌群体感应一类信号分子AHL
     方法:采用PCR方法扩增实验菌株(包括脆弱拟杆菌、5种双歧杆菌、大肠埃希菌、屎肠球菌、金黄色葡萄球菌、副溶血弧菌、阴沟肠杆菌、鲍曼不动杆菌、伤寒沙门菌)的16SrRNA基因并测序,确保实验菌株鉴定的准确性;在确定UPLC-MS (Q-TOF-MS)检测AHL的各种检测参数后,采用该方法对脆弱拟杆菌和其他多种细菌的菌液提取物中是否存在AHL进行了检测,并以AHL标准品做对照实验。
     结果:实验菌株16SrRNA基因序列与GenBank数据库序列同源性大于98%,采用UPLC-MS:法检测溶于不同细菌培养液中AHL标准品,其电喷雾电离四极杆飞行时间质谱均见m/z为102.05特征离子碎片或102.05和74.05特征碎片组合(N-已酰-DL-酰基高丝氨酸内酯只见102.05特征峰),而脆弱拟杆菌和其他多种细菌的菌液均未检测到AHL。
     实验三脆弱拟杆菌生物学特性的研究
     方法:采用甘油厌氧肉汤及甘油普通肉汤对脆弱拟杆菌进行保存,观察在不同时间及不同温度保存条件下的存活状况,同时观察反复冻融10次对其存活力的影响。另将脆弱拟杆菌菌液分别暴露在空气中5min、10min、30min、60min、90min、120min、150min、180min、24h,观察不同时间段脆弱拟杆菌的的生存力及生存率的变化。
     结果:接种于甘油厌氧肉汤及普通肉汤中的脆弱拟杆菌在-20℃及-80℃两种温度下保存3个月后,反复冻融10次后均能培养成功,与空气接触180min时仍生存,24h后即死亡,与空气接触5min,10min,30min,60min后生存率分别为84.1%,68.1%,46.4%,34.8%。
     实验四外源信号分子及肠道菌群对脆弱拟杆菌生物学活性的影响
     方法:将5种肠道常见菌的培养上清液及2种AHL标准品加入厌氧血培养液中,用于脆弱拟杆菌培养,检测不同培养时间段的脆弱拟杆菌菌液OD值,分析其在不同培养环境的生长曲线变化。
     结果:脆弱拟杆菌在厌氧血培养液、含十二烷基高丝氨酸内酯、大肠杆菌、金黄色葡萄球菌、屎肠球菌上清液、酮乙酰基高丝氨酸内酯的厌氧血培养中培养时,其进入对数期的时间分别为8h、6h、6h、6h、10h、10h,其进入稳定期时间分别为10h、8h、8h、8h、24h、24h,脆弱拟杆菌在含其他细菌上清液的厌氧血培养液中进入对数期及稳定期的时间与空白厌氧血培养液一致。
     实验五荧光定量PCR法检测不同培养环境脆弱拟杆菌群体感应相关基因的表达
     方法:采用PCR方法检测群体感应相关基因luxl及脆弱拟杆菌的luxR基因及其亚型,实时荧光定量PCR方法检测肠道菌群及两种AHL对脆弱拟杆菌不同亚型luxR基因的(?)RNA的相对表达量,并对其表达水平进行比较。
     结果:在脆弱拟杆菌基因组中,检测到8种luxR同源的QS类基因,只有LuxR8检测阴性,表明这8种luxR同源基因参与该菌Ⅰ型QS环路,脆弱拟杆菌基因组中未检测到luxl和其他lux基因。不同luxR基因亚型表达量具有一定的时间趋势,即培养6小时或4小时的表达量最高,而培养1小时表达量相对较低,8小时后表达下降;luxRl由于表达量少,故其各时间段的表达量基本一致,而luxR8基因不存在,相应地也无mRNA表达。十二烷基高丝氨酸内酯、大肠杆菌、金黄色葡萄球菌对luxR基因表达上调,而酮乙酰基高丝氨酸内酯和屎肠球菌对luxR基因表达下调。
     结论:
     本课题在创建了基于UPLC-MS技术的细菌群体感应系统一类信号分子AHL的检测平台基础上,通过对参与脆弱拟杆菌群体感应的一类信号分子AHL和QS相关基因的筛查、不同外源性AHL及肠道菌群对脆弱拟杆菌生物学活性及luxR基因表达影响的实验研究,得出以下结论:
     1.脆弱拟杆菌具有一类群体感应系统,该系统包括LuxR调节因子参与,且LuxR调节因子具有多种亚型,LuxR调节因子可能与外源性的信号分子结合而发挥群体感应。
     2.脆弱拟杆菌不存在luxⅠ基因,不产生酰基高丝氨酸内酯类自诱导信号分子。
     3.UPLC-MS (Q-TOF-MS)技术是检测QS群体感应系统一类信号分子—高丝氨酸内酯的一种有效工具,具有准确度高、灵敏度高、精密度高、重复性好、检测方便、线性范围广等特点,AHL在Q-TOF-MS中总保持m/z为102.05特征离子峰或102.05和74.05的特征峰组合(N-已酰-DL-酰基高丝氨酸内酯只见102.05特征峰),该特征峰可作为AHL的质谱鉴定依据。
     4.化学结构不同的高丝氨酸内酯分子及肠道常见细菌的分泌物对脆弱拟杆菌的群体感应系统发挥不同的效应。
     5.脆弱拟杆菌在液态培养液中具有一定的耐氧性,并非严格厌氧菌,且该菌在甘油保存液中对反复冻融具有一定的抵抗力。
     6.氯仿、甲醇、水混合溶剂是分离提取细菌群体感应系统的一类信号分子—高丝氨酸内酯的有效萃取溶剂。
Background
     Autoinducer conducts the communication among bacteria. Bacteria can survey the amount changes in other bacteria according to the concentration of this signal molecules; it is a course of Quorum-sensing (QS). The signaling pathway is involved in various of physicial activities, such as bioluminescence, virulence gene expression, biofilms formation, exocellular enzyme and polysaccharides synthesis, antibiotics production, etc. Different bacteria apply unique QS mechanism in regulating biological activities. There are three classes of QS mechanism, modified polypeptides acting as signal regulatory molecular in gram-positive bacteria, AHL produced by LuxI/LuxR system doing the same activity in gram-negative bacteria, and the third one in both gram-positive and gram-negative bacteria is normally supposed to the secondary signal molecule. There is a great interest in research of QS in recent years but details about the QS in anaerobic bacteria have not been mentioned yet.
     Bacteroides fragilis accounts for1%-2%of human intestine micro flora and also is the main anaerobic bacteria causing gastrointestinal infection. Their large amount presentation and formation of biofilm are induced by a multiple factors, among which is their information communication mechanism so as to keep a coincidence of a whole biological activity in human.
     There are few researches about Bacteroides fragilis in the following aspects, the relations between QS and biofilm formation, whether it produces the QS signal molecules AHL and the contribution of AHL and intestine microflora to its biological activity. This research focused on the deep study of AHL in the direction of their influence factors and their presentation in bacterial QS based on UPLC-MS. Another part of the research approached whether Bacteroides fragilis have QS circulation and the impaction of QS related gene expression in Bacteroides fragilis by AHL originated from both extrinsic and other closely related enterobacteria in the way of molecular biology. This research, as the base for further study in QS mechanism, established the technique and methods for systemic research of intestinal microecological signal transduction and a clue for intestinal microecology pharmaceutics according to the Bacteroides fragilis QS signal molecule.
     Part I Establishment of detection for QS signal molecule AHL
     Methods:A total of6AHL standard substance were detected and analyzed by UPLC-MS(Quadrupole Time-of-Flight, Q-TOF) metabonomics in the parameters of solvent selection, moblie phase optimization, filter membrane aperture, electrospray ionization mode in mass spectrometry, chromatographic column selection, conditional optimization in mass spectrometry, preparation for AHL extraction and separation, and the ionogenic feature of AHL in mass spectrometry.
     Results:Technological platform for bacterial QS signaling molecule AHL detection was established in the following parameters:positive ion electrospray mode, chromatographic column of Aquity C181.7μm2.1mm×100mm, Methyl Cyanides as solvent. The lactonic ring of AHL was kept unspoiled featuring as apiece m/s of102.05or both102.05and74.05during the mass spectrometry assay (N-Tetradecanoyl-DL-homoserine lactone'm/s is102.05). The extraction solvent composed of trichloromethane, methanol and water showed the sensitivity at5ng/ml for bacterial culture extraction.
     Part II Detection of QS signal molecule AHL in Bacteroides fragilis based on UPLC-MS
     Methods:All of the experimental bacteria including Bacteroides fragilis, bacillus bifidus, Escherichia coli, Enterococcus faecium, Vibrio parahaemolyticus, Enterobacteria cloacae, Acinetobacter baumannii, Salmonella typhosa, were ensured by sequencing their16SrRNA. Extracted bacterial culture from Bacteroides fragilis and other experimental bacteria were analyzed by UPLC-MS (Q-TOF-MS) to determine the presentation of AHL following the established parameters in this study, AHL standard substance as a control.
     Results:16SrRNA in all of the experimental bacteria shared the more than98%sequence homology with GenBank database. The AHL standard substance solving in different bacterial culture showed a featured piece of m/s of102.05or both102.05and74.05in electrospray ionization quadrupole time-of-flight (Q-TOF) mass spectrometry (N-Tetradecanoyl-DL-homoserine lactone'm/s is102.05), while AHL was detected in none of the Bacteroides fragilis and other bacteria.
     Part III Study on Bacteroides fragilis culture feature
     Methods:The survival of Bacteroides fragilis was recorded in the condition of different period, temperature and after10times freezing and thawing, when preserved in both anaerobic glycerol broth and common glycerol broth. Its viability and survival rate were compared when exposed in the air for5min,10min,30min,60min,90min,120min,150min,180min,24h.
     Results:Bacteroides fragilis was cultured successfully when persevered at either-20℃or-80℃for as long as3months in both anaerobic broth and common broth, and survived even after freezing and thawing for10times. It was still live when exposed in the air for180min but dead for24h. Its survival rate after exposed in air for5min, lOmin,30min,60min was84.1%,68.1%,46.4%and34.8%respectively.
     Part Ⅳ The impact of extrinsic N-Acyl-Homoserine Lactone signal molecules and intestine microflora on Bacteroides fragilis biological activity
     Methods:Bacteroides fragilis was monitored by OD value during a rang of culture period with the culture supernatant from5common intestinal bacteria and2AHL standard substances in the anaerobic blood broth.
     Results:Standard Bacteroides fragilis reached the log phase after culturing for8h,6h,6h,6h,10h, and10h, and stable phase after10h,8h,8h,8h,24h,and24h, in standard anaerobic hemoculture, anaerobic hemoculture added with N-Dodecanoyl-DL-homoserine lactone, culture supernatant from Enterococcus faecium, Staphylococcus aureus, Enterococcus faecium, N-(β-Ketocaproyl)-DL-homoserine lactone respectively. It took standard Bacteroides fragilis the same time in reaching the log phase and stable phase in anaerobic hemoculture added with other culture supernatant as in standard one.
     Part Ⅴ Detection of Bacteroides fragilis QS related gene expression in different culture condition by fluorescent quantified PCR
     Methods:Bacteroides fragilis QS related gene luxI, luxR and subtypes were detected by PCR. The mRNA of luxR subtypes in Bacteroides fragilis was quantitatived by real-time fluorescent quantitative PCR and further compared in the impact of intestine microflora and2AHLs.
     Results:A total of8luxR-homologous genes, except luxR8, were detected in Bacteroides fragilis, while none of luxI and other lux genes were detected. This result indicated the8luxR-homologous genes were involved in class Ⅰ QS circulation. LuxR subtypes expression is different in period of culture, reaching the highest level after6h or4h culture while the lowest after1h or8h., with the except of luxR1that was expressed in low quality all the period and luxR8of non-presentation. LuxR expression was up-regulated by N-Dodecanoyl-DL-homoserine lactone, Enterococcus faecium and Staphylococcus aureus, on the contrary, down-regulated by N-(β-Ketocaproyl)-DL-homoserine lactone and Enterococcus faecium.
     Conclusions
     In this study, the bacterial QS Class Ⅰ signal molecule AHL detection platform based on UPLC-MS technique was established, class Ⅰ signal molecule AHL and QS related genes in Bacteroides fragilis was determined, and the impact of different extrinsic AHL and enterobacteria on the biological activity and luxR gene expression was further explored, so it arrived at conclusions as follows.
     1. Bacteroides fragilis have class Ⅰ QS. LuxR regulatory factors and their subtypes were involved in this system and may play roles in QS when conjuncted with extrinsic signal molecule.
     2. Neither LuxⅠ gene presented nor N-Acyl-Homoserine Lactone (AHL) was produced in Bacteroides fragilis.
     3. UPLC-MS (Q-TOF-MS) technique is useful in detection of QS Class Ⅰ signal molecule AHL with the advantage of high accuracy, high sensitivity, good repeatability, easy operate, high efficiency. The lactonic ring of AHL was kept unspoiled featuring as apiece m/s of102.05or both102.05and74.05in Q-TOF-MS.
     4. Different extrinsic AHLs and common enterobacteria secretions produced different effect on QS in Bacteroides fragilis.
     5. Bacteroides fragilis was tolerant to oxygen to some extent.
     6. The extraction solvent composed of trichloromethane, methanol and water was optimized in extraction QS Class I signal molecule AHL,
引文
[1]Hardman AM, Stewart GS,Williams P. Quorum sensing and the cell-cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria. Antonie Van Leeuwenhoek,1998,74(4):199-210.
    [2]Waters CM, Bassler BL. Quorum sensing:cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol,2005,21:319-46.
    [3]Pompeani AJ, Irgon JJ, Berger MF, et al. The Vibrio harveyi master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters. Mol Microbiol, 2008,70(1):76-88.
    [4]von Bodman SB, Willey JM,Diggle SP. Cell-cell communication in bacteria: united we stand. J Bacteriol JT-Journal of bacteriology,2008,190(13):4377-91.
    [5]Visick KL, Fuqua C. Decoding microbial chatter:cell-cell communication in bacteria. J Bacteriol,2005,187(16):5507-19.
    [6]Dunny GM, Leonard BA. Cell-cell communication in gram-positive bacteria. Annu Rev Microbiol,1997,51:527-64.
    [7]Sturme MH, Kleerebezem M, Nakayama J, et al. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 2002,81(1-4):233-43.
    [8]Welch M, Mikkelsen H, Swatton JE, et al. Cell-cell communication in Gram-negative bacteria. Mol Biosyst,2005,1(3):196-202.
    [9]Gobbetti M, De Angelis M, Di Cagno R, et al. Cell-cell communication in food related bacteria. Int J Food Microbiol,2007,120(1-2):34-45.
    [10]Hothersall J, Murphy AC, Iqbal Z, et al. Manipulation of quorum sensing regulation in Pseudomonas fluorescens NCIMB 10586 to increase mupirocin production. Appl Microbiol Biotechnol,2011,90(3):1017-26.
    [11]Cao H, Yang M, Zheng H, et al. Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense. Arch Microbiol,2009,191(3):283-9.
    [12]Weiss LE, Badalamenti JP, Weaver LJ, et al. Engineering motility as a phenotypic response to LuxI/R-dependent quorum sensing in Escherichia coli. Biotechnol Bioeng,2008,100(6):1251-5.
    [13]Tao Y, Morohoshi T, Kato N, et al. The function of SpnR and the inhibitory effects by halogenated furanone on quorum sensing in Serratia marcescens AS-1. Wei Sheng Wu Xue Bao,2008,48(3):391-7.
    [14]Van Houdt R, Moons P, Aertsen A, et al. Characterization of a luxI/luxR-type quorum sensing system and N-acyl-homoserine lactone-dependent regulation of exo-enzyme and antibacterial component production in Serratia plymuthica RVH1. Res Microbiol,2007,158(2):150-8.
    [15]Rollins SM, Schuch R. Crowd control:Bacillus anthracis and quorum sensing. Virulence JT-Virulence,2010,1(2):57-9.
    [16]Romero-Campero FJ, Perez-Jimenez MJ. A model of the quorum sensing system in Vibrio fischeri using P systems. Artif Life,2008,14(1):95-109.
    [17]Parent ME, Snyder CE, Kopp ND, et al. Localized quorum sensing in Vibrio fischeri. Colloids Surf B Biointerfaces,2008,62(2):180-7.
    [18]Lintz MJ, Oinuma K, Wysoczynski CL, et al. Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc Natl Acad Sci US A,2011,108(38):15763-8.
    [19]Flickinger ST, Copeland MF, Downes EM, et al. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. J Am Chem Soc, 2011,133(15):5966-75.
    [20]Wilder CN, Diggle SP,Schuster M. Cooperation and cheating in Pseudomonas aeruginosa:the roles of the las, rhl and pqs quorum-sensing systems. ISME J, 2011,5(8):1332-43 LID-10.1038/ismej.2011.13 [doi].
    [21]Rumbaugh KP, Diggle SP, Watters CM, et al. Quorum sensing and the social evolution of bacterial virulence. Curr Biol,2009,19(4):341-5.
    [22]Vikstrom E, Tafazoli F,Magnusson KE. Pseudomonas aeruginosa quorum sensing molecule N-(3 oxododecanoyl)-I-homoserine lactone disrupts epithelial barrier integrity of Caco-2 cells. FEBS Lett,2006,580(30):6921-8.
    [23]Mittal R, Sharma S, Chhibber S, et al. Contribution of quorum-sensing systems to virulence of Pseudomonas aeruginosa in an experimental pyelonephritis model. J Microbiol Immunol Infect,2006,39(4):302-9.
    [24]Soulere L, Sabbah M, Fontaine F, et al. LuxR-dependent quorum sensing: computer aided discovery of new inhibitors structurally unrelated to N-acylhomoserine lactones. Bioorg Med Chem Lett,2010,20(15):4355-8.
    [25]Estephane J, Dauvergne J, Soulere L, et al. N-Acyl-3-amino-5H-furanone derivatives as new inhibitors of LuxR-dependent quorum sensing:Synthesis, biological evaluation and binding mode study. Bioorg Med Chem Lett,2008, 18(15):4321-4.
    [26]Tsai CS, Winans SC. LuxR-type quorum-sensing regulators that are detached from common scents. Mol Microbiol,2010,77(5):1072-82.
    [27]Yang M, Giel JL, Cai T, et al. The LuxR family quorum-sensing activator MrtR requires its cognate autoinducer for dimerization and activation but not for protein folding. J Bacteriol,2009,191 (1):434-8.
    [28]Qin N, Callahan SM, Dunlap PV, et al. Analysis of LuxR regulon gene expression during quorum sensing in Vibrio fischeri. J Bacteriol,2007,189(11): 4127-34.
    [29]Carlier A, Burbank L,von Bodman SB. Identification and characterization of three novel EsaI/EsaR quorum-sensing controlled stewartan exopolysaccharide biosynthetic genes in Pantoea stewartii ssp. stewartii. Mol Microbiol,2009,74(4): 903-13.
    [30]Schu DJ, Carlier AL, Jamison KP, et al. Structure/function analysis of the Pantoea stewartii quorum-sensing regulator EsaR as an activator of transcription. J Bacteriol,2009,191(24):7402-9.
    [31]Xue T, Zhao L, Sun H, et al. LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Res,2009,19(11): 1258-68.
    [32]Gutierrez JA, Crowder T, Rinaldo-Matthis A, et al. Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol, 2009,5(4):251-7.
    [33]Zhu H, Shen YL, Wei DZ, et al. Cloning and characterizations of the Serratia marcescens metK and pfs genes involved in AI-2-dependent quorum-sensing system. Mol Cell Biochem,2008,315 (1-2):25-30.
    [34]Khajanchi BK, Kirtley ML, Brackman SM, et al. Immunomodulatory and protective roles of quorum-sensing signaling molecules N-acyl homoserine lactones during infection of mice with Aeromonas hydrophila. Infect Immun, 2011,79(7):2646-57.
    [35]Kawaguchi T, Chen YP, Norman RS, et al. Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an in vitro cell-free assay. Appl Environ Microbiol,2008,74(12):3667-71.
    [36]Kumari A, Pasini P,Daunert S. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal Bioanal Chem,2008,391(5): 1619-27.
    [37]Adonizio A, Kong KF,Mathee K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother,2008,52(1):198-203.
    [38]Schuster M, Greenberg EP. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics, 2007,8:287.
    [39]Wang L, Zou S, Yin S, et al. Construction of an effective screening system for detection of Pseudomonas aeruginosa quorum sensing inhibitors and its application in bioautographic thin-layer chromatography. Biotechnol Lett,2011, 33(7):1381-7.
    [40]Zhang HB, Wang LH,Zhang LH. Detection and analysis of quorum-quenching enzymes against acyl homoserine lactone quorum-sensing signals. Curr Protoc Microbiol,2007,Chapter 1:Unit 1C.3.
    [41]Kastbjerg VG, Nielsen KF, Dalsgaard I, et al. Profiling acylated homoserine lactones in Yersinia ruckeri and influence of exogenous acyl homoserine lactones and known quorum-sensing inhibitors on protease production. J Appl Microbiol, 2007,102(2):363-74.
    [42]Gregus P, Vlckova H, Buchta V, et al. Ultra high performance liquid chromatography tandem mass spectrometry analysis of quorum-sensing molecules of Candida albicans. J Pharm Biomed Anal,2010,53(3):674-81.
    [43]Fekete A, Kuttler C, Rothballer M, et al. Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol Ecol,2010,72(1):22-34.
    [44]Fekete A, Frommberger M, Rothballer M, et al. Identification of bacterial N-acylhomoserine lactones (AHL) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Anal Bioanal Chem,2007,387(2):455-67.
    [45]Gould TA, Herman J, Krank J, et al. Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol,2006,188(2):773-83.
    [46]Kalkum M, Lyon GJ,Chait BT. Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc Natl Acad Sci USA, 2003,100(5):2795-800.
    [47]Orsatti L, Di Marco S, Volpari C, et al. Determination of the stoichiometry of noncovalent complexes using reverse-phase high-performance liquid chromatography coupled with electrospray ion trap mass spectrometry. Anal Biochem,2002,309(1):11-8.
    [48]Halliday NM, Hardie KR, Williams P, et al. Quantitative liquid chromatography-tandem mass spectrometry profiling of activated methyl cycle metabolites involved in LuxS-dependent quorum sensing in Escherichia coli. Anal Biochem, 2010,403(1-2):20-9.
    [49]Campagna SR, Gooding JR,May AL. Direct quantitation of the quorum sensing signal, autoinducer-2, in clinically relevant samples by liquid chromatography-tandem mass spectrometry. Anal Chem,2009,81(15):6374-81.
    [50]Cui Y, Frey RL, Ferry JL, et al. Identification of hydroxyl radical oxidation products of N-hexanoyl-homoserine lactone by reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom,2009,23(8):1212-20.
    [51]Thiel V, Vilchez R, Sztajer H, et al. Identification, quantification, and determination of the absolute configuration of the bacterial quorum-sensing signal autoinducer-2 by gas chromatography-mass spectrometry. Chembiochem,2009, 10(3):479-85.
    [52]Pumbwe L, Skilbeck CA,Wexler HM. Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Microb Ecol,2008,56(3):412-9.
    [53]Pumbwe L, Skilbeck CA,Wexler HM. The Bacteroides fragilis cell envelope: quarterback, linebacker, coach-or all three?. Anaerobe,2006,12(5-6):211-20.
    [54]Pruzzo C, Guzman CA,Dainelli B. Incidence of hemagglutination activity among pathogenic and non-pathogenic Bacteroides fragilis strains and role of capsule and pili in HA and adherence. FEMS Microbiol Lett,1989,50(1-2):113-8.
    [55]Pustelny C, Albers A, Buldt-Karentzopoulos K, et al. Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol,2009,16(12):1259-67.
    [56]Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol,2011,9(2):109-18.
    [57]Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev,2010,34(2): 150-70.
    [58]Arciola CR. New concepts and new weapons in implant infections. Int J Artif Organs,2009,32(9):533-6.
    [59]Cooper JE. Early interactions between legumes and rhizobia:disclosing complexity in a molecular dialogue. J Appl Microbiol,2007,103(5):1355-65.
    [60]Atkinson S, Goldstone RJ, Joshua GW, et al. Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion. PLoS Pathog,2011,7(1):e1001250.
    [61]Singh G, Wu B, Baek MS, et al. Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration. Microb Pathog,2010,49(4):196-203.
    [62]Tiaden A, Spirig T,Hilbi H. Bacterial gene regulation by alpha-hydroxyketone signaling. Trends Microbiol JT-Trends in microbiology,2010,18(7):288-97.
    [63]Simoes LC, Simoes M,Vieira MJ. Biofilm interactions between distinct bacterial genera isolated from drinking water. Appl Environ Microbiol,2007,73(19):6192-200.
    [64]Costerton WJ, Montanaro L, Balaban N, et al. Prospecting gene therapy of implant infections. Int J Artif Organs,2009,32(9):689-95.
    [65]Chang C, Jin X,Chaoqun H. Phenotypic and genetic differences between opaque and translucent colonies of Vibrio alginolyticus. Biofouling,2009,25(6):525-31.
    [66]Pumbwe L, Skilbeck CA,Wexler HM. Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. J Antimicrob Chemother,2007,60(6):1288-97.
    [67]Pumbwe L, Glass D,Wexler HM. Efflux pump overexpression in multiple-antibiotic-resistant mutants of Bacteroides fragilis. Antimicrob Agents Chemother, 2006,50(9):3150-3.
    [68]Ueda O, Wexler HM, Hirai K, et al. Sixteen homologs of the mex-type multidrug resistance efflux pump in Bacteroides fragilis. Antimicrob Agents Chemother, 2005,49(7):2807-15.
    [69]Han Z, Zheng Y, Luan L, et al. Analysis of ochratoxin A and ochratoxin B in traditional Chinese medicines by ultra-high-performance liquid chromatography-tandem mass spectrometry using [(13)C(20)]-ochratoxin A as an internal standard. J Chromatogr A,2010,1217(26):4365-74.
    [70]Han Z, Zheng Y, Luan L, et al. An ultra-high-performance liquid chromatography-tandem mass spectrometry method for simultaneous determination of aflatoxins B1, B2, G1, G2, M1 and M2 in traditional Chinese medicines. Anal Chim Acta, 2010,664(2):165-71.
    [71]Deng GF, Wang DL, Meng MX, et al. Simultaneous determination of notoginsenoside R1, ginsenoside Rgl, Re, Rb1 and icariin in rat plasma by ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877(22):2113-22.
    [72]Chen J, Chen H, Jin X, et al. Determination of ultra-trace amount methyl-, phenyl-and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. Talanta,2009,77(4):1381-7.
    [73]Han Z, Zheng Y, Chen N, et al. Simultaneous determination of four alkaloids in Lindera aggregata by ultra-high-pressure liquid chromatography-tandem mass spectrometry. J Chromatogr A,2008,1212 (1-2):76-81.
    [74]Zhang J, Ren Y, Ma Z, et al. Quantitative determination of bovine caseinoglycomacropeptide in infant formulas by ultra-high-performance liquid chromatography-electrospray-ionization mass spectrometry. J Sep Sci,2011, 34(19):2751-8.
    [75]Lu H, Wu Z, Xu W, et al. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol,2011,61(3):693-703.
    [76]Tong MQ, Shang SQ, Wu YD, et al. Rapid diagnosis of neonatal sepsis by 16SrRNA genes PCR amplification and genechip hybridization. Zhonghua Er Ke Za Zhi,2004,42(9):663-7.
    [77]Christensen LD, van Gennip M, Jakobsen TH, et al. Imaging N-acyl homoserine lactone quorum sensing in vivo. Methods Mol Biol,2011,692:147-57.
    [78]Smith D, Wang JH, Swatton JE, et al. Variations on a theme:diverse N-acyl homoserine lactone-mediated quorum sensing mechanisms in gram-negative bacteria. Sci Prog,2006,89(Pt 3-4):167-211.
    [79]Uroz S, Heinonsalo J. Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol Ecol,2008, 65(2):271-8.
    [80]Deng Y, Wu J, Eberl L, et al. Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol,2010,76(14):4675-83.
    [81]Huvenne H, Goeminne G, Maes M, et al. Identification of quorum sensing signal molecules and oligolignols associated with watermark disease in willow (Salix sp.). J Chromatogr B Analyt Technol Biomed Life Sci,2008,872(1-2):83-9.
    [82]Charlton TS, de Nys R, Netting A, et al. A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry:application to a model bacterial biofilm. Environ Microbiol, 2000,2(5):530-41.
    [83]Shen Q, Dai Z,Lu Y. Rapid determination of caffeoylquinic acid derivatives in Cynara scolymus L. by ultra-fast liquid chromatography/tandem mass spectrometry based on a fused core C18 column. J Sep Sci,2010,33(20):3152-8.
    [84]Zhang Y, Ren Y, Jiao J, et al. Ultra high-performance liquid chromatography-tandem mass spectrometry for the simultaneous analysis of asparagine, sugars, and acrylamide in Maillard reactions. Anal Chem,2011,83(9):3297-304.
    [85]Khajanchi BK, Sha J, Kozlova EV, et al. N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology,2009,155(Pt 11):3518-31.
    [86]Styp von Rekowski K, Hempel M,Philipp B. Quorum sensing by N-acylhomoserine lactones is not required for Aeromonas hydrophila during growth with organic particles in lake water microcosms. Arch Microbiol,2008, 189(5):475-82.
    [87]Steindler L, Bertani I, De Sordi L, et al. The presence, type and role of N-acyl homoserine lactone quorum sensing in fluorescent Pseudomonas originally isolated from rice rhizospheres are unpredictable. FEMS Microbiol Lett, 2008,288(l):102-11.
    [88]Benton CM, Lim CK, Moniz C, et al. Ultra high-performance liquid chromatography of porphyrins in clinical materials:column and mobile phase selection and optimisation.Biomed Chromatog,2011.
    [89]Rochat B, Pascual A, Pesse B, et al. Ultra-performance liquid chromatography mass spectrometry and sensitive bioassay methods for quantification of posaconazole plasma concentrations after oral dosing. Antimicrob Agents Chemother,2010,54(12):5074-81.
    [90]Cai SS, Syage JA, Hanold KA, et al. Ultra performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry for high-sensitivity and high-throughput analysis of U.S. Environmental Protection Agency 16 priority pollutants polynuclear aromatic hydrocarbons. Anal Chem, 2009,81(6):2123-8.
    [91]Tamtam F, Mercier F, Eurin J, et al. Ultra performance liquid chromatography tandem mass spectrometry performance evaluation for analysis of antibiotics in natural waters. Anal Bioanal Chem,2009,393(6-7):1709-18.
    [92]Everley RA, Croley TR. Ultra-performance liquid chromatography/mass spectrometry of intact proteins. J Chromatogr A,2008,1192(2):239-47.
    [93]Qu J, Qu Y,Straubinger RM. Ultra-sensitive quantification of corticosteroids in plasma samples using selective solid-phase extraction and reversed-phase capillary high-performance liquid chromatography/tandem mass spectrometry. Anal Chem,2007,79(10):3786-93.
    [94]Li KY, Zhou YG, Ren HY, et al. Ultra-performance liquid chromatography-tandem mass spectrometry for the determination of atypical antipsychotics and some metabolites in vitro samples. J Chromatogr B Analyt Technol Biomed Life Sci,2007,850(1-2):581-5.
    [95]Barcelo-Barrachina E, Moyano E, Galceran MT, et al. Ultra-performance liquid chromatography-tandem mass spectrometry for the analysis of heterocyclic amines in food. J Chromatogr A,2006,1125(2):195-203.
    [96]Dear GJ, James AD,Sarda S. Ultra-performance liquid chromatography coupled to linear ion trap mass spectrometry for the identification of drug metabolites in biological samples. Rapid Commun Mass Spectrom,2006,20(8):1351-60.
    [97]Klejdus B, Lojkova L, Lapcik O, et al. Supercritical fluid extraction of isoflavones from biological samples with ultra-fast high-performance liquid chromatography/mass spectrometry. J Sep Sci,2005,28(12):1334-46.
    [98]Cao H, Huang H, Xu W, et al. Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography-mass spectrometry. Anal Chim Acta,2011,691(1-2):68-75.
    [99]Xu W, Chen Q, Zhang T, et al. Development and application of ultra performance liquid chromatography-electrospray ionization tandem triple quadrupole mass spectrometry for determination of seven microcystins in water samples. Anal Chim Acta,2008,626(1):28-36.
    [100]马晨晨,李柏林,欧杰,等.高效液相色谱-串联质谱法同时测定细菌群体感应效应的11种AHL类信号分子.分析化学,2010,38(10):1428-32.
    [101]陈军辉,刘劫,柳先平,等.电喷雾飞行时间质谱与大气压化学电离质谱法分析烟叶中茄尼醇的比较.分析试验室,2007,26(11):1-5.
    [102]綦国红,董明盛,吴胜明,等.HPLC-MS法检测N酰基高丝氨酸内酯类信号分子.分析测试学报,2007,26(3):417-9.
    [103]Schwenteit J, Gram L, Nielsen KF, et al. Quorum sensing in Aeromonas salmonicida subsp. achromogenes and the effect of the autoinducer synthase Asal on bacterial virulence. Vet Microbiol,2011,147 (3-4):389-97.
    [104]Valiente E, Bruhn JB, Nielsen KF, et al. Vibrio vulnificus produces quorum sensing signals of the AHL-class. FEMS Microbiol Ecol,2009,69(1):16-26.
    [105]Raina S, Odell M,Keshavarz T. Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum. J Biotechnol,2010,148(2-3): 91-8.
    [106]Taminiau B, Daykin M, Swift S, et al. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun,2002,70(6):3004-11.
    [107]Bosgelmez-Tinaz G, Ulusoy S, Ugur A, et al. Inhibition of quorum sensing-regulated behaviors by Scorzonera sandrasica. Curr Microbiol,2007,55(2):114-8.
    [108]李桂军,楼永良.脆弱拟杆菌肠毒素致病机制研究进展.中国人兽共患病学报,2009,25(1):70-3.
    [109]Muller J, Kuttler C, Hense BA, et al. Cell-cell communication by quorum sensing and dimension-reduction. J Math Biol,2006,53(4):672-702.
    [110]Higgins DA, Pomianek ME, Kraml CM, et al. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature,2007,450(7171): 883-6.
    [111]Nakagami G, Morohoshi T, Ikeda T, et al. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in pressure ulcer infection in rats. Wound Repair Regen,2011,19(2):214-22.
    [112]Stoltz DA, Ozer EA, Ng CJ, et al. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol,2007,292(4):L852-60.
    [113]Fang XQ, Wang WF,Liu YN. The role of the quorum sensing system in a rat model of Pseudomonas aeruginosa pulmonary infection and its relationship with the expression of virulence factors. Zhonghua Jie He He Hu Xi Za Zhi, 2006,29(7):458-62.
    [114]刘晓岚,宋志均,陈一强,等.群体感应系统缺陷对大鼠铜绿假单胞菌慢性肺部感染的影响.中华医院感染学杂志,2008,18(4):463-6.
    [115]Yang Q, Han Y, Zhang XH. Detection of quorum sensing signal molecules in the family Vibrionaceae. J Appl Microbiol,2011,110(6):1438-48.
    [116]Lindemann A, Pessi G, Schaefer AL, et al. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proc Natl Acad Sci USA,2011,108(40):16765-70.
    [117]吴彦彬,李亚丹,李小俊,等.拟杆菌的研究及应用.生物技术通报,2007,1: 66-69.
    [118]Tang YW, Von Graevenitz A, Waddington MG, et al. Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J Clin Microbiol,2000,38(4):1676-8.
    [119]余道军,陈岳明,方翔,等.悬浮芯片系统快速检测常见葡萄球菌的初步实验研究.国际检验医学杂志,2008,29(3):193-6.
    [120]Cataldi TR, Bianco G, Palazzo L, et al. Occurrence of N-acyl-L-homoserine lactones in extracts of some Gram-negative bacteria evaluated by gas chromatography-mass spectrometry. Anal Biochem,2007,361(2):226-35.
    [121]Ng WL, Perez LJ, Wei Y, et al. Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Mol Microbiol,2011,79(6):1407-17.
    [122]Teplitski M, Eberhard A, Gronquist MR, et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Arch Microbiol,2003,180(6):494-7.
    [123]Marketon MM, Gonzalez JE. Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol,2002,184(13):3466-75.
    [124]宋水山,黄媛媛.细菌群体感应信号分子——酰基高丝氨酸内酯的检测.细胞生物学杂志,2007,5:697-700.
    [125]綦国红,董明盛,王岁楼.N-酰基-高丝氨酸内酯类群体感应信号分子检测方法的建立.农业生物技术学报,2007,15(4):694-9.
    [126]Bone RC. The pathogenesis of sepsis. Ann Intern Med,1991,115(6):457-69.
    [127]Giamarellou H. Anaerobic infection therapy. Int J Antimicrob Agents, 2000,16(3):341-6.
    [128]Brook I, Frazier EH. Aerobic and anaerobic microbiology of surgical-site infection following spinal fusion. J Clin Microbiol,1999,37(3):841-3.
    [129]Brook I, Frazier EH. Aerobic and anaerobic infection associated with malignancy. Support Care Cancer,1998,6(2):125-31.
    [130]Rylski M, Stelmaska-Dworak E,Andrzejewski K. Aerobic and anaerobic bacterial flora as a cause of lower respiratory tract infection. Pneumonol Alergol Pol 1993,61(3-4):144-7.
    [131]Rocha ER, Smith CJ. Transcriptional regulation of the Bacteroides fragilis ferritin gene (ftnA) by redox stress. Microbiology,2004,150(Pt 7):2125-34.
    [132]Rokosz A, Meisel-Mikolajczyk F, Kot K, et al. Toxins of Bacteroides fragilis and Bacteroides thetaiotaomicron rods as stimulators of adhesion molecule expression on the surface of vascular endothelial cells. Med Dosw Mikrobiol,1999,51(1-2): 133-42.
    [133]Meisel-Mikolajczyk F, Kot K, Klos W, et al. Antigenic properties of LPS extracted from Bacteroides fragilis enterotoxin producing strains. Acta Microbiol Pol,1999,48(2):153-61.
    [134]Brubaker JO, Li Q, Tzianabos AO, et al. Mitogenic activity of purified capsular polysaccharide A from Bacteroides fragilis:differential stimulatory effect on mouse and rat lymphocytes in vitro. J Immunol,1999,162(4):2235-42.
    [135]余道军,陈岳明,俞少勇,等.鸡葡萄球菌的生物学特性及快速鉴定.中国微生态学杂志,2008,20(2):122-5.
    [136]Helal M, Kong F, Chen SC, et al. Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data. PLoS One,2011,6(6):e19517.
    [137]Ahluwalia KB, Dhaulakhandi DB,Garg LC. Sequence analysis of 16S rRNA gene inRhinosporidium seeberi shows similarity to plant chloroplast DNA. Bioinformation, 2010,5(3):89-96.
    [138]Vanin S, Bubacco L,Beltramini M. Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects. Cryo Letters,2008,29(6):485-91.
    [139]El'shanskaia MP, Golyshevskaia VI,Kazarova TA. Effects of non-clostridial anaerobic infection on the course of chronic pulmonary tuberculosis in experimental animals. Probl Tuberk,1991,(11):58-63.
    [140]Tanaka JI. Studies on anaerobic infection in oro-maxillary region--rapid diagnosis by gas-liquid chromatography and antibiotic susceptibilities of anaerobic bacteria. Shikwa Gakuho,1989,89(8):1385-405.
    [141]Richins R, Chen W. Effects of FIS overexpression on cell growth, rRNA synthesis, and ribosome content in Escherichia coli. Biotechnol Prog,2001,17(2): 252-7.
    [142]Sitnikov DM, Schineller JB,Baldwin TO. Control of cell division in Escherichia coli:regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction. Proc Natl Acad Sci USA,1996,93(1):336-41.
    [143]Aspedon A, Nickerson KW. A two-part energy burden imposed by growth of Enterobacter cloacae and Escherichia coli in sodium dodecyl sulfate. Can J Microbiol,1993,39(6):555-61.
    [144]Zhong Z, Wang Y, Qiao F, et al. Cytotoxicity of Brucella smooth strains for macrophages is mediated by increased secretion of the type IV secretion system. Microbiology,2009,155(Pt 10):3392-402.
    [145]Gomi K, Kikuchi T, Tokue Y, et al. Mouse and human cell activation by N-dodecanoyl-DL-homoserine lactone, a Chromobacterium violaceum autoinducer. Infect Immun,2006,74(12):7029-31.
    [146]Kelly RC, Bolitho ME, Higgins DA, et al. The Vibrio cholerae quorum-sensing autoinducer CAI-1:analysis of the biosynthetic enzyme CqsA. Nat Chem Biol, 2009,5(12):891-5.
    [147]Liang W, Sultan SZ, Silva AJ, et al. Cyclic AMP post-transcriptionally regulates the biosynthesis of a major bacterial autoinducer to modulate the cell density required to activate quorum sensing. FEBS Lett,2008,582(27):3744-50.
    [148]Smith KM, Bu Y,Suga H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol,2003,10(1):81-9.
    [149]Camps J, Pujol I, Ballester F, et al. Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in Gram-negative bacteria. Antimicrob Agents Chemother,2011,55(4):1325-31.
    [150]Geske GD, O'Neill JC,Blackwell HE. Expanding dialogues:from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem Soc Rev,2008,37(7):1432-47.
    [151]Janssens JC, De Keersmaecker SC, De Vos DE, et al. Small molecules for interference with cell-cell-communication systems in Gram-negative bacteria. Curr Med Chem,2008,15(21):2144-56.
    [152]Milton DL, Chalker VJ, Kirke D, et al. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl)homoserine lactone and N-hexanoylhomoserine lactone. J Bacteriol,2001,183(12):3537-47.
    [153]Sperandio V, Torres AG, Giron JA, et al. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol, 2001,183(17):5187-97.
    [154]Dickschat JS. Quorum sensing and bacterial biofilms. Nat Prod Rep, 2010,27(3):343-69.
    [155]McLean RJ, Whiteley M, Stickler DJ, et al. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett,1997,154(2):259-63.
    [156]Chen Y, Wang X, Huang X, et al. Las-like quorum-sensing system negatively regulates both pyoluteorin and phenazine-1-carboxylic acid production in Pseudomonas sp. M18. Sci China C Life Sci,2008,51(2):174-81.
    [157]Bobrov AG, Bearden SW, Fetherston JD, et al. Functional quorum sensing systems affect biofilm formation and protein expression in Yersinia pestis. Adv Exp Med Biol,2007,603:178-91.
    [158]Katranushkova N, Zlatkov V. [Bacteroides fragilis in anaerobic infection with bacteremia following total hysterectomy]. Akush Ginekol (Sofiia),1987,26(6): 82-4.
    [159]Callahan SM, Dunlap PV. LuxR-and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. J Bacteriol,2000, 182(10):2811-22.
    [160]Galloway WR, Hodgkinson JT, Bowden SD, et al. Quorum sensing in Gram-negative bacteria:small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev,2011,11 1(1):28-67.
    [161]Myszka K, Czaczyk K. Quorum sensing mechanism as a factor regulating virulence of Gram-negative bacteria. Postepy Hig Med Dosw (Online),2010,64: 582-9.
    [162]Hawkins AC, Arnold FH, Stuermer R, et al. Directed evolution of Vibrio fischeri LuxR for improved response to butanoyl-homoserine lactone. Appl Environ Microbiol,2007,73(18):5775-81.
    [163]Cataldi TR, Bianco G,Abate S. Accurate mass analysis of N-acyl-homoserine-lactones and cognate lactone-opened compounds in bacterial isolates of Pseudomonas aeruginosa PAO1 by LC-ESI-LTQ-FTICR-MS. J Mass Spectrom, 2009,44(2):182-92.
    [1]Palmer AG, Streng E, Jewell KA, et al. Quorum sensing in bacterial species that use degenerate autoinducers can be tuned by using structurally identical non-native ligands. Chembiochem,2011,12(1):138-47.
    [2]Schwenteit J, Gram L, Nielsen KF, et al. Quorum sensing in Aeromonas salmonicida subsp. achromogenes and the effect of the autoinducer synthase Asal on bacterial virulence. Vet Microbiol,2011,147(3-4):389-97.
    [3]Kong P, Lee BW, Zhou ZS, et al. Zoosporic plant pathogens produce bacterial autoinducer-2 that affects Vibrio harveyi quorum sensing. FEMS Microbiol Lett, 2010,303(1):55-60.
    [4]Antonova ES, Hammer BK. Quorum-sensing autoinducer molecules produced by members of a multi species biofilm promote horizontal gene transfer to Vibrio cholerae. FEMS Microbiol Lett,2011,322(1):68-76.
    [5]McLean RJ, Whiteley M, Stickler DJ, et al. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett,1997,154(2):259-63.
    [6]Dunn AK, Stabb EV. Beyond quorum sensing:the complexities of prokaryotic parliamentary procedures. Anal Bioanal Chem,2007,387(2):391-8.
    [7]吴红,宋志军.细菌与细菌之间的信息交流--革兰阴性细菌的Quorum-Sensing系统.自然科学进展.2003,7:679-87.
    [8]Xanthoulea S, Pasparakis M, Kousteni S, et al. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J Exp Med, 2004,200(3):367-76.
    [9]Wagner-Dobler I, Thiel V, Eberl L, et al. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. Chembiochem,2005,6(12):2195-206.
    [10]von Bodman SB, Majerczak DR,Coplin DL. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci USA,1998,95(13):7687-92.
    [11]Sperandio V, Torres AG, Giron JA, et al. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol, 2001,183(17):5187-97.
    [12]Smith KM, Bu Y,Suga H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol,2003,10(1):81-9.
    [13]Waters CM, Bassler BL. Quorum sensing:cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol,2005,21:319-46.
    [14]Khajanchi BK, Kirtley ML, Brackman SM, et al. Immunomodulatory and protective roles of quorum-sensing signaling molecules N-acyl homoserine lactones during infection of mice with Aeromonas hydrophila. Infect Immun, 2011,79(7):2646-57.
    [15]Steindler L, Bertani I, De Sordi L, et al. The presence, type and role of N-acyl homoserine lactone quorum sensing in fluorescent Pseudomonas originally isolated from rice rhizospheres are unpredictable. FEMS Microbiol Lett,2008, 288(1):102-11.
    [16]Janssens JC, Metzger K, Daniels R, et al. Synthesis of N-acyl homoserine lactone analogues reveals strong activators of SdiA, the Salmonella enterica serovar Typhimurium LuxR homologue. Appl Environ Microbiol,2007,73(2):535-44.
    [17]Burmolle M, Hansen LH, Oregaard G, et al. Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Microb Ecol,2003,45(3):226-36.
    [18]Teplitski M, Eberhard A, Gronquist MR, et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Arch Microbiol,2003,180(6):494-7.
    [19]Rocha-Estrada J, Aceves-Diez AE, Guarneros G, et al. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol, 2010,87(3):913-23.
    [20]Schuster M, Greenberg EP. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics, 2007,8:287.
    [21]D'Ari R, Jaffe A, Bouloc P, et al. Cyclic AMP and cell division in Escherichia coli. J Bacteriol,1988,170(1):65-70.
    [22]Suckow G, Seitz P,Blokesch M. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J Bacteriol, 2011,193(18):4914-24.
    [23]Ng FS, Wright DM,Seah SY. Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. Appl Environ Microbiol,2011,77(4):1181-6.
    [24]Veselova M, Klein Sh, Bass I A, et al. Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal (corrected) activity in rhizospheric bacterium Pseudomonas chlororaphis 449. Genetika,2008,44(12): 1617-26.
    [25]Gutierrez JA, Crowder T, Rinaldo-Matthis A, et al. Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol, 2009,5(4):251-7.
    [26]Schramm VL, Gutierrez JA, Cordovano G, et al. Transition state analogues in quorum sensing and SAM recycling. Nucleic Acids Symp Ser (Oxf),2008,(52): 75-6.
    [27]Romero-Campero FJ, Perez-Jimenez MJ. A model of the quorum sensing system in Vibrio fischeri using P systems. Artif Life,2008,14(1):95-109.
    [28]Parent ME, Snyder CE, Kopp ND, et al. Localized quorum sensing in Vibrio fischeri. Colloids Surf B Biointerfaces,2008,62(2):180-7.
    [29]Callahan SM, Dunlap PV. LuxR-and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. J Bacteriol, 2000,182(10):2811-22.
    [30]Muller H, Westendorf C, Leitner E, et al. Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol,2009,67(3):468-78.
    [31]Gao M, Chen H, Eberhard A, et al. Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions. Mol Plant Microbe Interact,2007,20(7):843-56.
    [32]Liu X, Jia J, Popat R, et al. Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3:differential control of motility and biofilm formation according to life-style. BMC Microbiol,2011,11(1):26.
    [33]Wang Y, Dai Y, Zhang Y, et al. Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Sci China C Life Sci,2007,50(3):385-91.
    [34]Cho HS, Park SY, Ryu CM, et al. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol Ecol,2007,60(1):14-23.
    [35]Anetzberger C, Pirch T,Jung K. Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. Mol Microbiol,2009,73(2):267-77.
    [36]Nackerdien ZE, Keynan A, Bassler BL, et al. Quorum sensing influences Vibrio harveyi growth rates in a manner not fully accounted for by the marker effect of bioluminescence. PLoS One,2008,3(2):e1671.
    [37]Frezza M, Soulere L, Reverchon S, et al. Synthetic homoserine lactone-derived sulfonylureas as inhibitors of Vibrio fischeri quorum sensing regulator. Bioorg Med Chem,2008,16(7):3550-6.
    [38]Piletska EV, Stavroulakis G, Karim K, et al. Attenuation of Vibrio fischeri quorum sensing using rationally designed polymers. Biomacromolecules,2010, 11(4):975-80.
    [39]Khan SR, Farrand SK. The BlcC (AttM) lactonase of Agrobacterium tumefaciens does not quench the quorum-sensing system that regulates Ti plasmid conjugative transfer. J Bacteriol,2009,191(4):1320-9.
    [40]Marketon MM, Gonzalez JE. Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol,2002,184(13):3466-75.
    [41]Poulter S, Carlton TM, Spring DR, et al. The Serratia LuxR family regulator CarR 39006 activates transcription independently of cognate quorum sensing signals. Mol Microbiol,2011,80(4):1120-31.
    [42]Zhu H, Sun SJ,Dang HY. PCR detection of Serratia spp. using primers targeting pfs and luxS genes involved in AI-2-dependent quorum sensing. Curr Microbiol, 2008,57(4):326-30.
    [43]Zhu H, Shen YL, Wei DZ, et al. Inhibition of quorum sensing in Serratia marcescens H30 by molecular regulation. Curr Microbiol,2008,56(6):645-50.
    [44]Le Berre R, Nguyen S, Nowak E, et al. Quorum-sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa. Clin Microbiol Infect,2008,14(4):337-43.
    [45]Fang XQ, Wang WF,Liu YN. The role of the quorum sensing system in a rat model of Pseudomonas aeruginosa pulmonary infection and its relationship with the expression of virulence factors. Zhonghua Jie He He Hu Xi Za Zhi,2006, 29(7):458-62.
    [46]Flickinger ST, Copeland MF, Downes EM, et al. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. J Am Chem Soc, 2011,133(15):5966-75.
    [47]de Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol,2009,11(2):279-88.
    [48]Skindersoe ME, Alhede M, Phipps R, et al. Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother,2008,52(10): 3648-63.
    [49]Zhang W, Xu S, Li J, et al. Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol,2011,193(5):351-63.
    [50]Atkinson S, Chang CY, Patrick HL, et al. Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA. Mol Microbiol,2008,69(1):137-51.
    [51]Zinger-Yosovich K, Sudakevitz D, Imberty A, et al. Production and properties of the native Chromobacterium violaceum fucose-binding lectin (CV-IIL) compared to homologous lectins of Pseudomonas aeruginosa (PA-IIL) and Ralstonia solanacearum (RS-IIL). Microbiology,2006,152(Pt 2):457-63.
    [52]Genin S, Brito B, Denny TP, et al. Control of the Ralstonia solanacearum Type III secretion system (Hrp) genes by the global virulence regulator PhcA. FEBS Lett, 2005,579(10):2077-81.
    [53]Renfrew C. Anthropology. Where bacteria and languages concur. Science,2009, 323(5913):467-8.
    [54]Reading NC, Sperandio V. Quorum sensing:the many languages of bacteria. FEMS Microbiol Lett,2006,254(1):1-11.
    [55]Schauder S, Bassler BL. The languages of bacteria. Genes Dev,2001,15(12): 1468-80.
    [56]Sturme MH, Kleerebezem M, Nakayama J, et al. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 2002,81(1-4):233-43.
    [57]Kleerebezem M, Quadri LE, Kuipers OP, et al. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol,1997,24(5):895-904.
    [58]Dongre M, Singh NS, Dureja C, et al. Evidence on how a conserved glycine in the hinge region of HapR regulates its DNA binding ability:lessons from a natural variant. J Biol Chem,2011,286(17):15043-9.
    [59]Liu D, Thomas PW, Momb J, et al. Structure and specificity of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens. Biochemistry, 2007,46(42):11789-99.
    [60]Fujiya M, Musch MW, Nakagawa Y, et al. The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbee,2007,1(4):299-308.
    [61]Karlsson D, Karlsson S, Gustafsson E, et al. Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae. Biosystems,2007,90(1):211-23.
    [62]Qazi S, Middleton B, Muharram SH, et al. N-acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus. Infect Immun,2006,74(2):910-9.
    [63]王卉,杨梦华,钟增涛,等.人类病原细菌中的群体感应.医学分子生物学杂志,2006,3(2):146-8.
    [64]Tinh NT, Linh ND, Wood TK, et al. Interference with the quorum sensing systems in a Vibrio harveyi strain alters the growth rate of gnotobiotically cultured rotifer Brachionus plicatilis. J Appl Microbiol,2007,103(1):194-203.
    [65]Brackman G, Celen S, Baruah K, et al. AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ. Microbiology,2009,155(Pt 12):4114-22.
    [66]Ahmed NA, Petersen FC,Scheie AA. AI-2 quorum sensing affects antibiotic susceptibility in Streptococcus anginosus. J Antimicrob Chemother,2007,60(1): 49-53.
    [67]Li M, Ni N, Chou HT, et al. Structure-based discovery and experimental verification of novel AI-2 quorum sensing inhibitors against Vibrio harveyi. ChemMedChem,2008,3(8):1242-9.
    [68]Rajamani S, Sayre R. FRET-based biosensors for the detection and quantification of AI-2 class of quorum sensing compounds. Methods Mol Biol,2011,692:31-46.
    [69]Dickschat JS. Quorum sensing and bacterial biofilms. Nat Prod Rep,2010,27(3): 343-69.
    [70]Aharoni R, Bronstheyn M, Jabbour A, et al. Oxazaborolidine derivatives inducing autoinducer-2 signal transduction in Vibrio harveyi. Bioorg Med Chem, 2008,16(4):1596-604.
    [71]Chen X, Schauder S, Potier N, et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature,2002,415(6871):545-9.
    [72]Zhu J, Yin X, Yu H, et al. Involvement of quorum sensing and heat-stable enterotoxin a in cell damage caused by a porcine enterotoxigenic Escherichia coli strain. Infect Immun,2011,79(4):1688-95.
    [73]Olsen JA, Severinsen R, Rasmussen TB, et al. Synthesis of new 3-and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg Med Chem Lett,2002,12(3):325-8.
    [74]Ng WL, Perez LJ, Wei Y, et al. Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Mol Microbiol,2011,79(6):1407-17.
    [75]Kelly RC, Bolitho ME, Higgins DA, et al. The Vibrio cholerae quorum-sensing autoinducer CAI-1:analysis of the biosynthetic enzyme CqsA. Nat Chem Biol, 2009,5(12):891-5.
    [76]Ripp S, Jegier P, Birmele M, et al. Linking bacteriophage infection to quorum sensing signalling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J Appl Microbiol,2006,100(3):488-99.
    [77]Miller MB, Skorupski K, Lenz DH, et al. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell,2002,110(3):303-14.
    [78]Waters CM, Lu W, Rabinowitz JD, et al. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol,2008,190(7):2527-36.
    [79]Miyamoto CM, Dunlap PV, Ruby EG, et al. LuxO controls luxR expression in Vibrio harveyi:evidence for a common regulatory mechanism in Vibrio. Mol Microbiol,2003,48(2):537-48.
    [80]Studer SV, Mandel MJ,Ruby EG. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J Bacteriol,2008,190(17):5915-23.
    [81]Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol,2004,186 (20):6902-14.
    [82]Kim K, Kim YU, Koh BH, et al. HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway. Immunology,2010,129(4):578-88.
    [83]Lesic B, Starkey M, He J, et al. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology,2009,155(Pt 9):2845-55.
    [84]Barbey C, Crepin A, Cirou A, et al. Catabolic Pathway of Gamma-caprolactone in the Biocontrol Agent Rhodococcus erythropolis. J Proteome Res,2012,11(1): 206-16
    [85]Gilbert KB, Kim TH, Gupta R, et al. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol,2009,73(6): 1072-85.
    [86]Li LL, Malone JE,Iglewski BH. Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol,2007,189(12):4367-74.
    [87]Bacon Schneider K, Palmer TM,Grossman AD. Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis. J Bacteriol,2002,184(2):410-9.
    [88]Karatas AY, Cetin S,Ozcengiz G. The effects of insertional mutations in comQ, comP, srfA, spoOH, spoOA and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Biochim Biophys Acta,2003,1626(1-3):51-6.
    [89]Yazgan A, Ozcengiz G,Marahiel MA. Tn10 insertional mutations of Bacillus subtilis that block the biosynthesis of bacilysin. Biochim Biophys Acta, 2001,1518(1-2):87-94.
    [90]Kavanaugh JS, Thoendel M,Horswill AR. A role for type I signal peptidase in Staphylococcus aureus quorum sensing. Mol Microbiol,2007,65(3):780-98.
    [91]Zhang HB, Wang LH,Zhang LH. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci USA,2002,99(7): 4638-43.
    [92]Holden MT, McGowan SJ, Bycroft BW, et al. Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora:facile trans activation by the carR transcriptional regulator. Microbiology,1998,144 (Pt 6):1495-508.
    [93]Barber CE, Tang JL, Feng JX, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol,1997,24(3):555-66.
    [94]Park SY, Kang HO, Jang HS, et al. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol,2005,71(5):2632-41.
    [95]Miyairi S, Tateda K, Fuse ET, et al. Immunization with 3-oxododecanoyl-L-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J Med Microbiol,2006,55(Pt 10):1381-7.
    [96]Anguige K, King JR,Ward JP. Modelling antibiotic-and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population. J Math Biol,2005,51(5):557-94.
    [97]Schuster M, Urbanowski ML,Greenberg EP. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci USA,2004,101(45):15833-9.
    [98]Li J, Attila C, Wang L, et al. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR:effects on small RNA and biofilm architecture. J Bacteriol,2007, 189(16):6011-20.
    [99]Taga ME, Miller ST,Bassler BL. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol Microbiol JT-Molecular microbiology,2003, 50(4):1411-27.
    [100]Givskov M, de Nys R, Manefield M, et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol,1996,178(22): 6618-22.
    [101]Manefield M, Rasmussen TB, Henzter M, et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology,2002,148(Pt 4):1119-27.
    [102]Kohler J, Breitbach K, Renner C, et al. NADPH-oxidase but not inducible nitric oxide synthase contributes to resistance in a murine Staphylococcus aureus Newman pneumonia model. Microbes Infect,2011,13(11):914-22.
    [103]Chun CK, Ozer EA, Welsh MJ, et al. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci USA, 2004,101(10):3587-90.
    [104]Sonawane ND, Zegarra-Moran O, Namkung W, et al. Alpha-aminoazaheterocyclic-methylglyoxal adducts do not inhibit cystic fibrosis transmembrane conductance regulator chloride channel activity. J Pharmacol Exp Ther 2008,325(2):529-35.
    [105]Wang W, He Z, O'Shaughnessy TJ, et al. Domain-domain associations in cystic fibrosis transmembrane conductance regulator. Am J Physiol Cell Physiol, 2002,282(5):C1170-80.
    [106]Ravn L, Christensen AB, Molin S, et al. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods,2001,44(3):239-51.
    [107]Shaw PD, Ping G, Daly SL, et al. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA,1997,94(12):6036-41.
    [108]Cataldi TR, Bianco G, Palazzo L, et al. Occurrence of N-acyl-L-homoserine lactones in extracts of some Gram-negative bacteria evaluated by gas chromatography-mass spectrometry. Anal Biochem,2007,361(2):226-35.
    [109]Charlton TS, de Nys R, Netting A, et al. A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry:application to a model bacterial biofilm. Environ Microbiol, 2000,2(5):530-41.
    [110]Zhang Y, Ren Y, Jiao J, et al. Ultra high-performance liquid chromatography-tandem mass spectrometry for the simultaneous analysis of asparagine, sugars, and acrylamide in Maillard reactions. Anal Chem,2011,83(9):3297-304.
    [111]Fekete A, Frommberger M, Rothballer M, et al. Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Anal Bioanal Chem,2007,387(2):455-67.
    [112]Teiber JF, Draganov DI. High-performance liquid chromatography analysis of N-acyl homoserine lactone hydrolysis by paraoxonases. Methods Mol Biol, 2011,692:291-8.
    [113]Cui Y, Frey RL, Ferry JL, et al. Identification of hydroxyl radical oxidation products of N-hexanoyl-homoserine lactone by reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom,2009,23(8):1212-20.
    [114]Kalkum M, Lyon GJ,Chait BT. Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc Natl Acad Sci USA,2003, 100(5):2795-800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700