用户名: 密码: 验证码:
河南郑东新区可液化土的特征及抗液化措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地震等周期性动荷载作用下,饱和砂土或粉土及砂质粉土等少粘性土极易产生液化现象,从而造成地基失效,对建筑物或其它地面设施造成损坏。在地震动荷载一定的情况下,影响饱和土液化的主要是其颗粒组成以及密实程度、地下水位埋深和上覆非液化土层的厚度等因素。为减轻液化震害造成的损失,研究有效的抗液化措施十分必要。
     本文以郑州市郑东新区为研究对象,在深入探讨液化机理和液化判别方法的基础上,以野外钻探、原位测试和室内试验为主要手段,对研究区可液化土进行了一系列勘察工作,查明了研究区内可液化土的物理力学特征。对研究区所处自然地理地质条件和水文地质条件及地震工程地质条件进行了说明,并对区内饱和少粘性土的液化可能性和液化等级进行了判别和评价。总结了研究区内可液化土的物理力学特征,查明了其平面分布特征及深度分布特征。对研究区可液化土的震陷可能性进行了分析评价,对研究区可液化土的特性进行了综合评价。为提出有效的抗液化措施,分别对几种常用的抗液化措施如强夯法、砂石桩法、桩基础法等地基处理方法的抗液化机理以及处理效果进行了研究分析,提出采用水泥搅拌桩法作为抗液化措施的可行性,并从其抗液化机理上进行了论证。通过具体工程实例的类比分析,指出了桩基础作为抗液化措施的不足之处,对地基土抗液化处理措施进行了优化组合,提出减震隔离抗液化地基处理新理念和新模式。
     研究结果表明,在地震设防烈度为7度的地震背景下,研究区域内存在轻微-中等液化等级的可液化土,可液化土层埋深不超过16 m,属于液化和可能液化场地,应按照抗液化措施要求对建筑物地基进行相应处理。除了常用的强夯法和砂石桩法等抗液化处理措施外,水泥搅拌桩同样是可行的,原因是水泥中的细粒含量改变了土的颗粒组成。上述地基处理方法的地基承载能力一般不超过200kPa。对不同抗液化措施进行了优化组合,达到较好抗液化效果。同时提出了减震隔离抗液化地基处理新理念及实施模式,并经模型试验论证了该方法的有效性。
Purpose: Effected by periodic dynamic loads as earthquake, soils with lower viscosity such assaturated sand soil, silty soil or sandy silt are easy to be liquefied, which will lead to the failure offoundations where structures or other facilities may be damaged. With the dynamic loads ofearthquake fixed, main factors influencing the liquefaction of saturated soils are its granules,compaction, depth of water level underground and thickness of covered non-liquefied soils. Inorder to reduce the loss caused by liquefaction-induced damage, it is very necessary to researchefficient anti-liquefaction measures. In the paper, Zhengdong New District is taken as subjectinvestigated, on the basis of deep discussion on the liquefaction mechanism and judging methodsfor liquefaction, the paper, which takes field drilling, in situ test and indoor test as main measures,conducts a series of investigation on the liquefiable soils in the investigated area, and determinesphysical mechanical characteristics of the liquefiable soils. Meanwhile, it describes physicalgeography, geologic conditions, hydrogeology and seismological engineering geology in the area,and makes judgment and appraisal on the possibility of liquefaction of low-viscosity soils and theliquefaction level in the area. It summarizes physical mechanical characteristics of the liquefiablesoils and investigates the characteristics of horizontal distribution and depth distribution. Itanalyzes and appraises the possibility of seismic settlement of liquefiable soils and gives overallappraisal on the characteristics of liquefiable soils in the area.
     Contents and Methods:
     In order to take efficient anti-liquefaction measures, the paper conducts studies and analysisupon the anti-liquefaction mechanism and treatment effect of foundation treatment methods suchas dynamic consolidation, sand-gravel pile, and pile foundation, etc, and advances the feasibilityof cement mixing pile to resist liquefaction, and makes discussions in the anti-liquefactionmechanism. Through the analogy analysis of specific construction cases, it indicates the deficiencyof pile foundation for anti-liquefaction, and optimizes and combines the anti-liquefactionmeasures of foundation soils, and lodges new ideas and patterns of damping isolation belt to be setaround buildings.
     Main Views and Conclusion: under the earthquake intensity of level 7, there are liquefiable soilsunder slight-medium liquefaction level in the investigated area, and the setting depth of liquefiablesoil shall be not more than 16m, which belongs to liquefiable and possibly liquefiable fields, thefoundation of structures shall be treated according to the requirements of anti-liquefactionmeasures. Except general anti-liquefaction measures as dynamic consolidation, sand-gravel pile,the cement-mixing pile is feasible as well, because the fines contents in cement change theformation of soil particles, and the contents of cosmid can be increased by about 3%. In theabove-mentioned foundation process method, the bearing capacity of foundation will generally notexceed 200kPa. The anti-liquefaction measures shall be optimized and combined as to reach anideal liquefaction effect. In addition, it lodges new ideas and patterns of damping isolationfoundation for anti-liquefaction, model tests indicate that the method works well to improve theanti-liquefaction of buildings, and the cycle index of stresses needed for liquefaction and damagesof buildings are increased by 40-50% respectively, in addition, the paper gives suggestions for thenext procedures.
引文
[1]陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[J].地震工程与工程振动,2002,(1):141-151.
    [2]陈国兴,胡庆兴,韦晓,等.桩与土和结构相互作用对高层建筑基地输入地震动的影响[J].地震工程与工程振动,2000,(1):245-252.
    [3]陈国兴,谢军斐,张克绪.天然地基浅基础的震害分析[J].岩土工程学报,1995,(1):66-72.
    [4]陈国兴,谢君雯,张克绪.砂性土液化势的评估方法[J].地震学刊,1996,(3):13-24.
    [5]陈国兴,宰金珉,杨栋,等.考虑土与结构相互作用效应的TMD减震特性研究[J].岩土工程学报,1997,(6):82-87.
    [6]陈国兴,张克绪,谢君雯.液化判别的可靠性研究[J].地震工程与工程振动,1991,(2):85-96.
    [7]陈国兴,张克绪,谢君雯.以剪切波速为指标的液化判别方法及其适用性[J].哈尔滨建筑大学学报,1996,(1):97-103.
    [8]陈国兴,张克绪,谢军斐.桩基抗震性能与震害机制宏观解析[J].岩土工程师,1993,(4):8-12.
    [9]陈国兴,张克绪,谢君雯.设置桩基能改变场地类别吗[A]//软土地区土工和抗震国际会议论集[C].北京:地震出版社,1993:425-430.
    [10]陈清军,姜文辉,李哲明.桩-土接触效应及对桥梁结构地震反应的影响[J].力学季刊,2005,(4):609-613.
    [11]陈云敏,冯卫.对强夯理论的新探讨[A].第六届全国土力学及基础工程学术会议论文选集.上海:同济大学出版社,中国建筑工业出版社.1991.
    [12]方鸿琪,王钟琪,等.地震液化宏观机制及震害效应[J].工程勘察,1980,1.
    [13]冈本舜三.抗震工程学[M].北京:中国建筑工业出版社,1978.
    [14]《工程地质手册》编写委员会.《工程地质手册》(第三版)[M].北京:中国建筑工业出版社,1992.2.
    [15]国家地震局地质研究所六室.北京西集、郎府地区不同液化砂层的矿物特征及其在砂土液化预测中的意义.北京地区唐山地震震害调查资料汇编.1978.
    [16]龚思礼.建筑抗震设计手册[M].北京:中国建筑工业出版社,1994.
    [17]郭小花,李小林,赵振,等.青海玉树地震地质作用对地质环境影响分析[J].工程地质学报,2011,19(5):685-711.
    [18]衡朝阳,何满潮,裘以惠.含黏粒砂土抗液化性能的试验研究[J].工程地质学报,2001,(4):339-344 []刘恢先.唐山大地震震害(一)[M].北京:地震出版社,1985.
    [19]化工部郑州工程地质勘察院.民权县污水处理厂岩土工程勘察报告.2007.
    [20]李方明,陈国兴.基于BP神经网络的饱和砂土液化判别方法[J].自然灾害学报,2005,(2):108-114.
    [21]李忠献,张媛,王泽明.土-结构动力相互作用对结构控制的影响[J].地震工程与工程振动,2005,(3):138-144.
    [22]刘惠珊,张在明.地震区的场地与地基基础[M].北京:中国建筑工业出版社,1994:143-145.
    [23]刘颖,谢君雯.砂土振动液化[M].北京:地震出版社,1984.
    [24]刘颖,谢军斐,张克绪等.土的动力强度和液化特征[M].北京:地震出版社,1984.3.
    [25]刘雪珠,陈国兴.黏粒含量对南京粉细砂液化影响的试验研究[J].地震工程与工程振动,2003,(3):152-157.
    [26]楼梦麟,吴京宁.土与结构相互作用对高层建筑TMD控制的影响[J].同济大学学报,1997,(5):516-520.
    [27]闵子群.中国历史强震目录(公元前23世纪~公元1911年)[M].北京:地震出版社,1995.
    [28]牛志荣.土体动力压密问题及其工程应用[D].太原:太原理工大学,2003.
    [29]石兆吉,丰万玲.砖房震陷计算分析[J].地震工程与工程振动,1991,(1):89-98.
    [30]石兆吉,王承春.预测轻亚黏土液化势的剪切波速法[A].第一届全国地震工程会议论文集[C].上海,中国,1984.
    [31]石兆吉.判别水平土层液化势的剪切波速法[J].水文地质和工程地质,1986,(4):9-13.
    [32]石兆吉,陈国兴.自由场地深层液化可能性研究[J].水利学报,1990,(12),55-61.
    [33]石兆吉,王兰民.土壤动力特性·液化势及危害性评价[M].北京:地震出版社,1999.11
    [34]孙利民,张晨男,潘龙,等.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报,2002,(4):409-415.
    [35]孙树民.独桩平台地震反应的TMD控制研究[J].海洋工程,2001,(3):14-19.
    [36]王洪瑾,沈瑞福,马奇国.双向振动下土的动强度[J].清华大学学报(自然科学版),1996,(4):93-98.
    [37]王维铭,袁晓铭,陈龙伟,等.汶川地震绵阳地区液化特征[A].第八届全国地震工程学术会议论文集(Ⅰ)[C],2010.
    [38]王志华,陈国兴,宰金珉.考虑SSI效应的TMD减震特性振动台模型试验研究[J].南京工业大学学报,2002,(5):34-39.
    [39]王锺琦,邓祥林.强夯机理及环境影响. [A].第四届全国土力学及基础工程学术会议论文选集.北京:中国建筑工业出版社,1983.
    [40]汪闻韶.土工抗震研究进展[J].岩土工程学报,1993,(6):80-82.
    [41]汪闻韶.土的动力强度和液化特征[M].北京:中国电力出版社,1996.10
    [42]吴世明,许攸在.土动力学现状与发展[J].岩土工程学报,1998,(3):125-131.
    [43]肖晓春.地震作用下土-桩-结构动力相互作用的数值模拟[D].大连:大连理工大学,2003.
    [44]谢定义.饱和砂土体液化的若干问题[J].土木工程学报,1992, (3):90-98.
    [45]谢定义,张健民.周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型[J].土木工程学报,1990, 23(2):51-60
    [46]谢君雯.关于修改抗震设计规范砂土液化判别式的几点意见[J].地震工程与工程振动,1984,(2):95-126.
    [47]谢君雯,石兆吉,郁松寿,等.液化危害性分析[J].地震工程与工程振动,1988,(1):61-77.
    [48]熊兴邦,祁希兴,邹秀兰.振动沉管挤密碎石桩处理可液化土的试验研究[J].地基处理,1993,2.
    [49]徐志英,沈珠江.地震液化的有效应力二维动力分析方法[J].华东水利学院学报,1981,(3):1-14.
    [50]杨石红,刘静蓉.软弱地基土层震陷简化计算方法研究[J].世界地震工程,1997,(2):52-61.
    [51]严士超,杜一平.电视塔-桩-土相互作用地震反应分析[J].土木工程学报,1991,(3):71-79.
    [52]殷宗泽,朱泓,徐国华.土与结构材料接触面的变形及其数值模拟[J].岩土工程学报,1994,(3):14-22.
    [53]张建民,谢定义.饱和砂土振动孔隙水压力增长的实用方法[J].水利学报,1991, (8):45-51.
    [54]张克绪.饱和砂土的液化应力条件[J].地震工程与工程振动,1984,(1):99-109.
    [55]张敏政,孟庆利,刘晓明.建筑结构的地震模拟试验研究[J].工业建筑,2003,(4):31-35.
    [56]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1981.
    [57]周建,白冰,徐建平.土动力学理论与计算[M].北京:中国建筑工业出版社,2001.
    [58]周建,徐志英.土(尾矿)坝的三维有效应力动力反应分析[J].地震工程与工程振动,1984,4(3):60-70
    [59]周锡元,王广军,苏经宇.场地·地基·设计地震[M].北京:地震出版社,1990.
    [60]朱海之等.下辽河地区砂土液化形成的震害地质问题[J].地震地质,1979,1(4).
    [61]祝启坤,李先福,姚运生.砂土液化内部应力变化规律与工程液化判别[J].中国地质灾害与防治学报,2004,15(3):126-130.
    [62]Casagrande A. Characteristics of Sloopes and Earth Fills. Journal of Boston Society of CivilEngineers. Jan. 1936. Contributions to Soil Mechanics 1925~1940. BSCE,1940. 257~276
    [63]Finn W D L. Liquefaction potential developments since 1976[A]//Proceeding of InternationalConference on Recent Advances in Geotechnical Earthquak Engineering and Soil Dynamics[C]. 1981:655-681
    [64]Finn L W D,Ledbetter R H,Fleming Jr.R L,et al.Dam on Liquefiable Foundation:SafetyAssessment and Remendition.17th ICOLD.3.1991.531-535
    [65]Kramer S L and Seed H B.Initiation of Soil liquefaction Under Static Loading.J.GE.ASCE.1988.114(4):412-430.
    [66]Lee K L, Albaisa A. Earthquak-induced settlement in saturated sands[J]. Journal of SoilMechanics and Foundations, ASCE,1974, (4) :387-406.
    [67]Lee K L, Focht J A. Liquefaction potential at Ekofisk Tank in North Sea[J].Jouenal ofGeotechnical Engineering, ASCE,1975,(1):1-18.
    [68]Penzien J,Scheffy C F, Parmelee R A. Seismic analysis of bridges on long piles [J].Jouenalof Engineering Mechanics Division, ASCE,1964,(3):223-254.
    [69]Seed H B. Soil liquefaction and cyclic mobility evolution for level ground duringearthquakes[J]. Journal of the Geotechnical Engineering Division,ASCE,1979,105(2):201-205.
    [70]Seed H B,et al. Pressure changes during soil liquefaction,Proc ASCE,1976,102(GT4).
    [71]Tatsuoka F, Sasaki T, Yamada S. Settlement in saturated sand induced by cyclic undrainedsimple shear[A]//Proceeding of the 8thWorld Conference Earthquak Engineering[C]. SanFrancisco,USA,1984:95-102.
    [72]Tokimatsu K, Seed H B. Evaluation of settlement in sands due to earthquake shaking[J].Journal of Geotechnical Engineering, ASCE,1987, (8):861-878.
    [73]Vaid Y P, Thomas J. Post-liquefaction behavior of sand.XIII ICSMFE,NewDelhi,Indai,1994,5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700